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Abstract In this paper, a systematic review of non-probabilistic reliability metrics is conducted to

assist the selection of appropriate reliability metrics to model the influence of epistemic uncertainty.

Five frequently used non-probabilistic reliability metrics are critically reviewed, i.e., evidence-

theory-based reliability metrics, interval-analysis-based reliability metrics, fuzzy-interval-analysis-

based reliability metrics, possibility-theory-based reliability metrics (posbist reliability) and

uncertainty-theory-based reliability metrics (belief reliability). It is pointed out that a qualified reli-

ability metric that is able to consider the effect of epistemic uncertainty needs to (1) compensate the

conservatism in the estimations of the component-level reliability metrics caused by epistemic

uncertainty, and (2) satisfy the duality axiom, otherwise it might lead to paradoxical and confusing

results in engineering applications. The five commonly used non-probabilistic reliability metrics are

compared in terms of these two properties, and the comparison can serve as a basis for the selection

of the appropriate reliability metrics.
� 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Reliability refers to the capacity of a component or a system to
perform its required functions under stated operating condi-

tions for a specified period of time.1 Reliability engineering
has nowadays become an independent engineering discipline,
which measures the reliability by quantitative metrics and con-
trols it via reliability-related engineering activities implemented

in the product lifecycle, i.e., failure mode, effect and criticality
analysis (FMECA),2 fault tree analysis (FTA),3 environmental
stress screening (ESS),4 reliability growth testing (RGT),5 etc.

Among all the reliability-related engineering activities, measur-
ing reliability is a fundamental one.6 Measuring reliability
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refers to quantifying the reliability of a component or system
by quantitative metrics. A key problem in measuring reliability
is how to deal with the uncertainty affecting the product’s reli-

ability. Broadly speaking, uncertainty can be categorized as
aleatory uncertainty which refers to the uncertainty inherent
in the physical behavior of the system,7,8 and epistemic uncer-

tainty which refers to the uncertainty that is caused by incom-
plete knowledge.7,9

In the early years of reliability engineering, reliability has

been measured by probability-based metrics, e.g., in terms of
the probability that the component or system does not fail
(referred to as probabilistic reliability in this paper10), and esti-
mated by statistical methods based on failure data (e.g., see

Ref.11). However, in engineering practice, the available failure
data, if there are any, are often far from sufficient for accurate
statistical estimates.12 Also, the statistical methods do not

explicitly model the actual process that leads to the failure.
Rather, the failure process is regarded as a black box and
assumed to be uncertain, which is described indirectly based

on the observed distribution of the time-to-failure (TTF).
From the perspective of uncertainties, the statistical methods
do not separate the root causes of failures and uncertainties

and therefore, they do not distinguish between aleatory and
epistemic uncertainties.

As technology evolves, modern products often have high
reliability, making it even harder to collect enough failure data,

which severely challenges the use of statistical methods.13 At
the same time, as the knowledge of the failure mechanisms
accumulates, deterministic models are available to describe

the failure process based on the physical knowledge of the fail-
ure mechanisms (referred to as physics-of-failure (PoF) mod-
els14). An alternative method to estimate the probabilistic

reliability is, then, developed based on the PoF models. In this
paper, these methods are referred to as the model-based meth-
ods. Unlike statistical methods, model-based methods treat the

actual failure process as a white box: the TTFs are predicted by
deterministic PoF models, while the uncertainty affecting the
TTF is assumed to be caused by random variations in the
model parameters (aleatory uncertainty). The probabilistic

reliability is, then, estimated by propagating aleatory uncer-
tainties through the model analytically or numerically, e.g.,
by Monte Carlo simulation.15,16 Compared to statistical meth-

ods, model-based methods explicitly describe the actual failure
process (by the deterministic PoF models) and separate the
root cause of failures (assumed to be deterministic) and the

aleatory uncertainty (the random variation of model parame-
ters). The separation of deterministic root causes and aleatory
uncertainty allows the designer to implement parametric
design for reliability, e.g., the reliability-based design optimiza-

tion (RBDO),17,18 tolerance optimization,19,20 etc., which
marks significant advancement in reliability engineering.

