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Abstract. This work describes a simple thermodynamic model of the hydrogen gas at low densities and for
temperatures going from those involving quantum rotations of ortho- and para-hydrogen up to the fully
ionized state. The closed-form energy levels of Morse rotating oscillator given in Harris and Bertolucci [14]
(but not those in Morse’s original paper) are shown to provide an internal partition function of H2 that
is a sufficiently accurate representation of that exploiting the state-of-the-art spectrum of roto-vibrational
levels calculated by Pachucki and Komasa [13]. A system of two coupled quadratic equations for molecular
dissociation and atomic ionization at thermodynamical and chemical equilibrium is derived according to the
statistical mechanics by assuming that the system is an ideal mixture containing molecules, neutral atoms
and noninteracting protons and electrons. The system of two equations reduces to a single quartic equation
for the ionization unknown, with the coefficients dependent on the temperature and the specific volume.
Explicit relations for specific energy and entropy of the hydrogen ideal gas/plasma model are derived.
These fully compatible equations of state provide a complete thermodynamic description of the system,
uniformly valid from low temperatures up to a fully ionized state, with electrons and ions relaxed to one
and the same temperature. The comparison with results of other models developed in the framework of the
physical and chemical pictures shows that the proposed elementary model is adequate for computational
fluid dynamics purposes, in applications with the hydrogen gas under diluted conditions and when the
dissociation and ionization can be assumed at thermodynamical and chemical equilibrium.

PACS. PACS-key 51.30.+i

1 Introduction

Monatomic ideal gases at low densities and for tempera-
tures lower than the ionization energy are described prop-
erly by the pressure equation of state PV = NkT together
with the specific heat equation cv = constant, both deriv-
able from a single fundamental thermodynamic relation
S = S(E, V,N), available in an explicit analytic form,
see e.g., [1, p. 373, eq. (16.73)]. Molecular gases do not
admit a similar compact representation due to the pres-
ence of the internal rotational and vibrational modes. In
the simplest case of a diatomic gas, molecular vibrations
are often described within the harmonic approximation,
by an infinite ladder of the uniformly distributed energy
levels of the Einstein quantum oscillator, see [1, p. 336]
or [2, p. 116]. This model yields a nonconstant specific
heat cv due to the temperature dependent vibrational con-
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tribution charv (T ) = R
(
Tv

T

)2 eTv/T

(eTv/T
−1)2

, with Tv denoting

the characteristic vibrational temperature of the molecule,
which makes it impossible for the fundamental relation to
be expressible explicitly in analytical form.

On the other hand, the harmonic model is conflicting
with the possibility of molecular dissociation occuring at
T > Tv. This difficulty is attenuated in some models where
charv (T ) is halved, as proposed by Lighthill [3], which cor-
responds to take the vibrational degrees of freedom of the
molecules always half-excited at any temperature, see also
[4, Sec. 5.3, p. 157]. A physically sounder procedure for
overcoming the harmonic approximation consists in mak-
ing recourse to the Morse potential [5] which accounts for
the vibrational nonlinearity and allows for the molecu-
lar disintegration into atoms. The Morse vibrational spec-
trum is still discrete but with a nonuniform spacing of the
energy levels of increasing density, and has a finite number
of excited states, before the molecular dissociation. A ther-
modynamic model for diatomic gases based on the rotat-
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ing Morse oscillator was developed by Gordillo-Vázquez
and Kunc [6] and was compared for several diatomic gases
to that relying upon the Tietz–Hua rotating oscillator.

The molecular rotations present however an additional
difficulty: rotations and vibrations are in principle coupled
together. For most diatomic molecules, the moment of in-
ertia is so large and the characteristic rotational temper-
ature Tr so small, of the order of only a few kelvins, that
the rotational states may be uncoupled from the vibra-
tional ones. Consequently, the molecular rotations can be
treated according to a semi-classical description of fully
excited rigid rotations valid for T > Tr, resulting in a con-
stant contribution R to cv. On the contrary, the hydrogen
molecule H2 (and its isotopes) has a very low moment of
inertia, as noted by Landau & Lifshitz [7, p. 139], yielding
the fairly high value Tr = 88K, so that the roto–vibration
coupling must be taken into account.

In the range of high temperatures, say T ≫ 5000K, a
thermodynamic description faces with another difficulty—
hydrogen ionization. For this element, atomic ionization
is most simple since the spectrum of the electron states
around the proton nucleus is known exactly and can be
used to compute the electronic contribution to the par-
tition function of H. Unfortunately, the series diverges
due to the long-range character of the electric interaction:
therefore atomic ionization requires a subtler mathemat-
ical treatment than molecular dissociation. In principle,
the equations of states of the ionized hydrogen gas can be
derived by statistical mechanics starting from the com-
plete Hamiltonian of the system, including the interaction
energy between the charges, within the framework called
physical picture, see, e.g., the classical studies of Hummer,
Mihalas and Däppen [8] and [9], or the work of Alastuey
et al. [10] on exact results for the hydrogen plasma at
low temperatures. Along the same rigorous lines, the re-
cent work of Alastuey and Ballenegger [11] has derived the
equations of state covering molecular, atomic and plasma
phases by means of the Ebeling function and a new four
body partition function.

