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Abstract In this paper we consider the effects of delay caused
by real-time image acquisition and feature tracking in a pre-
viously documented Vision-Augmented Inertial Navigation
System. At first, the paper illustrates how delay caused by
image processing, if not explicitly taken into account, can
lead to appreciable performance degradation of the estima-
tor. Next, three different existing methods of delayed fusion
and a novel combined one are considered and compared.
Simulations and Monte Carlo analyses are used to assess
the estimation errors and computational effort of the vari-
ous methods. Finally, a best performing formulation is iden-
tified, that properly handles the fusion of delayed measure-
ments in the estimator without increasing the time burden of
the filter.

Keywords Delayed fusion · Vision-Aided Inertial Nav-
igation System · Larsen method · Delayed state EKF ·
Recalculation

1 Introduction

Navigation approaches often use vision systems, since these
are among the most information-rich sensors for autonomous
positioning and mapping purposes [4]. Vision-based navi-
gation systems have been in use in numerous applications
such as Autonomous Ground Vehicles (AGV) and underwa-
ter environments [11]. Recently, they have been gaining in-
creased attention also in the field of Unmanned Aerial Vehi-
cles (UAV) [19,30]. Vision systems provide long range, high
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resolution measurements with low power consumption and
limited cost. On the other hand, they are usually associated
with rather low sample rates, since they often require com-
plex processing of the acquired images, and this limits and
hinders their usability in fast and real-time applications [9].

Several attempts have already been documented in the
design and implementation of robust visual odometry sys-
tems [21,13]. Some authors have proposed the incorpora-
tion of inertial measurements as model inputs [25] or states
[23,32,20], using variants of the Kalman filtering approach
to robustly estimate the vehicle motion. Other authors have
used an entropy-like cost function or bundle adjustment [10,
28]. The Vision-Aided Inertial Navigation System (VA-INS)
of [5] combined in a synergistic way vision-based sensors
together with classical inertial navigation ones. The method
made use of an Extended Kalman Filter (EKF), assuming
that all measurements were available with no delay.

However, latency due to the extraction of information
from images in real-time applications is one of the factors
affecting accuracy and robustness of vision-based naviga-
tion systems [16,12]. In fact, visual observations are gener-
ated with delay, since image processing procedures required
for tracking features between stereo images and across time
steps are time consuming tasks. Because of this, real-time
performance is often achieved at the expense of a reduced
computational complexity and number of features [9]. If de-
lays are small or the estimation is performed off-line, then
the use of a classic filtering leads to acceptable results. Oth-
erwise, the quality of the estimates is affected by the mag-
nitude of the delay. Consequently, it becomes important to
understand how to account for such delay in a consistent
manner, without at the same time excessively increasing the
computational burden of the filter.

Measurement delay has been the subject of numerous in-
vestigations in the context of systems requiring long time
visual processing [22]. If the delay is rather small, a sim-
ple solution is to ignore it, but this implies that the estimates
are not optimal and their quality may be affected. Another
straightforward method to handle delay is to completely re-
calculate the filter during the delay period as measurements
arrive. Usually this method cannot be used in practical ap-
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plications because of its large storage cost and computa-
tional burden. Other documented methods fuse delayed mea-
surements as they arrive through modified Kalman filters [1,
18]. These methods are effectively implemented in track-
ing and navigation systems for handling delays associated
with the Global Positioning System (GPS). Some solutions
exploit state augmentation [8,3]. The fixed-lag smoothing
method [7,3] augments the state vector with all previous
states throughout the interval from measurement sampling
to delayed fusion; the main drawback of this approach is
a possibly high computational load. Delayed state Kalman
filtering [31], also known as stochastic cloning [24], is an
another solution based on the augmentation of the state vec-
tor with the state at the lagged time, when measurements
are sampled. The approach has been implemented in many
applications in chemical and biochemical processes [14,29]
and for solving localization problems [27] to optimally in-
corporate the delayed measurements with non-delayed ones.

The aim of this paper is to present a comprehensive study
on delayed fusion approaches in a real-time tightly coupled
VA-INS [5]. Tracked feature points are incorporated as de-
layed measurements in a multi-rate multi-sensor data fusion
process using a non-linear estimator. More specifically, the
paper:

– Analyzes the effects of delay caused by image process-
ing on state estimation, when such delay is not explicitly
accounted for in the estimator;

– Considers problem issues and assesses the performance
of delayed state EKF alongside two other existing de-
layed fusion methods (Recalculation and Larsen [18])
to incorporate delayed vision-based measurements in the
estimator;

– Considers improvements on the estimator performance
through a combination of delayed state EKF and Larsen
method, this way replacing an approximate vision-based
model by an exact one;

– Assesses the quality of the various formulations and iden-
tifies the most promising one, in terms of computational
burden of the filter and of the quality of its estimates,
using simulation experiments and Monte Carlo analysis.