From the perspective of uncertainties, only aleatory uncer-

tainty is considered in the model-based methods. In practice,
however, the trustfulness of the predicted reliability is severely
influenced by epistemic uncertainty. As in today’s highly com-

petitive markets, it is more and more frequent to use the
model-based method to measure reliability, due to the severe
shortage on failure data. To better quantify the reliability with

the model-based methods, the effect of epistemic uncertainty
should also be considered. Epistemic uncertainty relates to
the completeness and accuracy of the knowledge: if the failure
process is poorly understood, there will be large epistemic
uncertainty.21–23 For instance, the deterministic PoF model
might not be able to perfectly describe the failure process,
e.g., due to incomplete understanding of the failure causes

and mechanisms.21,24 Besides, the precise values of the model
parameters might not be accurately estimated due to lack of
data in the actual operational and environmental conditions.

Both of these two factors introduce epistemic uncertainty into
the reliability estimation: the more severe the effect of these
factors is, the less trustful the predicted reliability is.

In literature, there are various approaches to measure reli-
ability under epistemic uncertainty, e.g., probability theory
(subjective interpretation25,26), evidence theory,27 interval
analysis,28,29 fuzzy interval analysis,30 possibility theory,31,32

uncertainty theory,33 etc. In this paper, a critical review on
these reliability metrics is conducted to assist the selection of
appropriate metrics. Some researchers and practitioners use

probability theory to describe epistemic uncertainty, taking a
Bayesian interpretation of probability.25,26 In recent years,
problems in dealing with epistemic uncertainty by probabilistic

methods have been pointed out.34,35 Non-probabilistic metrics
have, then, been proposed to model epistemic uncertainty. In
this paper, we discuss these non-probabilistic reliability

metrics.
More specifically, five reliability metrics are discussed in this

paper, i.e., evidence-theory-based reliability metrics, interval-
analysis-based reliability metrics, fuzzy-interval-analysis-based

reliability metrics, possibility-theory-based reliability metrics
(posbist reliability) and uncertainty-theory-based reliability
metrics (belief reliability). They are classified, based on the

mathematical essence of the metrics, as probability-interval-
based andmonotone-measure-based reliabilitymetrics. The for-
mer refers to an interval that contains all the possible reliabili-

ties/failure probabilities, while the latter refers to reliability
metrics that are defined based on a monotone measure (or fuzzy
measure36). A further classification is given in Fig. 1. The

probability-interval-based and monotone-measure-based relia-
bility metrics are reviewed in Sections 2 and 3, respectively.

2. Probability-interval-based reliability metrics

Probability-interval-based reliability metrics (PIB metrics)
describe the effect of epistemic uncertainty by an interval of
values of failure probabilities/reliabilities. The width of the

interval represents the extent of epistemic uncertainty: wide
intervals represent large epistemic uncertainty. When there is
no effect of epistemic uncertainty, the probability interval

becomes a single distribution function of the TTFs. We con-
sider three of the most popular non-probabilistic methods
for epistemic uncertainty representation, i.e., evidence theory,

interval analysis (probability box) and fuzzy interval analysis.
We review each of these three methods separately in the
remaining of this section.

2.1. Evidence-theory-based methods

Evidence theory, also known as Dempster–Shafer theory or as
the theory of belief functions, was established by Shafer37 for

representing and reasoning with uncertain, imprecise and
incomplete information.38 It is a generalization of the Bayesian
theory of subjective probability in the sense that it does not

require probabilities for each event of interest, but bases the



Fig. 1 Classification of existing non-probabilistic reliability metrics.
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belief in the truth of an event on the probabilities of other
propositions or events related to it.37 Evidence theory provides
an alternative to the traditional manner in which probability
theory is used to represent uncertainty by means of the speci-

fication of two degrees of likelihood, belief and plausibility, for
each event under consideration. The belief value of an event
measures the degree of belief that the event will occur and

the plausibility value measures the extent to which evidence
does not support the negation of the event. Evidence theory
is applied to describing uncertainty when the application of

probability theory cannot be supported, e.g., when few sam-
ples of data are available to estimate the probability
accurately.37

To obtain the evidence-theory-based reliability metrics, the
first step is to define the frame of discernment:

H ¼ fh1; h2; :::; hmg ð1Þ
where the setH includes all the possible and mutually exclusive
elementary propositions or hypotheses with respect to the

uncertain events. Let Ai (i= 1, 2, ..., 2m) denote the subsets
of H. All the subsets (also called focal sets) compose the power
set of H, which is denoted by 2H. Next, basic probability

assignment (BPA) is assigned to each focal set to represent
our belief in the event associated to it. BPA is essentially a
mapping function m:2H ? [0, 1], which satisfies

(1) mð£Þ ¼ 0

(2)
P

Ai #H
mðAiÞ ¼ 1

In practice, the values of the BPAs are assigned by experts

to represent the effect of epistemic uncertainty. Focal sets and
their associated BPAs comprise the evidence, based on which
the belief and plausibility of an event B can be calculated:

BelðBÞ ¼ P
Ai #B

mðAiÞ

PlðBÞ ¼ P
Ai\B–£

mðAiÞ

8><
>:

ð2Þ

where Ai denote the focal sets and m(Ai) is its BPA.

The belief in event B is quantified as the sum of the masses
assigned to all sets enclosed by it; hence, it can be interpreted
as a lower bound representing the amount of belief that sup-

ports the event. The plausibility of event B is, instead, the
sum of the BPAs assigned to all sets whose intersection with
event B is not empty; hence, it is an upper bound on the prob-
ability that the event occurs.39 Thus,

BelðBÞ 6 PðBÞ 6 PlðBÞ ð3Þ
When the event B is the failure of a component or system,

Eq. (3) leads to an interval that contains all possible failure
probabilities/reliabilities, representing the effect of epistemic
uncertainty on the reliability estimation: the larger the width
of the interval, the greater the epistemic uncertainty is, and

thus, the less we can trust the estimated reliability.
Rakowsky reviewed some early applications of evidence-

theory-based reliability metrics constructed based on failure

modes and effects analysis (FMEA), event tree analysis
(ETA) and FTA.40 Mourelatos and Zhou used evidence theory
to construct failure probability intervals and applied them in

engineering design optimization.41–43 In reliability-based opti-
mization (RBO), based on the interval of failure probability,
Alyanak et al. developed a new method for projecting gradi-
ents in RBO when available data are not enough.44 Yao

et al. developed a sequential optimization and mixed uncer-
tainty analysis method for RBO, where evidence theory is used
to describe epistemic uncertainty.45 Similar to Bayesian net-

work, the evidential network was developed to construct the
failure probability intervals.46 Yang et al. applied the eviden-
tial network to FTA and calculated the failure probability

intervals.47 Bae et al. constructed failure probability intervals
in large-scale structures based on evidence theory by identify-
ing the failure region and expressing it as a function of the

focus sets.27,48 Considering the large computing cost, Bae
et al. introduced an approximation method to calculate the
failure probability intervals under the framework of evidence
theory.49 Jiang et al. developed an efficient evaluation method

for structure reliability with epistemic uncertainty using evi-
dence theory, which reduced the computation cost compared
with traditional methods.50 To solve the problem of construct-

ing failure intervals with dependent parameters, Jiang et al.
developed a multidimensional evidence-theory model, where
the dependency is addressed by an ellipsoidal model.51 Baraldi

et al. studied the situation in which a number of experts pro-
vided different information about the imprecise parameters,
and belief and plausibility functions are used to develop upper
and lower bounds of cumulative probability functions.52,53 Lo

et al. assessed seismic probabilistic risk of nuclear power plants
and built associated failure probability intervals based on
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evidence theory.54 Khalaj et al. applied evidence theory to risk-
based reliability analysis.55 Yao et al. studied the uncertainty
quantification in multidisciplinary optimization and developed

a new method to calculate the failure probability intervals
based on optimization in the framework of evidence
theory.56,57

2.2. Interval-analysis-based methods

Another way to construct the interval of failure probabilities

is to use interval analysis (or probability boxes). Given a
model y= f(x), interval analysis assumes that the input vari-
able x is subjected to epistemic uncertainty and is described

by an interval (or convex sets if the input variables are
multidimensional) comprised of an lower bound xL and an
upper bound xU, so that xL 6 x 6 xU. Then, interval math-
ematics or numerical optimization methods are used to

derive the upper and lower bounds of the output variable
y.58 When interval analysis is applied to probabilistic mod-
els, upper and lower bounds of the probability of interests

can be calculated, which form a probability ‘‘box” (p-box)
that contains all possible values of that probability. Since
reliability is calculated by a probabilistic model, the p-box

becomes a natural tool to describe the epistemic uncertainty
influencing the calculated reliability.