Within a reduced setting, for low densities, say in the
range ρ < 1 kg/m3, the electrical charges are only weakly
coupled, see, e.g., [12, p. 216], and one may attempt to
formulate a simpler thermodynamic model by assuming
that, after ionization, all charges behave as noninteracting
particles after a time long enough for the temperatures of
electrons and ions to become equal.

The aim of this work is to present a complete ther-
modynamic description of the diluted hydrogen gas in-
cluding the rotational–vibrational coupling active at low
T , the molecular dissociation process occurring for T >
1000K, and the atomic ionization which may occur for
T > 5000K. Consistent expressions for the specific en-
ergy and entropy of the gas/plasma system at thermo-
dynamical and chemical equilibrium are derived in an ex-
plicit form, involving the internal partition function of the
molecule H2 and a suitable reduced version of the parti-
tion function of the hydrogen atom.

The former is first evaluated from the accurate nu-
merical energy levels of all the roto-vibrational states be-

fore dissociation determined recently by Pachucki and Ko-
masa including nonadiabatic corrections [13]. These ener-
gies are used here to compute the internal partition func-
tion needed to model molecular dissociation of H2. An
alternative closed-form expression for the roto-vibrational
energy levels is also derived from the classical reference
Harris&Bertolucci [14]. These energy levels differ from
Morse’s original ones [5] only for the term representing
the interaction between rotations and vibrations. Rather
unexpectedly, the Harris&Bertolucci spectrum is found to
give the internal partition function H2 notably different
from that provided by Morse spectrum and a fairly ac-
curate approximation to the partition function based on
Pachucki and Komasa spectrum. The Harris&Bertolucci
approximate spectrum is employed here to formulate a
simple closed-form analytical model of the thermodynamic
properties of the hydrogen gas, including dissociation and
ionization, a result that seems to be new, to the best of
our knowledge.

As far as the atomic partition function of H is con-
cerned, its divergence is circumvented by means of a sim-
ple modification introduced originally by Fermi [15]. The
entire analysis is conducted in the framework of the statis-
tical mechanics of noninteracting particles. A final thermo-
dynamic model is obtained which describes the hydrogen
gas/plasma at equilibrium by means of fully compatible
simple equations of state and is at the same time uniformly
valid for any temperature in the limit of low density.

2 Molecular partition function

The starting assumption is that of an ideal gas accord-
ing to the classical Maxwell–Boltzmann statistics. This is

possible provided λT ≪
(
V
N

)1/3
, where λT = h

(2πmkT )1/2

is the thermal de Broglie wavelength and N is the number
of identical particles of mass m contained in a volume V
and at temperature T , see, e.g., [1, p. 405]. The Helmholtz
free energy F of a system of noininteracting particles con-
sisting of NH2

molecules and NH atoms of hydrogen is [12,
p. 185]

F (T, V,NH2
, NH) = −kT ln

(
Z

NH2
H2

NH2
!

ZNH
H

NH!

)
. (2.1)

Such Helmholtz potential is based on the assumption that
the gas is a mixture of ideally noninteracting molecules
and neutral atoms, which holds only in the limit of a low
density.

The partition functions of the hydrogen molecule H2

and atom H in (2.1) are given respectively by

ZH2
(T, V ) = Ztr

H2
(T, V )Zrv,nuc

H2
(T )Zel

H2
(T ), (2.2)

ZH(T, V ) = Ztr
H
(T, V )Znuc,el

H
(T ). (2.3)

The translational partition function of the molecule is

Ztr
H2
(T, V ) =

(
mH2

kT

2π~2

) 3
2

V (2.4)
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and similarly for the atomic one Ztr
H
(T, V ), while

Zel
H2
(T ) = gel

H2
e−EH2,0/kT , (2.5)

Znuc,el
H

(T ) = gn
H
gel
H
e−EH,0/kT , (2.6)

where gn
H

= 2sH + 1 = 2 is the multiplicity of the spin
states of the atomic nucleus of H of spin sH = 1

2 and gel is
the statistical weight of the electronic state. Furthermore,
EH2,0 and EH,0 denote the ground state energy of hydrogen
molecule and atom, respectively.

Due to the homonuclear nature of H2, its internal par-
tition function cannot be factored in a nuclear and a rota-
tional part, cf. [2, p. 185]. Moreover, since rotations and vi-
brations are coupled together, they are considered jointly
in the factor Zrv,nuc

H2
(T ). By summarizing, the complete

partition functions of the molecule and the atom will be,
respectively,

ZH2
(T, V ) =

(
mH2

kT

2π~2

) 3
2

Zrv,nuc
H2

(T ) gel
H2

e−EH2,0/kT V,

(2.7)

ZH(T, V ) =

(
mHkT

2π~2

) 3
2

gn
H
gel
H
e−EH,0/kT V. (2.8)