Some preliminary results on delay analysis using Recalcula-
tion and Larsen methods were previously presented in [2].

2 Vision-Augmented Inertial Navigation

Bottasso and Leonello (2009) proposed a VA-INS to achieve
higher precision in the estimation of the vehicle motion. Their
implementation used low-cost small-size stereo cameras, that
can be mounted on-board small Rotorcraft Unmanned Aerial
Vehicles (RUAVs). In this approach, the sensor readings of
a standard inertial measurement unit (a triaxial accelerom-
eter and gyro, a triaxial magnetometer, a GPS and a sonar
altimeter) are fused within an EKF together with the outputs
of so-called vision-based motion sensors. The overall archi-
tecture of the system is briefly reviewed here.

2.1 Kinematics

The sensor configuration and reference frames used in the
kinematic modeling of the system are depicted in Fig. 1.

Fig. 1: Reference frames and location of sensors.

The inertial frame of reference is centered at point O and
denoted by a triad of unit vectors E .

= (eee1,eee2,eee3), pointing
North, East and down (NED navigational system). A body-
attached frame has origin in the generic material point B of
the vehicle and has a triad of unit vectors B .

= (bbb1,bbb2,bbb3).
The components of the acceleration in the body-attached

frame are sensed by an accelerometer located at point A on
the vehicle. The accelerometer yields a reading aaaacc affected
by noise nnnacc:

aaaacc = gggB −aaaB
A +nnnacc. (1)

In this expression, gggB indicates the body-attached compo-
nents of the acceleration of gravity, where gggB = RRRTgggE with
gggE = (0,0,g)T , while RRR = RRR(qqq) are the components of the
rotation tensor that brings triad E into triad B and qqq are ro-
tation parameters.

Gyroscopes measure the body-attached components of
the angular velocity vector, yielding a reading ωωωgyro affected
by a noise disturbance nnngyro:

ωωωgyro = ωωωB +nnngyro. (2)

The kinematic equations, describing the motion of the
body-attached reference frame with respect to the inertial
one, can be written as

v̇vvE = gggE −RRR(aaaacc +ωωωB ×ωωωB × rrrB
BA+αααB × rrrB

BA)+RRRnnnacc,
(3a)

ω̇ωωB = αααh(ωωωgyro,nnngyro), (3b)

ṙrrE = vvvE , (3c)

q̇qq= TTT (ωωωB)qqq, (3d)

where vvv = vvvB is the velocity of point B, ωωω is the angular
velocity and ααα the angular acceleration, while rrrBA is the po-
sition vector from point B to point A and rrr = rrrOB is from
point O to point B. Finally, using quaternions for the rota-
tion parameterization, matrix TTT can be written as

TTT (ωωωB) =
1

2

[
0 −ωωωBT

ωωωB −ωωωB
×

]
. (4)
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Gyro measurements are used in Eq. (3b) for computing
an estimate of the angular acceleration. Since this implies a
differentiation of the gyro measurements, assuming a con-
stant (or slowly varying) bias over the differentiation inter-
val, knowledge of the bias becomes unnecessary. Hence, the
angular acceleration is computed as

αααB � αααh(ωωωgyro), (5)

where αααh is a discrete differentiation operator. The angular
acceleration at time tk is computed according to the follow-
ing three-point stencil formula based on a parabolic interpo-
lation

αααh(tk) =
(
3ωωωgyro(tk)−4ωωωgyro(tk−1)+ωωωgyro(tk−2)

)
/(2h),

(6)
where h= tk− tk−1 = tk−1− tk−2. It is assumed that gyro out-
puts are available with a sufficiently high rate (e.g., 400 Hz),
relative to the frequency of the inertial navigation system
(e.g., 100 Hz), in order to avoid feeding the estimator with
correlated measurements.

A GPS is located at point G on the vehicle (see Fig. 1).
The velocity and position vectors of point G, noted respec-
tively vvvE

G and rrrE
OG, can be expressed as

vvvE
G = vvvE +RRRωωωB × rrrB

BG, (7a)

rrrE
OG = rrrE +RRRrrrB

BG. (7b)

The GPS yields measurements of the position and velocity
of point G affected by noise, i.e.

vvvgps = vvvE
G +nnnvgps

, (8a)

rrrgps = rrrE
OG+nnnrgps

. (8b)

A sonar altimeter measures the distance h along the
body-attached vector bbb3, between its location at point S and
point T on the terrain (assumed to be flat), with rrrB