Ferson et al. are among the first ones who apply the p-box
to describing and propagating epistemic uncertainty in a relia-

bility model, deriving intervals that contain all possible values
of failure probabilities.59,60 Karanki et al. applied p-box to
evaluate the probability of system failure under the influence

of epistemic uncertainty.61 Using a similar method to describe
epistemic uncertainty, Zhang et al. developed interval Monte
Carlo simulation methods,62 interval importance sampling

methods63 and quasi-Monte Carlo methods64 to calculate the
interval of failure probabilities when the structures are implic-
itly modeled based on a finite element model. Beer et al. devel-

oped a calculation method for failure probability intervals,
which is specially designed for small sample size and is based
on quasi-Monte Carlo simulations.65,66 Xiao et al. put forward
a saddle-point-based approximation method to enhance the

computational efficiency in calculating the interval of struc-
tural failure probability.67 Qiu et al. developed methods to
construct the interval of failure probabilities with small sample

size, using numerical optimization methods.68–70 Crespo et al.
applied p-box to the analysis of polynomial systems subject to
parameter uncertainties.71

2.3. Fuzzy-interval-analysis-based method

Fuzzy-interval-analysis-based method allows the consideration

of both aleatory and epistemic uncertainty simultaneously.34

The method can be regarded as the combination of probability
theory and fuzzy set theory, where the effect of aleatory uncer-
tainty is described by probability distributions, while the effect

of epistemic uncertainty is described by possibility distribu-
tions. For instance, in a model z = f(x, y), the input variable
x might be subject to aleatory uncertainty and described by

a probability density function fX(�); while the other variable
y might be subject to epistemic uncertainty and described by
a possibility distribution Py(�) (often through expert opinion

elicitations).
Kaufmann and Gupta introduced the basic idea of express-
ing randomness (probability) in combination with imprecision
(possibility) via hybrid numbers.72 Ferson et al.73,74 extended

Kaufmann’s work by developing computational rules of
hybrid numbers (i.e., the probability distributions are fuzzily
known), which can be applied in risk assessment. Through

the computational method, the random fuzzy sets can be
obtained and converted to the upper and lower bounds of fail-
ure probability. Guyonnet et al. introduced a hybrid method

to propagate both aleatory and epistemic uncertainties using
fuzzy interval analysis.75 In this method, the possibility distri-
bution function of the output variable z can be first calculated
based on the Monte-Carlo sampling method and the possibil-

ity extension principle, and then used to derive the upper and
lower bounds of failure probabilities based on fuzzy interval
analysis.76 Baudrit et al. developed a postprocessing method

based on belief functions (evidence theory) to extract useful
information and to construct the failure probability bounds
based on the results of the hybrid method,34 and they proved

that the method improved the work of Ferson et al.73,74 and
Guyonnet et al.75 Baraldi and Zio summarized the hybrid
method that jointly propagates probabilistic and possibilistic

uncertainties, and compared the method with pure probabilis-
tic and pure fuzzy methods.77 Based on the work of Baudrit
et al.34 Li and Zio applied the fuzzy interval analysis method
to assess the reliability of a distributed generation system,

which is affected by serious epistemic uncertainty.30 The
hybrid fuzzy interval analysis method has also been applied
successfully in other areas, e.g., reliability assessment of a flood

protection dike78 and a turbo-pump lubricating system.79

Flage et al. used probabilistic-possibilistic computational
framework to propagate uncertainties in FTA, giving rise to

the failure probability bounds of top event.80 Li et al. devel-
oped a hybrid-universal-generating-function-based (HUGF)
method for the fuzzy interval analysis of multi-state systems.81

2.4. Problem with PIB metrics

Although differences exist in the way that the interval of fail-
ure probabilities is constructed, all the three methods reviewed

in Sections 2.1–2.3 use this interval as the reliability metrics.
The width of the interval reflects the extent of epistemic uncer-
tainty. One important problem in reliability theory is how to

calculate the system-level reliability metrics based on the
reliability metrics of the components. Since PIB metrics are
intervals of probabilities, the system-level PIB metrics are cal-

culated based on the laws of probability theory. This fact
causes a common problem for the PIB metrics when applied
to calculate system reliability metrics. Consider the following
example.