The internal partition function of the diatomic molecule
must include a summation over its different electronic
states, and the summations over the rotational and vi-
brational states, which are both dependent on the elec-
tronic configuration, see, e.g., Babou et al. [16]. Initially,
one can consider only the ground state of the molecule
and disregard any electronic excitation. This assumption
is used to simplify the analysis but it could be removed
by including later higher electronic states of the molecule
in each roto-vibrational state. By taking into account the
combined effect of the multiplicity of the hydrogen nu-
clear spin sH = 1

2 and of the degeneracy of the rota-
tional quantum number j = 0, 1, . . . through the coef-
ficient ∆j ≡

[
2 − (−1)j

]
(2j + 1), the internal partition

function of the hydrogen molecule is assumed in the fol-
lowing form

Zrv,nuc
H2

(T ) =

Jmax∑

j=0

∆j

Nj∑

n=0

e−Ej,n/kT , (2.9)

where n = 0, 1, . . . , is the vibrational quantum number of
the molecule, Ej,n denotes the energy of the roto-vibrational
state (j, n) and Nj indicates the maximum number of vi-
brational states which are possible for a fixed rotation
state j. The external sum in (2.9) when limited to j even
or to j odd gives the para- and ortho-hydrogen, respec-
tively. To evaluate this function, the upper bound Jmax

for j of the outer sum and that Nj for n of the inner sum
must be known.

The values Ej,n of H2 are taken from the work of
Pachucki and Komasa [13], where Jmax = 31 and Nj =
14, 13, . . . , 1, 0, for j = 0, 1, . . . , 31, with some repetitions
in the Nj values. In Figure 1 we plot the function zrv(T ) =

 104 3 104 5 104 7 104 9 104
0

  104

T [K]

z r
v

Rotating Morse oscillator (1929)

Harris–Bertolucci (1989) Pachucki–Komasa
(2009)

Fig. 1. Internal partition function zrv(T ) of H2 for differ-
ent roto-vibrational spectra. Continuous line: numerical en-
ergy levels of Pachucki and Komasa [13]. Dotted curve: closed-
form approximate spectrum (2.12) of Harris and Bertolucci
[14]. Dashed curve: closed-form approximate spectrum (2.20)
of Morse [5].

e−De/kTZrv,nuc
H2

(T ), which should be indicated more pre-
cisely by znucrv (T ). The energy De is the depth of the em-
pirical Morse potential [5]

V (r) = De

[(
1− e−β(r−re)

)2 − 1
]
, (2.10)

where r is the internuclear distance, re is its equilibrium
value and β−1 is the length scale of the Morse elastic force.
The values for the hydrogen molecules are given in Tables
1 and 2 and De = 4.75 eV. The continuous curve of Figure
1 represents the partition function based on the full finite
set of accurate dissociation energy values for 301 roto-
vibrational states of the ground state 1Σ+

g calculated in
[13], before the molecule disintegrates.

It is interesting to compare this partition function with
the one provided by approximate analytical solutions to
the Schrödinger equation for the nuclear motion with the

effective Morse potential V eff
j (r) = V (r)+ ~

2

2µ
j(j+1)

r2 which

includes the centrifugal rotational term of the molecule,
µ being its reduced mass. In particular, the energy levels
can be expressed in closed form according to the energy
spectrum given in Harris and Bertolucci [14, p. 115, eq.
(3.45)], see also Blake [17, p. 56, eq. (7.11)]. The expres-
sion is made transparent by introducing the dimensionless
parameters

χe ≡
~β√
2µDe

and κ ≡ 1

βre
, (2.11)

the former being twice the usual anharmonicity constant
xe = χe/2. In terms of these parameters, the complete
expression of the Harris–Bertolucci approximate spectrum
reads

EHB

j,n

De
= −1 +

[
1− j(j + 1)(κ2χe)

2
]
j(j + 1)(κχe)

2

+
[
2−

(
n+ 1

2

)
χe

](
n+ 1

2

)
χe (2.12)

− 3j(j + 1)
(
n+ 1

2

)
(1− κ)(κχe)

3.
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Table 1. Morse parameters of H2 [18].

µ (amu) β (Å−1) β−1 (Å) re (Å) κ = 1/βre

H2 0.504 1.905 0.525 0.741 0.7085

Table 2. Other Morse parameters for H2 [18].

χe Nmax De (eV) U (eV)

H2 0.0571 17 4.75 4.48

Table 3. Characteristic temperatures of H2 in K.

Tcr Tr Tv TD Ti

H2 33.04 88.3 6300 55 121 157 800

The internal partition function based on the Harris–Ber-
tolucci spectrum will be written in the following form

zHB

rv (T ) =

Jmax∑

j=0

∆j e
−bjTr/T

Nj∑

n=0

e−aj
nTv/T , (2.13)

where kTr = ǫ0,r = ~
2/(2µr2e) and kTv = ~ωe = 2Deχe.