OS =(0,0,s)T .
In the body-attached frame B , the distance vector between
S and T has components rrrB

ST = (0,0,h)T , which are readily

transformed into inertial components as rrrE
ST = RRRrrrB

ST . Hence,
we get

h= r3/R33 − s, (9)

where r3 = rrrE · eee3 and RRR = [Ri j], i, j = 1,2,3. The sonar al-
timeter yields a reading hsonar affected by noise nsonar, i.e.

hsonar = h+nsonar. (10)

Furthermore, we consider a magnetometer sensing the
magnetic field mmm of the Earth in the body-attached system
B , so that

mmmB = RRRTmmmE , (11)

where the inertial components mmmE are assumed to be known
and constant in the area of operation of the vehicle. The
magnetometer yields a measurement mmmmagn affected by noise
nnnmagn, i.e.

mmmmagn = mmmB +nnnmagn. (12)

Finally, considering a pair of stereo cameras located on

the vehicle (see Fig. 2), a triad of unit vectors C .
= (ccc1,ccc2,ccc3)

has origin at the optical centerC of the left camera, where ccc1

is directed along the horizontal scanlines of the image plane,
while ccc3 is parallel to the optical axis, pointing towards the
scene. The right camera has its optical axis and scanlines
parallel to those of the left camera, i.e. C ′ ≡ C , where we
use the symbol ()′ to indicate quantities of the right camera.
Considering that P is a fixed point, the vision-based obser-
vation model, discretized across two time instants tk−m and
tk = tk−m+Δt, is

ddd(tk)Ck =−ΔtCCCT (RRR(tk)T vvvE (tk)

+ωωωB(tk)× (cccB +CCCddd(tk−m)
Ck−m)

)
+ddd(tk−m)

Ck−m , (13)

where m is the number of time samples between two consec-
utive captured images. CCC are the components of the rotation
tensor that brings triad B into triad C . The tracked feature

point distances are noted dddC = (d1,d2,d3)
T for the left cam-

era, and are obtained by stereo reconstruction using

dddC =
b
d
pppC , (14)

where ppp = (p1, p2, f )T is the position vector of the feature
point on the image plane, b is the stereo baseline and d =
p1 − p1

′ the disparity. This process yields at each time step
tk an estimate dddvsn affected by noise nnnvsn

dddvsn = ddd(tk)Ck +nnnvsn. (15)

An estimate of the accuracy can be derived by considering
the influence of the disparity measure error on the computed
feature position. For example, differentiating the third com-
ponent of Eq. (14) we get

δd3 =± f b
ωd̃2

δd̃, (16)

where we have set d = d̃w, being d̃ the disparity in pixel
units and w the pixel width. From this equation, it is clear

Fig. 2: Geometry for the derivation of the discrete vision-based motion
sensor.
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that the accuracy of a 3D measurement is directly affected by
disparity error. Furthermore, accuracy is adversely affected
by distance, as far points are associated with lower disparity
values.

The approximate observation model of Eq. (13) uses (av-
erage) translational and rotational velocities during the mea-
surement acquisition time interval; this way, measurements
can be expressed directly via the current state of the vehicle.
Therefore, this approximate model can be processed within
a standard EKF.

2.2 Process Model and Observations

The estimator is based on the following state-space model

ẋxx(t) = fff
(
xxx(t),uuu(t),ννν(t)

)
, (17a)

yyy(tk) = hhh
(
xxx(tk)

)
, (17b)

zzz(tk) = yyy(tk)+μμμ(tk), (17c)

where the state vector xxx is defined as

xxx .
= (vvvET

,ωωωBT
,rrrET

,qqqT )T . (18)

Function fff (·, ·, ·) in Eq. (17a) represents in compact form
the rigid body kinematics expressed by Eqs. (3). The input
vector uuu appearing in Eq. (17a) is defined in terms of the
measurements provided by the accelerometers and gyros,
i.e. uuu = (aaaTacc,ωωωT

gyro)
T , and ννν is the associated measurement

noise vector.
Similarly, Eqs. (7), (9), (11) and (13) may be gathered to-

gether and written in compact form as an observation model
hhh(·) expressed by Eqs. (17b), where the vector of outputs yyy
is defined as

yyy= (vvvET

G ,rrrET

OG,h,mmm
BT
, . . . ,dddC T

, . . .)T . (19)

The definition of model (17) is complemented by the vector
of measurements zzz and associated noise μμμ vectors

zzz .
= (vvvTgps,rrr

T
gps,hsonar,mmmT

magn, . . . ,ddd
T
vsn, . . .)

T , (20a)

μμμ .
= (nnnTvgps

,nnnTrgps
,nsonar,nnnTmagn, . . . ,nnn

T
vsn, . . .)