Example 1. Consider a series system composed of 30 compo-
nents. Suppose that the real reliability of each component is
0.95. Since the system is subject to epistemic uncertainty, the

PIB metrics are used to quantify the reliability of the
components. We suppose that the reliability interval for each
component is [0.9, 1]. Then, following the laws of probability

theory, the system’s PIB reliability metric will be [0.930, 130] =
[0.04, 1]. This interval is not representative of the actual
uncertainty on the system reliability and obviously too wide to
provide any valuable information in practical applications.
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The reason for the unsatisfactory result in Example 1 is that
the imprecision in the component reliability metrics (the width
of the interval) is amplified by the product law of probability

theory that calculates the intersection of events. The system-
level reliability metric should be able to compensate for the
conservatism in the component-level reliability metrics caused

by the consideration of epistemic uncertainty. Monotone-
measure-based reliability metrics are developed for this aim.

3. Monotone-measure-based reliability metrics

Monotone measure was defined by Choquet as a generaliza-
tion of the classical measure theory.82 Let X be a finite univer-

sal set, and let l be a non-empty family of subsets of X. Then g:
l? [0,1] is a monotone measure on (X, l) if it satisfies the fol-
lowing requirements:

(1) gð£Þ ¼ 0;
(2) 8A;B 2 l; if A#B; then gðAÞ 6 gðBÞ.

Probability measure is a special case of the monotone mea-
sure, which is also additive. As pointed out by Klir and
Smith,83 non-additive monotone measures might be able to

represent broader types of uncertainty than the addictive prob-
ability theory. Therefore, they are applied to developing relia-
bility metrics that model epistemic uncertainty. Typical

monotone-measure-based reliability metrics include posbist
reliability which is based on possibility theory, and belief reli-
ability which is based on uncertainty theory.

3.1. Possibility-theory-based reliability metrics

The most widely applied possibility-theory-based reliability
metric is the posbist reliability. The two basic assumptions of

posbist reliability are32,84

(1) Possibility assumption: the system failure behavior is

fully characterized in the context of possibility measures.
(2) Binary-state assumption: the system demonstrates only

two crisp states, i.e. fully functioning or fully failed. At

any time, the system is in one of the two states.

In posbist reliability theory, lifetime of a system (or a com-
ponent) is a non-negative real-valued fuzzy variable, and the

posbist reliability of a system (or a component) is defined as
the possibility measure that the system (or the component) per-
forms its assigned functions properly during a predefined expo-

sure period in a given environment.84 The epistemic
uncertainty is, then, described and propagated based on possi-
bility theory.

Following the definition of posbist reliability, Cai et al.
developed posbist reliability analysis methods for series, paral-
lel, series–parallel, parallel–series and coherent systems.84,85

Huang et al. proposed detailed posbist reliability analysis
methods for k-out-of-n: G systems.86 Cai et al. studied posbist
reliability behavior of cold stand-by and warm stand-by
systems, considering both full reliable and non-full reliable

conversion switches.87 Utkin et al. extended Cai’s work to
repairable systems and developed a posbist reliability analysis
method based on state transition diagram.88,89 Huang et al.

introduced a posbist reliability fault tree analysis (posbist
FTA) method for coherent systems to evaluate reliability and
safety.90 He et al. developed calculation methods of posbist
reliability for typical systems when the components are sym-

metric Gaussian fuzzy variables.91 Bhattacharjee et al. investi-
gated the posbist reliability of k-out-of-n systems and pointed
out that the posbist reliability does not depend on the number

of components.92

In essence, posbist reliability is a possibility measure. In
possibility theory, the possibility measure P(�) satisfies the

following three axioms:93

Axiom 1. For the empty set £, there is P(£) = 0.

Axiom 2. For the universal set C, there is P(C) = 1.

Axiom 3. For any events K1 and K2 in the universal set C,
there is P(K1 [ K2) = max(P(K1), P(K2)).