In this form of the sum, an exponential term dependent
only on the angular quantum number j and the rotational
temperature Tr is factored out from the internal sum on
the vibrational states. The coefficients in the exponentials
are given by the approximate spectrum (2.12) and are
found to be

ajn =
[
1−

(
n+ 1

2

)
χe

2

− 3j(j + 1)(1− κ) κχe
Tr

Tv

](
n+ 1

2

)
,

(2.14)

bj =
[
1− j(j + 1)(κ2χe)

2
]
j(j + 1), (2.15)

for 0 ≤ j ≤ Jmax and 0 ≤ n ≤ Nj , with Jmax and Nj to be
defined below. Notice the occurrence of the temperature
ratio Tr/Tv as a factor in the term coupling rotations with
vibrations. Thanks to the factor Tr/Tv, the evaluation of
zHB

rv (t) with the inner summation on n and the outer on
j turns out to be more stable numerically than the other
way around. We notice in passing that the rotational–
vibrational coupling has been found to be important in
the determination of volume viscosity in H–H2 mixtures
by Bruno, Esposito and Giovangigli [19].

To define the upper bounds in the two sums of (2.13)
it is necessary to establish a cutoff for the admissible val-
ues of j and n, within the considered approximation of
the spectrum. For the nonrotating Morse oscillator, i.e.,
for j = 0, the maximum vibrational mode is easily found
to be Nmax = 1/χe − (1/2). According to the nonrotating
Morse model, vibrational states with n > Nmax are impos-
sible: the molecule disappears and is replaced by its two
constituent atoms. When rotations are allowed within the
empirical Morse model, the limit of molecular existence
depends on the rotational state and can be defined by the
stationarity of the energy of the vibro-rotational levels. In

particular, by continuity, at low rotational numbers j the
energy stationarity will be achieved by ∂Ej,n/∂n = 0, a
criterion employed also in [16, p. 420]. However, for the en-
ergy levels (2.12) of H2 at higher j this derivative does not
vanish and a cutoff is attainable only via the stationarity
at fixed n, namely by the condition ∂Ej,n/∂j = 0. Thus,
the curve of energy stationarity that delimits the region
of allowed quantum states before the hydrogen molecule
breaks into atoms consists of two portions, associated with
the conditions ∂Ej,n/∂n = 0 or ∂Ej,n/∂j = 0, respec-
tively. One finds the bounds of n for fixed j

Nvib(j) = Nmax − 3
2 (1− κ)κ3χej(j + 1),

N rot(j) =
1

3(1− κ)κχe
− 1

2
− 2κ3χe

3(1− κ)
j(j + 1).

(2.16)

The range of the rotational quantum number j is limited
by the maximum values Jvib

max and J rot
max which are obtained

by solving the equations Nvib(j) = 0 and N rot(j) = 0 for
j, respectively. The latter are simple quadratic equations
of the type j(j+1)+constant = 0, cf. [6]. Then we define

Jmax ≡ min
(
Jvib
max, J

rot
max

)
. (2.17)

For H2, it results J
vib
max = 43 and J rot

max = 24, so that Jmax =
24 and the cutoff curve has actually two parts. The two
curves may intersect for j∗ solution of

j∗(j∗ + 1) =
2

χ2
eκ

4

κ2 − κ+ 1
3

(κ− 1
3 )(5− 3κ)

. (2.18)

For H2, the solution is found to be j∗ = 16 and n∗ = 14.
The first (lower) part is due to stationarity with re-

spect to vibrations while the second (upper) part is due
to stationarity with respect to rotations. Thus, the cutoff
value Nj for any admissible rotational mode j of the H2

molecule described to the Harris–Bertolucci spectrum will
be defined by

Nj =

{
Nvib(j) for 0 ≤ j ≤ j∗

N rot(j) for j∗ ≤ j ≤ Jmax

(2.19)

and gives a total of 342 states.1 The function zHB

rv (T ) is the
dotted curve in Figure 1, with the values of the Morse pa-
rameters of H2 given in Tables 1 and 2. The curve is found
to provide a fairly good approximation of zrv(T ) that is
based on the accurate numerical energy levels of Pachucki
and Komasa [13]. Admittedly, near the cutoff the Harris–
Bertolucci energy levels are of decreasing precision, but
the accuracy of the remaining admissible states is such
that an overall fairly good representation of the partition

1 The combined rotational–vibrational character of the cutoff
(2.19) is a distinctive feature of the Harris–Bertolucci spectrum
of the molecular hydrogen H2, a peculiarity shared only by
the other two lightest diatomic molecules LiH, with j∗ = 39
& n∗ = 20, and Li2, with j∗ = 106 & n∗ = 37. For any
other diatomic molecule, the cutoff of the Harris–Bertolucci
spectrum is merely vibrational.
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Fig. 2. Dimensionless energy difference ∆Ej,n/De between
the Pachucki–Komasa numerical energy levels Ej,n and the
Harris–Bertolucci levels EHB

j,n of equation (2.12) (dotted curves)
or the Morse levels EM

j,n of equation (2.20) (dashed curves),
along two representative straight lines j = n and j = 2n.

function is achieved for temperatures which are not too
large. This quite positive behaviour is not shared by the
spectrum of the Morse rotating oscillator [5, p. 64]. Using
our parametrization χe-κ, the original Morse spectrum as-
sumes the same expression (2.12) of Harris–Bartolucci ex-
cept for the coefficient of the coupling term j(j+1)

(
n+ 1

2

)
,

which is replaced as follows

−3(1− κ)(κχe)
3 → −(κχe)

2χe. (2.20)

In this case the conditions ∂EM

j,n/∂n = 0 and ∂EM

j,n/∂j =
0 give relations NM

vib(j) and NM

rot(j) similar to those in
(2.16), but with always NM

vib(j) > NM

rot(j) and moreover
NM

vib(0) = NM

rot(0). Then, the cutoff for the Morse approx-
imate spectrum can be based on either bounds NM

vib(j)
or NM

rot(j), but in both cases the corresponding partition
function is the dashed curve reported in Figure 1. The dif-
ference with respect to the curve based on Pachucki and
Komasa energy levels is much lager than for the Harris–
Bertolucci levels.