T . (20b)

2.3 Classic State Estimation using EKF

The state estimation problem expressed by Eqs. (17–20) was
solved using the EKF approach, initially assuming that all
measurements are available with no delay. The EKF formu-
lation is briefly reviewed here using the time-discrete form
of Eqs. (17) and assuming ννν and μμμ to be white noise pro-
cesses with covariance QQQ and UUU , respectively. The predic-
tion stage of states and observations is performed by using
the non-linear model equations,

x̂xx−k = x̂xxk−1 + fff (x̂xxk−1,uuuk−1,0) Δt, (21a)

yyyk = hhh
(
x̂xx−k

)
, (21b)

whereas a linear approximation is used for estimating the
error covariance and computing the Kalman gain matrices,

PPP−
k = AAAk−1 PPPk−1 AAAk−1

T +GGGk−1 QQQk−1 GGGk−1
T , (22a)

KKKk = PPP−
k HHHk

T (HHHk PPP
−
k HHHk

T +UUUk)
−1
. (22b)

Matrices AAAk−1, GGGk−1 and HHHk are computed by linearizing
the non-linear model about the current estimate,

AAAk−1 = III+Δt
∂ fff
∂xxx

|
x̂xxk−1

, GGGk−1 = Δt
∂ fff
∂ννν

|
x̂xxk−1

, HHHk =
∂hhh
∂xxx

|
x̂xx−k
.

(23)
Finally, covariance updates and state estimates are computed
as

PPPk = (III−KKKkHHHk)PPP
−
k , (24a)

x̂xxk = x̂xx−k +KKKk

(
zzzk−hhh

(
x̂xx−k

))
. (24b)

As the estimator operates at a rather high rate and hence
with small time increments, the unit norm quaternion con-
straint was simply realized by renormalization at each prediction-
correction step.

2.4 Image Processing and Tracking

The idea of VA-INS is based on tracking scene points be-
tween stereo images and across time steps, to express the
apparent motion of the tracked points in terms of the mo-
tion of the vehicle. The vision system is designed as a multi-
purpose element providing a rather large number of tracked
features and a dense disparity map to support several tasks
including VA-INS, 3D mapping and obstacle avoidance.

The identification and matching of feature points is be-
gun with the acquisition of the images; then, strong corners
are extracted from the left image with the feature extractor of
the KLT tracker [15], and a dense disparity map is obtained.
Identified feature points are encoded using the BRIEF de-
scriptor [6]; subsequently, matches in a transformed image
are found by computing distances between descriptors. Ac-
cording to [6], this descriptor is competitive with algorithms
like SURF in terms of recognition rate; although it appears
to be better for small rotations than for large ones, it is much
faster in terms of generation and matching.

A real-time implementation of the system was based on
an on-board PC-104 with a 1.6 GHz CPU and 512 Mb of
volatile memory, with the purpose of analyzing the perfor-
mance and computational effort of the feature tracking pro-
cess. Images were captured by a Point Grey Bumblebee XB3
stereo vision camera, and resized images with a resolution of
640x480 were used for tracking 100 points between frames.
These tests indicated the presence of a 490 millisecond la-
tency between the instant animage is captured and the time
the state estimator receives the required visual information,
as shown in table 1, which reports the worst case encoun-
tered in all experiments.
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3 Delayed Fusion in VA-INS.

Simulation analyses, presented later, show that the half a
second delay of the system is significant enough not to be ne-
glected. In other words, directly feeding this delayed vision-
based measurements to the EKF estimator will affect the
quality of the estimates. Since the magnitude of delays asso-
ciated with the tracking system is rather high in comparison
to the delays of the other sensors, these are assumed to be
delay-free in this work to simplify the problem. It is how-
ever clear that the same methodology used here for treat-
ing vision-caused delays could be used for addressing delays
generated by other components of the system.

The outputs of the vision-based motion sensors dddvsn(s)
from a captured image at time s will only be available at
time k = s + N, where N is the sample delay. Delayed out-
puts are labeled ddd∗vsn(k). On the other hand, measurements
from other sensors are not affected by such a delay, and are
available at each sampling time. For the purpose of handling
multi-rate estimation and delay, observations are here parti-
tioned in two groups, one collecting multi-rate non-delayed
GPS, sonar and magnetometer readings (labeled rt, for real-
time), and the other collecting delayed vision-based obser-
vations (labeled vsn, for vision):

zzzrt=̇(vvvTgps,rrr
T
gps,hhhsonar,mmm

T
magn)

T , (25a)

zzzvsn
∗
=̇(ddd∗Tvsn(1),ddd

∗T
vsn(2), . . . ,ddd

∗T
vsn(n))

T . (25b)

The state estimation process is based on using a proper EKF
update for each group. The Recalculation, Larsen [18] and
delayed state EKF [31] methods are surveyed here for fus-
ing delayed tracked points in the VA-INS structure as they
arrive. All methods are briefly reviewed in the following.