Axiom 3 shows that the operation laws of possibility theory
differ from those of probability theory. Therefore, the system

reliability analysis method is also different from that based
on probability theory. For instance, Cai et al. proved that
the system posbist reliability is the minimum one among all

the posbist reliabilities of its components.32 This difference
makes it possible for possibility theory to compensate the con-
servatism caused by epistemic uncertainty in component-level

reliability estimations.

Example 2. Consider a series system composed of 300 com-
ponents. An extreme case is considered where all the compo-
nents are designed with sufficient margins, so that they are

completely reliable and the real reliability should be 1. It is
easy to verify that the system’s reliability is also 1, which
means that the system is highly reliable. However, since the

system is subject to epistemic uncertainty, the estimates of
component-level reliabilities are likely to be conservative. We
suppose, for example, the reliability of each component is

estimated to be R1 = R2 = � � � = R300 = 0.99. If we use
probability theory to model the reliability metric, the system
reliability is

RS ¼ R1R2 � � �R300 ¼ 0:04

It can be seen from the result that the conservatism in
component-level reliability estimates is amplified by the opera-
tion laws of probability theory, which contradicts with our

intuitions since a highly reliable system is judged as highly
unreliable.

If we use the posbist reliability, however, the system relia-

bility is

RS ¼ minðR1;R2; � � � ;R300Þ ¼ 0:99

which avoids the previous counter-intuitive result and demon-
strates that possibility theory can compensate the conservatism

in the component-level reliability estimates caused by epistemic
uncertainty.

3.1.1. Problems with posbist reliability

A major drawback of the possibility-theory-based reliability
metrics is that the possibility measure does not satisfy the dual-
ity axiom, which might lead to counter-intuitive results when

applied in practical reliability-related applications.
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Example 3. Let event K1 = {The system is working} and

K2 = {The system fails}. It is obvious that the universal set
C = K1 [ K2. Also, we have the posbist reliability and posbist

unreliability to be Rpos =P(K1) and Rpos ¼ PðK2Þ, respec-

tively. According to Axioms 2 and 3, we have

PðCÞ ¼ PðK1 [ K2Þ ¼ maxðRpos;RposÞ ¼ 1 ð4Þ
Therefore, if Rpos does not equal to 1, e.g., Rpos = 0.8, Rpos

must equal to 1. Vice versa, if Rpos does not equal to 1, e.g.,

Rpos ¼ 0:8,Rpos must equal to 1. This is a counterintuitive result

and easily confuses the decision maker in real applications.
Hence, even though designed to consider epistemic uncertainty,
a reliability metric should still satisfy the duality axiom.

3.2. Uncertainty-theory-based reliability metrics

As just explained in Section 3.1.1, one major drawback of the
possibility-theory-based reliability metrics is that possibility

theory does not satisfy the duality axiom. To overcome this
drawback, belief reliability has been developed based on uncer-
tainty theory. Founded by Liu,33,94 uncertainty theory relies

on the uncertain measure to describe the belief degree of events
affected by epistemic uncertainty, which is a monotone mea-
sure based on the following four axioms:

1) Normality axiom: MfCg ¼ 1 for the universal set C.
2) Duality axiom: MfKg þMfKcg ¼ 1 for any event K.
3) Subadditivity axiom: for every countable sequence of

events K1, K2,..., we have Mf[1
i¼1

Kig 6
P1

i¼1MfKig;
4) Product axiom: Let ðCk ; Lk ;MkÞ be uncertainty spaces

for k = 1, 2, .... The product uncertainty measure M
is an uncertain measure satisfying MfQ1

k¼1Kkg ¼
K
1

k¼1
MfKkg, where Lk are r -algebras over Ck, and Kk

are arbitrarily chosen events from Lk for k= 1, 2, ...,
respectively.
Table 1 Comparison of five reliability metrics.