The origin of this difference can be clarified by plotting
in Figure 2 the energy difference in dimensionless form
∆Ej,n/De along two straight lines j = n and j = 2n be-
tween the Pachucki–Komasa numerical energy levels Ej,n,
assumed as reference values, and the approximate ana-
lytical values of the Harris–Bertolucci spectrum (dotted
curves) or the Morse spectrum (dashed curves). For not
too small n, the error of Morse energy levels along the
bisecting line j = n is substantially larger than that of
the Harris–Bertolucci levels. The energy difference is due
to the respective terms coupling rotations and vibrations,
according to (2.20). This difference increases further along
the second straight line j = 2n, thus demonstrating that
the representation of the interaction by Morse spectrum is
indeed too crude. On the contrary, the closed-form approx-
imate spectrum of Harris–Bartolucci (2.12) together with
the cutoff criterion defined by (2.16)–(2.19) represents a
viable and analytically convenient alternative to the use of
the full set of accurate numerical energy levels of Pachucki
and Komasa, at least for the limited scope of deriving ther-
modynamic properties. In all our calculations, the vari-
ous thermodynamic equations of state evaluated starting

from the roto-vibrational energy levels of Pachucki and
Komasa have been found to be virtually indistinguishable
from those derived from Harris and Bertolucci approxi-
mate analytical spectrum (2.12).

To compute thermodynamic properties, the first and
second derivatives of zrv(t) are needed. They can be evalu-
ated through the intermediate functions xrv(t) = t2z′rv(t)
and yrv(t) = t2x′

rv(t) defined by

[
xrv(t)

yrv(t)

]
=

Jmax∑

j=0

∆j

Nj∑

n=0

[
εj,n

ε2j,n

]
e−εj,n/t, (2.21)

where εj,n = (Ej,n +De)/kTv.
When the approximate spectrum in closed form of

Harris and Bertolucci (2.12) is used, the derivatives can
be evaluated more simply as follows. First, the function
zHB

rv (t) ← zHB

rv (T ) of the dimensionless temperature t =
T/Tv is introduced, namely,

zHB

rv (t) =

Jmax∑

j=0

∆j e
−b̃j/t

Nj∑

n=0

e−aj
n/t, (2.22)

where b̃j = bjTr/Tv. Then, we introduce three sets of func-
tions of the dimensionless temperature



Aj(t)

Bj(t)

Cj(t)


 ≡

Nj∑

n=0




1

ajn
(ajn)

2


 e−aj

n/t, 0 ≤ j ≤ Jmax, (2.23)

whose derivatives satisfy the simple relations dAj(t)/dt =
Bj(t)/t

2 and dBj(t)/dt = Cj(t)/t
2. Then, in terms of

the definitions (2.23), the partition function (2.22) and its
derivatives, required to obtain thermodynamic relations,
are easily calculated by the summation



zHB

rv (t)

xHB

rv (t)

yHB

rv (t)


 ≡

Jmax∑

j=0




Aj(t)

b̃jAj(t) +Bj(t)

b̃2jAj(t) + 2b̃jBj(t) + Cj(t)


∆j e

−b̃j/t

(2.24)

3 Dissociating hydrogen without ionization

For temperatures before the occurrence of ionization, say,
T < 5000K, a simple thermodynamic model of the hy-
drogen gas is easily obtained by finding the equilibrium
composition of the dissociating gas that minimizes the
Helmholtz free energy, see, e.g. [12, p. 185]. Let NH2

be
the total number of H2 molecules in the volume V when
all molecules are undissociated. The degree of dissociation
α of the gas in a state with NH2

molecules is defined by

α =
NH2
−N

H2

NH2

, (3.1)

so that NH2
= (1 − α)NH2

and, thanks to the conserva-
tion of the total number of hydrogen nuclei, 2NH2

+NH =
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NH = 2NH2
, also NH = 2αNH2

= ςαNH2
. Here, the con-

stant ς is the symmetry factor of the molecule, ς = 2 for
homonuclear molecules and equal to 1 for heteronuclear
molecules. By minimizing the free energy (2.1), we obtain
the equation for dissociation equilibrium

N2
H

NH2

=
[ZH(T, V )]2

ZH2
(T, V )

. (3.2)

Expressing NH and NH2
in terms of α, the equation for

the dissociation equilibrium becomes

α2

1− α
=

K(T )