3.1 Recalculation Method

A straightforward estimate can be obtained simply by recal-
culating the filter throughout the delay period. As the vision-
based measurements are not available in the time interval
between s to k, one may update states and covariance us-
ing only non-delayed measurements in this time interval.
As soon as vision measurements originally captured at time
s are received with delay at time k, the estimation proce-
dure begins from s by repeating the update while incorpo-
rating both non-delayed measurements and lagged vision-
based measurements.

Table 1: Time cost of image processing tasks.

Process Task Computing Time
Image acquisition 100 ms

Resizing, rectification 40 ms
Dense disparity mapping 150 ms

Feature extraction 130 ms
Feature description 50 ms

Feature matching 20 ms
TOTAL 490 ms

The computational burden of this implementation of the
filter in the VA-INS is critical, because of the need of fusing
a fairly large set of measurements. Therefore the approach,
although rigorous and straightforward, is not a good candi-
date for the implementation on-board small size aerial vehi-
cles.

3.2 Larsen Method

Within the VA-INS approach, the successive tracked points,
their uncertainty and consequently the measurement model
will be unknown until images are completely processed. There-
fore, a method is needed that does not require information
about zzzvsn

∗
k until new measurements arrive.

Larsen extended Alexander approach [1], by computing
an optimal gain by extrapolating lagged measurements to the
present ones [18]:

zzzvsnk
(int) = zzzvsn

∗
k +HHHvsn∗

k x̂xxk−HHHvsn∗
s x̂xxs. (26)

This way, a correction term is calculated based on Kalman
information, accounting for measurements delay and giving

MMM∗ =
N−1

∏
i=0

(
III−KKKrt

k−iHHH
rt
k−i

)
AAAk−i−1. (27)

All updates to the Kalman gain and covariance due to the
lagged measurements are delayed in Larsen method and take
place as the delayed measurements arrive to the estimator.
When lagged measurements become available, updates are
performed in a simple and fast manner as

KKKvsn
k =MMM∗PPPsHHH

vsn∗T
s

(
HHHvsn∗

s PPPsHHH
vsn∗T
s +UUUvsn∗

k

)−1

, (28a)

δPPPk =−KKKvsn
k HHHvsn∗

s PPPsMMM
T
∗ , (28b)

δx̂xxk =MMM∗KKK
vsn
k

(
zzzvsn

∗
k −HHHvsn∗

s x̂xxs
)
. (28c)

The method can be utilized for handling either constant or
time varying delays.

3.2.1 Flow of EKF-Larsen Processing

Figure 3 shows an overview of the measurement process-
ing procedures for the standard EKF and Larsen methods.
The image processing routines are started at time s, tracking
feature points in new scenes; however, there is no available
vision-based measurement until time k = s+N.

Meanwhile, the multi-rate real-time measurements zzzrts+i,1≤
i≤ N are fused through the EKF Eqs. (22,24) as they arrive,
using HHHrt

s+i. This will produce the Kalman gain KKKrt
s+i, state

estimates x̂xxIs+i and covariance PPPI
s+i. Implementing Larsen ap-

proach requires only the state vector and covariance error at
time s to be stored and the correction term MMMs+i

∗ to be calcu-
lated during the delay period as

MMMs+i
∗ = (III−KKKrt

s+iHHH
rt
s+i)AAAs+i−1MMM

s+i−1
∗ . (29)
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Fig. 3: Flow of sequential EKF-Larsen processing.

At time k, when the vision-based measurements become
available, Larsen equations are used to incorporate delayed
quantities zzzvsn

∗
k in the estimation procedure. The Kalman gain

KKKvsn
k is calculated using Eq. (28a). Finally, visual measure-

ment corrections δPPPk and δx̂xxk, obtained by Eqs. (28b,28c),
are added to the covariance matrix and state vector of real-
time measurement updates PPPI

k and x̂xxIk, to obtain new quanti-

ties PPPII
k and x̂xxIIk .