Non-probabilistic metrics Theory basis Representative

literature

PIB reliability

metrics

Evidence-theory-based

reliability metric

Evidence

theory

42

Interval-analysis-based

reliability metric

Interval

analysis

59, 61

Fuzzy-interval-analysis-

based reliability metric

Fuzzy

interval

analysis

30, 34

Monotone-

measure-

based

reliability

metrics

Posbist reliability Possibility

theory

85

Belief reliability Uncertainty

theory

95
Belief reliability was defined by Zeng et al. as the uncer-
tainty measure of the system to perform specified functions
within given time under given operating conditions.95 Zeng

et al. developed an evaluation method for component belief
reliability, which incorporates the influences from design mar-
gin, aleatory uncertainty and epistemic uncertainty.96 The

issue of quantifying the effect of epistemic uncertainty is
addressed by developing a method based on the performance
of engineering activities related to reducing epistemic uncer-
tainty.97,98 The reason why uncertainty theory should be cho-

sen as the theoretical foundation of belief reliability was
explained by Zeng et al.99 by comparing it with other com-
monly encountered theories to deal with epistemic uncertainty,

i.e., evidence theory, possibility theory, Bayesian theory, etc.
system reliability analysis methods are also developed for
coherent systems.95,99

Compared to the PIB metrics, belief reliability uses the min-
imum operation to calculate the belief degree of the intersec-
tion events, and therefore can compensate for the

conservatism in the component-level reliability metrics caused
by the consideration of epistemic uncertainty. Compared to
the possibility-theory-based reliability metrics, belief reliability
satisfies the duality axiom, which avoids the possible paradox-

ical results often encountered in engineering applications of the
possibility-theory-based reliability metrics. Therefore, belief
reliability is a promising reliability metric to measure the reli-

ability affected by epistemic uncertainty. However, the
researches in the theory of belief reliability are far from
mature. In fact, as shown in the classical probability-based reli-

ability theory, there are four major topics in the research of
reliability theory:

(1) How to measure reliability (measurement).

(2) How to evaluate the reliability of a system based on the
reliability of its components (analysis).

(3) How to design the system so that the desired reliability

level can be fulfilled (design).
Method to obtain metric Existing problems

Use belief and plausibility functions to express

the lower and upper bounds of failure

probability.

The metrics are not

able to compensate

the conservatism in

the estimated

component-level

reliability metrics,

arising from the

consideration of

epistemic

uncertainty.

Calculate the maximum and

minimum of failure probability

through interval analysis, given

the range of input parameters.

First establish the possibility distribution of

failure probability through Monte Carlo

simulation and fuzzy interval analysis, and

then obtain the bounds of failure probability

via evidence theory.

Use possibility measure to calculate products’

reliability.

The metric does not

satisfy duality

axiom.

Obtain the belief reliability through calculating

products’ design margin, aleatory uncertainty

factor and epistemic uncertainty factor.

The research is far

from mature.
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(4) How to demonstrate that the system satisfies its reliabil-

ity requirements (demonstration).

Among the four topics, measurement is the most funda-

mental one. Since belief reliability is an entirely different relia-
bility metric from the classical probability-based reliability
metrics, new analysis, design and demonstration methods are
also needed for the theory of belief reliability. As reviewed

before, however, current researches on belief reliability only
concentrate on the first two problems. The problems of design
and demonstration are still relatively unexplored and deserve

further investigations.
To summarize, we make a comparison of the five reviewed

reliability metrics (see Table 1) in terms of theory basis, meth-

ods to obtain metric, and existing problems. This will help peo-
ple to choose appropriate reliability metric according to
different demands and situations.

4. Conclusions

In this paper, a systematic review is conducted on the non-

probabilistic reliability metrics that are used to describe the
effect of epistemic uncertainty. Five reliability metrics are dis-
cussed, i.e., the evidence-theory-based, interval-analysis-based,
fuzzy-interval-analysis-based, possibility-theory-based (posbist

reliability) and uncertainty-theory-based reliability metrics
(belief reliability). Among them, the former three provide, in
essence, an interval that contains all the possible values of

the reliabilities/failure probabilities whereas the latter two give
monotone measures.

An investigation of the five metrics reveals two important

features that a qualified reliability metric under epistemic
uncertainty should possess: (1) it should be able to compensate
the conservatism in the component-level reliability metrics
caused by the consideration of epistemic uncertainty, and (2)

it should satisfy the duality axiom, otherwise it might lead to
paradoxical and confusing results in engineering applications.

Finally, the five reliability metrics are compared with

respect to the above two features, as well as other important
characteristics which can be used to assist the selection of
appropriate reliability metrics considering the effect of epis-

temic uncertainty.
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