ς2
H2

V

NH2

, (3.3)

where the equilibrium constant K(T ) = [ZH(T,V )/V ]2

ZH2
(T,V )/V us-

ing (2.7) and (2.8) with EH,0 = 0 and EH2,0 = 0, is defined
by

K(T ) = Cd ·
(

T

Tv

) 3
2 e−TD/T

zrv(T/Tv)
, (3.4)

where TD = De/k = 55 121K and

Cd =
(gn

H
)2

2
√
2

(gel
H
)2

gel
H2

(
mHkTv

2π~2

) 3
2

. (3.5)

The occurrence of the energy depth De = kTD in func-
tion K(T ) instead of the molecular dissociation energy
of the Morse anharmonic oscillator, U = −Ej=0, n=0 =(
1 − χe

2

)2
De (UH2

= 4.483 eV), is only apparent. In fact,
the denominator zrv(T/Tv) contains the following factor
exp

[
− 1

2

(
1 − χe

4

)
Tv/T

]
that combines, with e−TD/T , to

give e−TU/T , with TU = U/k.
In terms of the dimensionless temperature t = T/Tv

and of the specific volume v = V/(mH2
NH2

), the equation
for the dissociation equilibrium reads

α2

1− α
=

t
3
2 e−tD/t

zrv(t)

v

ς2
H2
v̄d

, (3.6)

where tD = TD/Tv = De/kTv = 8.749 and with the scale
constant vd for the variable v defined by

v̄−1
d = mH2

Cd. (3.7)

Being gel
H

= 2 and gel
H2

= 1 for the molecular ground

state 1Σ+
g , we have v̄−1

d = 1.7655 × 106 kg/m3 and v̄d =

0.56641× 10−6 m3/kg.
The energy E of the hydrogen gas model is obtained

from F (T, V,NH2
, NH) by means of the relation E = F −

T (∂F/∂T )V,NH2
,NH

, which yields the dimensionless spe-

cific energy ǫ = e/RH2
Tv (with e = E/mH2

NH2
and RH2

=
4157.2 J/(kg ·K)),

ǫ(t, α) = 3
2 (1 + α) t+ (1− α)[ǫrv(t)− tD], (3.8)

where

ǫrv(t) =
xrv(t)

zrv(t)
. (3.9)

At zero temperature ǫ(0, 0) = ǫrv(0) − tD. It is common
to normalize the energy by adding the energy depth De

of the Morse potential so that the energy for T → 0 is
positive and includes the zero point energy shift ~ωe/2,
namely ǫ̃(t, α) = ǫ(t, α) + tD. The final expression of the
new normalized energy, denoted by the same letter ǫ for
notational simplicity, will be

ǫ(t, α) = 3
2 (1 + α) t+ (1− α) ǫrv(t) + αtD, (3.10)

and now ǫ(0, 0) = ǫrv(0), as required.
Relation (3.10) for the internal energy must be com-

pared with the analogous expression obtained by consid-
ering the mixture of ideal gases and summing directly the
energy of the molecular and atomic components. Assum-
ing that all energy contributions due to the electronic ex-
citation can be neglected, the dimensionless expression of
the energy of the ideal gas mixture with fully classical ro-
tations and vibrations may be represented in the form,
see, e.g., Capitelli, Colonna e D’Angola [20, p. 19],

ǫmix(t, α) = 1
2 (7− α) t+ αtU

= 3
2 (1 + α) t+ 2(1− α) t+ αtU ,

(3.11)

where tU = U/kTv. By including the zero-point energy
shift and using tD − tU = 1

2

(
1− χe

4

)
≈ 1

2 , we have

1
2 +ǫmix(t, α) = 3

2 (1+α) t+(1−α)
(
1
2 +2t

)
+αtD, (3.12)

to be compared with relation (3.10). Thus, the term that
should be compared with ǫrv(t) is simply 1

2 +2t. The func-

tions ǫrv(t) and
1
2 + 2t are represented in Figure 3 by the

continuous and dot-dashed curves, respectively.
The straight line 2t of the ideal gas mixture reflects the

assumption of fully classical rotations and vibrations. For
completeness, in the same figure we plot also the curves of
two other possible approximations for the molecular en-
ergy of H2: the dashed curve corresponds to the molecular
energy t + ǫv(t) consisting of fully excited rotations but
quantum vibrations according to the Morse anharmonic
oscillator (detailed in Section 7); and finally the dotted

curve is the molecular energy t+ ǫharv (t) = t+ 1
2 +

e−1/t

1−e−1/t

for fully excited classical rotations and the Einstein quan-
tum linear oscillator.