3.3 Delayed State Kalman Filtering

An alternative formulation to this problem is presented here
by developing a specific delayed state Kalman filtering. In
this approach, an augmented state vector provides the vehi-
cle state at the time stereo images are captured, and it is used
at the time delayed visual measurements are incorporated
into the filter. The estimator is then based on an augmented
state vector, indicated with the notation xxx, which extends the
vehicle states with a copy of lagged ones. In order to prepare
the cloned filter, the augmented state vector and augmented
covariance matrix are reset right after the capture of a new
pair of stereo images. At time step s, the augmented state
vector is given by

xxxs = (xxx v T

s ,xxx l T
s )T , (30)

where

xxx v
s
.
= xxxs = (vvvET

(ts),ωωωBT
(ts),rrrET

(ts),qqqT (ts))T , (31a)

xxx l
s
.
= (vvvET

(ts),ωωωBT
(ts),qqqT (ts))T , (31b)

and the augmented covariance matrix is written as

PPPs =

[
PPP v
s PPP v,l

s

PPP v,l T
s PPP l

s

]
= DDD PPP v

s DDDT , (32)

DDD=

⎡
⎣ I13

I6 06×7

04×9 I4

⎤
⎦ , (33)

where PPP v,l
s is the cross-correlation between the current vehi-

cle state xxx v
s and the lagged one xxx l

s , and DDD maps the covari-
ance matrix to the corresponding augmented one at the same
time step.

During the propagation steps, between the time of image
capture s to the time of delayed visual measurement fusion
k = s+N, the first part of the augmented state, xxx v

s , is prop-
agated forward by using new inertial measurements and the
process model given by Eqs. (21a) and (22a), yielding xxxv−k
and PPPv−

k . However, xxx l
s and PPP l

s , which correspond to the sec-
ond part of the augmented state, are kept frozen. Note that
the cross-correlation term is evolved throughout the latency
period. After N steps of propagation, the augmented covari-
ance matrix is given by

PPP
−
k =

[
PPPv−
k As|kPPP v,l

s

PPP v,l T
s AT

s|k PPP l
s

]
, (34)

where As|k = ∏N−1
i=0 AAAk−i−1.

As the visual measurements ddd∗vsn arrive to the estima-
tor late, the visual output ddd(ts)Cs and the visual observation
model are rewritten according to the new augmented state
vector,

ddd(ts)Cs = hhh(xxxk) =−ΔtCCCT (RRR(ts)T vvvE (ts)

+ωωωB(ts)× (cccB +CCCddd(ts−m)
Cs−m)

)
+ddd(ts−m)

Cs−m . (35)

By linearizing the visual observation model about the aug-
mented state estimate, we have

HHH
vsn
k =

∂hhh
∂xxxk

= [HHHvsn
k HHHvsn

s ] , (36)

where HHHvsn
k is equal to zero, according to Eq. (35).

The Kalman update is computed as

SSS= HHH
vsn
k PPP

−
k HHH

vsnT

k +UUU
vsn
k , (37a)

KKKk = PPP
−
k HHH

vsnT

k SSS
−1

=
[
KKKT

k KKKT
s

]T
. (37b)

Finally, the current state of the vehicle is updated as

x̂xxvk = x̂xxv−k +KKKk
(
zzzvsn

∗
k −HHHvsn

s xxxls
)
, (38a)

PPPv
k = PPPv−

k −KKKk SSS KKKT
k . (38b)

The multi-rate real-time measurements zzzrts+i,1 ≤ i ≤ N
can be readily fused during the latency period as they arrive,

using HHH
rt
s+i. However they must be fused with the current

vehicle state while the lagged state remains frozen. A simple
solution can be achieved through the use of the Schmidt-
Kalman filter [26], whose gain is given as

KKK
rt
s+i =MMM PPP

−
s+i HHH

rtT

s+i SSS
rt−1

, (39a)

MMM =

[
I13 013×10

010×13 010×10

]
, (39b)

where M indicates which states are updated.
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3.4 Delayed Fusion in VA-INS via an Exact Model

In the previous section the motion velocity was assumed to
be constant between steps, which is a simple and effective
solution for sufficiently high image acquisition rates. An ex-
act model that does not require such an hypothesis is given
by the following discretization across two time instants tk−m
and tk = tk−m+Δt:

ddd(tk)Ck =−CCCT (RRR(tk)T (rrr(tk)− rrr(tk−m))+

(III−RRR(tk)TRRR(tk−m))(ccc+CCCddd(tk−m)
Ck−m)

)
+ddd(tk−m)

Ck−m .
(40)

This expression represents the position of a feature point
w.r.t. the camera at time tk in terms of the position at time
tk−m through the partial vehicle states (position and attitude)
at times tk and tk−m.