The slope of the curves in Figure 3 at large tempera-
tures is related to the finite or infinite number of quantum
states of the molecule: the roto-vibrational model repre-
sented by the continuous curve ǫrv(t) has a finite number
of states, leading to a zero slope; the Morse simpler model
with ǫv(t) has a finite number of vibrational states but an
infinite number of rotational states, implying a curve with
slope 1, asymptotically; in the other two models (Einstein
quantum oscillator and the ideal gas mixture) both rota-
tional and vibrational states are infinite and the slope of
the curve is 2 as t → ∞ and for any t, in the two cases.
The great differences in the molecular energy in the range
t > 2 and for a density not exceeding ρ ∼ 10 kg/m

3
are

however not important because in this range of tempera-
tures the dissociation is complete and the contribution to
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Fig. 3. Dimensionless roto-vibrational energy of the H2

molecule as a function of the dimensionless temperature t =
T/Tv. Continuous curve: molecular energy ǫrv(t) of the ro-
tating oscillator with Harris–Bertolucci or Pachucki–Komasa
spectrm. In the remaining three curves, the rotations are ac-
counted for classically as fully excited. Dashed curve: t+ ǫv(t)
with molecular vibrations described by the nonrotating Morse
anharmonic oscillator. Dotted curve: t+ ǫharv (t) with harmonic
molecular vibrations. Dot-dashed curve: function 1

2
+2t which

is the internal energy contribution of H2 plus the point energy,
cf. equation (3.12).

the energy of this term vanishes. For lower temperatures,
in the range of only partial dissociation, the differences
are much smaller and they are displayed more clearly in
Figure 4 which contains an enlargement of the bottom-left
corner of Figure 3. The initial unit slope of the curves of
three models corresponds to the rotational contribution t
to the energy which is built inside the function ǫrv(t) or is
included explicitly in both the nonharmonic (nonrotating
Morse) and harmonic models. The comparison of the dif-
ferent energies for not too large temperatures reveals that
the fully classical approximation of the ideal gas mixture
is a fairly good approximation of the Einstein oscillator
model except for rather small t. Moreover, the gas mix-
ture model gives an acceptable approximation of the en-
ergy, with differences becoming appreciably large only for
t > 2. The description of the molecular energy provided
by the roto-vibrating model ǫrv(t) is in general more sat-
isfactory than the other models. The real interest of this
physically more complete model is due to the possibility
of building a corresponding term for the entropy equation,
as it will be described below. In this way, two fully com-
patible equations of state for energy and entropy can be
built so as to guarantee a complete representation of the
fundamental thermodynamic relation of the gas system. In
Figure 5 the internal energy e(T, v) of the present model
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Fig. 4. Particular of Figure 3 representing the dimensionless
roto-vibrational energy of the H2 molecule. The same labeling
for the curves used in the previous figure applies here. The dot-
ted curve corresponds to the model with fully excited classical
rotations combined with the harmonic molecular vibrations of
the Einstein quantum oscillator, namely, t+ ǫharv (t).

(continuous curves) is compared with the function (3.12)
of the ideal gas mixture model (dot-dashed curves) for the
specific volume values v = 10ℓ m3/kg, for ℓ = −1, 0, 1, 2, 3.
In the range of dissociation temperatures the two models
agree fairly well except for small differences at the lower
tempertaures due to the straight line approximation of the
vibrational energy. The differences at the higher tempera-
tures of the plot are instead due only to the fact that the
continuous curves refer to a thermodynamic model includ-
ing the possibility of ionization (see below) which is not
accounted in the ideal gas mixture approximation (3.12).
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Fig. 5. Dimensionless internal energy ǫ in the range of disso-
ciation temperatures for different values of v. Comparison of
the present thermodynamic model (continuous curve) with the
ideal gas mixture model of equation (3.12) (dot-dashed curve).
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Similarly to the energy, the dimensionless specific en-
tropy σ = s/RH2

= S/mH2
NH2

/RH2
= S/(mH2

RH2
NH2

) is
obtained from F by S = −(∂F/∂T )V,NH2

,NH
, to give

σ(t, v, α) = (1 + α)

[
5

2
+

3

2
ln t+ ln

(
v

v̄d

)]

+ (1− α) σrv(t) + Υς(α) + σi=0
0 ,

(3.13)

where, cf. e.g., [21],

σrv(t) = ln zrv(t) +
xrv(t)

tzrv(t)
, (3.14)

and

Υς(α) = −(1− α) ln(1− α)− 2α ln(ςα). (3.15)

The function σrv(t) represents the contribution of the rota-
tional-vibrational entropy of the molecule while function
Υς(α) is the entropy of the mixing of the molecular and
atomic species. Finally σi=0

0 is an arbitrary constant. The
presence of the contribution (1 − α)σrv(t) in the entropy
ensures the compatibility with the term (1−α)ǫrv(t) of the
energy, similarly to nondissociating molecular ideal gases
with variable specific heats, see, e.g., in [22, p. 33]. In
this case, the full compatibility is guaranteed by the fact
that the roto-vibrational contribution (1−α)σrv(t) to the
entropy occurs together with the mixing entropy function
Υς(α). The leading part of entropy relation (3.13) is akin
to the Sackur–Tetrode equation for monatomic gas [23]
but (3.13) applies to a roto-vibrating diatomic gas, with
the dissociation α fixed by the equilibrum condition (3.6).
The solution to the latter, namely,

α(t, v) = 1
2D0(t, v)

[√
1 + 4/D0(t, v) − 1

]
, (3.16)

with D0(t, v) = t
3
2 e−tD/t

zrv(t)
v

ς2vd
, is substituted into (3.10)

and (3.13) to obtain eventually the equations of state of
energy and entropy

e(T, v) = RH2
Tv ǫ

(
T/Tv, α(T/Tv, v)