The problem of implementing this exact model in a stan-
dard estimator arises since the Kalman filter formulation re-
quires measurements to be independent of previous filter
states. To address this problem, while providing a robust es-
timation framework, a combination of delayed state Kalman
filtering and Larsen method is proposed in this work and
noted in the following as DS-EKF-Larsen. This way, by uti-
lizing an augmented state vector that includes the current
and lagged states, the exact model can be used, whereas
delayed fusion is handled by Larsen method. Considering
Eq. (40), the state vector is augmented with the lagged posi-
tion and the lagged quaternion at the time the last measure-
ments were obtained, yielding

xxxk−m = (xxx v T

k−m,xxx
l T
k−m)

T , (41a)

xxx v
k−m = (vvvET

(tk−m),ωωωBT
(tk−m),rrrET

(tk−m),qqqT (tk−m))
T ,
(41b)

xxx l
k−m

.
= (rrrET

(tk−m),qqqT (tk−m))
T . (41c)

3.5 Time Complexity

The measurement-update formulation of the standard EKF
method involves the inversion of the residual covariance (in-
novation covariance) given by Eq. (22b), with an approx-
imately cubic complexity of O(N2.37

z ), where Nz is the di-
mension of the measurement vector. The computation also
requires a matrix multiplication (see Eq. (24a)) of O(Nx

2),
where Nx is the dimension of the state vector xv. In the VA-
INS implementation of the filter, the most computationally
expensive operation is the inversion of the residual covari-
ance due to the fact that Nz > Nx, because of the incorpora-
tion of a rather large set of vision-based measurements.

In Larsen method, the computation of the correction term
is accumulated throughout the delay period and it is applied
at each update step using Eq. (28b). This way, the required
inversion and matrix multiplication have a similar time com-
plexity as in the EKF case. For the delayed state EKF within

VA-INS, an increased cost in comparison to the EKF imple-
mentation is expected for the matrix multiplication, due to
the increased state vector dimension, which is Nx = Nxv +
Nxl .

4 Simulation Experiments

A Matlab/Simulink software environment was developed,
that includes a flight mechanics model of a small Rotorcraft
Unmanned Aerial Vehicle (RUAV), models of inertial nav-
igation sensors, magnetometer, GPS and their noise mod-
els. The simulator is used in conjunction with the OGRE
graphics engine [17], for rendering a virtual environment
scene and simulating the image acquisition process. All sen-
sor measurements are simulated (see table 2) as the heli-
copter flies in open loop at an altitude of 2 m following a
rectangular path at a constant speed of 2 m/s within a small
village, composed of houses and several other objects with
realistic textures (see Fig. 4).

Navigation measurements are provided at a rate of 100 Hz,
while stereo images at the rate of 2 Hz. The GPS, avail-
able at a rate of 1 Hz, is turned off after 10 s in the flight,
to further highlight the effects of visual measurement delay.
State estimates are obtained by six different data fusion pro-
cesses: classic EKF with non-delayed measurements, clas-
sic EKF with delayed measurements, Recalculation, EKF-
Larsen, delayed state EKF and DS-EKF-Larsen method in
the presence of delay.

Table 2: Sensors and vibration noise parameters.

Sensors Noise Variance (σ2)

Gyro 50 (deg/s)2

Accelerometer 0.5 (m/s2)
2

Magnetometer 1∗10−4 Gauss2

Altimeter 0.5 m2

GPS 2 m2

Fig. 4: View of simulated village environment and flight trajectory.

Figure 5(a) shows the effects of delay on the EKF es-
timates, presenting a comparison of positions obtained by
classic EKF, fed with delayed and non-delayed visual mea-
surements. Figures 5(b) and 5(c) present position estimates
obtained by the two methods of EKF-Larsen and delayed
state EKF, respectively, in the presence of delayed visual
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(a) Effects of delay on classic EKF estimate (b) Performance of Larsen method

(c) Performance of delayed state method (d) Performance of DS-EKF-Larsen method

Fig. 5: Comparison of position estimates in the x-y plane. (a) EKF with (dark line) and without (light line) delay on visual measurements;
(b) EKF-Larsen method and Recalculation in the presence of delay; (c) Delayed state EKF and Recalculation in the presence of delay; (d)
DS-EKF-Larsen and EKF-Larsen in the presence of delay.

measurements, in comparison with the Recalculation method
(with delay). Finally, Fig. 5(d) presents position estimates
obtained by processing the exact vision-based model through
the proposed DS-EKF-Larsen method, in the presence of de-
layed visual measurements.

Results clearly show the negative effects of delay on the
standard EKF estimation, which are compensated with the
Recalculation, the sequential filtering EKF-Larsen and also
with the delayed state EKF. Moreover, the DS-EKF-Larsen
method appears to provide for enhanced estimates, due to
the optimal incorporation of an exact model.

4.1 Monte Carlo Simulation

A Monte Carlo simulation is used here for considering the
effects of random variation on the performance of the ap-
proaches, as well as evaluating the computational time bur-
den of each method. The analysis consisted of 100 runs,
which is the number of simulations that were necessary in
this case to bring the statistics to convergence (in the sense
that adding additional simulations did not change the re-
sults). For each simulation run, measurements and stereo im-
ages are generated for the 100 s maneuver described above,
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each with randomly generated errors due to noise and ran-
dom walks.

The average error in the position, velocity and attitude
estimates are shown in Figs. 6–8, using the six implemen-
tations of the vision-augmented data fusion procedures ex-
plained above. The ratios of the average computational effort
of the Kalman update by different approaches to the standard
one are depicted in Fig. 9, while the average estimation er-
rors for each approach are reported in Fig. 10.

The EKF-Larsen and the delayed state EKF methods show
a good performance, as does the Recalculation approach. In
fact, the average errors of these methods is very close to the
one obtained by the classic EKF with no delay on the vi-
sual measurements. However, the processing time of the fil-
ter recalculation increases twofold, as shown by Fig. 9, im-
plying a considerable additional computational burden. On
the other hand, the EKF-Larsen approach does not affect
the processing time of updating the filter, and therefore con-
jugates high quality estimation and low computing effort.
The processing time of the delayed state EKF is a little bit
higher than the one of the EKF-Larsen approach, however it
is significantly less than the one required by the Recalcula-
tion method. This additional computational burden is an ex-
pected effect of augmenting the state vector and covariance
matrix. Finally, DS-EKF-Larsen provides better estimates,
particularly for positions, in comparison to the EKF-Larsen
and delayed state EKF, but with additional complexity and

Fig. 6: Position estimate errors in the x (thin line), y (thick line) and z
(dashed line) directions.

Fig. 7: Velocity estimate errors in the x (thin line), y (thick line) and z
(dashed line) directions.

Fig. 8: Attitude estimate errors; yaw error (thin line), roll error (thick
line) and pitch error (dashed line).
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Fig. 9: Ratios of the average time cost of different approaches to the
average time cost of the EKF-based implementation of VA-INS.

Fig. 10: Average errors of velocity, position and angle estimates.

a computational cost comparable to the delayed state EKF
method. The formulations of EKF-Larsen and delayed state
EKF could be also utilized for addressing delays generated
by other sensors; however the computational burden of the
delayed state EKF method might rise considerably due to
the required additional state augmentation at several lagged
steps.

Figures 11–13 report the average error in the position,
velocity and quaternion estimates, together with the corre-
sponding confidence bounds. The plots compare EKF-Larsen
and delayed state EKF in the presence of delay with the stan-
dard EKF, fed with delayed and non-delayed visual mea-
surements. As clearly shown in the figures, by feeding de-
layed visual measurements into the standard EKF, there is
no guarantee that the errors will remain within the filter con-
fidence bounds. On the other hand, the EKF-Larsen, delayed
state EKF and DS-EKF-Larsen methods perform well in the
presence of delayed visual measurements, and exhibit the
same confidence bounds obtained by using a standard EKF
with non-delayed visual measurements.

Figures 14(a)–14(c) report a comparison of the average
error among the Recalculation method, which provides a
reference optimal solution, and the other methods. Results
show a similar but not identical performance of the various
methods, with rather small differences.

Fig. 11: Position estimate error in x direction (dashed dark line) and
confidence bounds (solid line).

Fig. 12: Velocity estimate error in the x direction (dashed dark line)
and confidence bounds (solid line).
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5 Conclusions

In this work, a previously documented VA-INS was extended
by implementing various approaches to handle feature track-
ing delays in a multi-rate multi-sensor data fusion process.
Simulation experiments were used together with Monte Carlo
analyses to assess the estimation error and the computational
burden of the methods.

The paper shows that delay caused by image processing,
if not properly handled in the state estimator, can lead to an
appreciable performance degradation. Furthermore, sequen-
tial EKF-Larsen, delayed state EKF as well as the Recalcu-
lation method restore the estimate accuracy in the presence
of delay. On the other hand, the results of the paper indicate
that the Recalculation approach implies a significant compu-
tational burden, while Larsen method is as expensive as the
standard EKF. The delayed state EKF has a slightly higher
computational cost than Larsen method, but a significantly
lower one than the Recalculation method.

This study concluded that Larsen method, for the present
application, provides estimates that have the same quality
and computational cost of the non-delayed case. The delayed
state EKF can also be a reliable solution, specifically if a few
percent increase in computational burden is tolerable.

Moreover, a novel combined implementation of delayed
state EKF and Larsen methods enhances the estimation ac-
curacy through an optimal fusion by using an exact vision-
based model in the presence of delay. DS-EKF-Larsen pro-
vides better estimates in comparison to the EKF-Larsen and
delayed state EKF, but with additional complexity and a com-
putational cost comparable to the delayed state EKF method.
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