)
and (3.17)

s(T, v) = RH2
σ
(
T/Tv, v, α(T/Tv, v)

)
, (3.18)

both being functions only of T and v. The two func-
tions provide a compatible parametric representation of
the fundamental thermodynamic relation s = s(e, v) or
e = e(s, v) of the roto-vibra-dissociating hydrogen gas.
The parametric form is strictly equivalent to the original
fundamental relation (2.1) of the free energy F (T, V,NH2

, NH),
we have started from. But the availability of the two ex-
plicit functions e(T, v) and s(T, v) is very useful in fluid
dynamics applications, where the energy and entropy re-
lations are required to describe, for instance, adiabatic
irreversible transformations produced by shock waves and
isentropic processes occurring in rarefaction waves. On the
other hand, for temperatures T > 5000K hydrogen atoms
can ionize and the effects of ionization cannot be neglected
anymore. A possible manner of including the atomic ion-
ization effects in a thermodynamic description of the hy-
drogen gas is proposed in the following.

4 Dissociation and ionization at equilibrium

The model for the ionizable hydrogen gas proposed here
assumes that the gas is a mixture of molecular hydrogen
H2, atomic hydrogen H as well as free protons and elec-
trons, resulting from the ionization of the neutral atoms.
The chemical model underlying the system consists in the
dissociation and ionization reactions

H2 ⇋ 2H and H ⇋ p + e. (4.1)

The mixture comprises therefore the two chemical species,
H2 and H, together with bare protons and electrons, p and
e. Thus, the model excludes the possibility of the processes
of molecular ionization, H2 ⇋ H+

2 + e and of formation
of negatively charged hydrogenic ions, H2 ⇋ H− + p.
As shown by Alastuey and Ballenegger [11], the reactions
forming the ions H+

2 and H− can be neglected.
In a given generic thermodynamic state of the gas there

are NH2
molecules of H2, together with NH neutral hydro-

gen atoms and Np protons and Ne = Np electrons, due
to the overall charge neutrality of the gas. The degree of
dissociation of the molecular hydrogen and the dgree of
atomic ionization are measured by the dissociation and
ionization coefficients

α =
NH2
−NH2

NH2

and i =
Np

2αNH2

. (4.2)

Thanks to the conservation of the total number of hydro-
gen nuclei, 2NH2

+ NH + Np = NH = 2NH2
, and to the

charge neutrality, Np = Ne, the mole numbers of the gas
components are easily found in terms of NH2

NH2
(α) = (1− α)NH2

,

NH(α, i) = 2α(1− i)NH2
,

Np(α, i) = 2αiNH2
.

(4.3)

The total number of moles is N(α, i) = (1 + α+ 2αi)NH2

and the molar fractions are

XH2
(α, i) ≡ NH2

(α)

N(α, i)
=

1− α

1 + α+ 2αi
,

XH(α, i) ≡
NH(α, i)

N(α, i)
=

2α(1− i)

1 + α+ 2αi
,

Xp(α, i) ≡
Np(α, i)

N(α, i)
=

2αi

1 + α+ 2αi
.

(4.4)

The free energy of the system of noninteracting particles
comprising the four species H2, H, p and e is given by

F = −kT ln

(
Z

NH2
H2

NH2
!

ZNH
H

NH!

Z
Np
p

Np!

ZNe
e

Ne!

)
, (4.5)

where ZH2
= ZH2

(T, V ), ZH = ZH(T, V ), Zp = Zp(T, V )
and Ze = Ze(T, V ) are the partition functions of H2,
H, p and e, respectively. The assumption underlying this
Helmholtz potential is that any interaction between all
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particles can be neglected completely, as in an ideal gas
mixture. The assumption was acceptable at low densities
for the dissociating hydrogen gas without ionization with
free energy (2.1), but is always violated for a ionized gas,
due to the electrostatic interaction between the charged
particles. However, when the gas density is such that the
Coulomb interaction energy between neighboring charges
is small with respect to their kinetic energy, the ionized
gas can be considered as only weakly noindeal and the
Helmholtz free energy (4.5) for noninteracting particles
can be assumed as the starting point, see, e.g., [12, p. 215].
For example, in the hydrogen gas of interest here, with an

atomic density Ñ and an average distance between the

particles 〈r〉 ≈ Ñ−1/3, the condition for an ideal behav-

ior is Ñ <
(

kT
q2e/4πǫ0

)3
which at T = 30000K gives for the

specific volume the condition v > 0.1m3/kg. For higher
densities, corrections accounting for Coulomb interaction
are necessary, but their consideration and inclusion are
beyond the scope of this work.

The stationarity of the free energy (4.5) with respect
to dissociation and ionization gives the two equations

N2
H

NH2

=
Z2

H
(T, V )

ZH2
(T, V )

, (4.6)

N2
p

NH

=
Zp(T, V )Ze(T, V )

ZH(T, V )
. (4.7)

Using the expressions of NH2
, NH and Np in (4.3), the two

relations give the following system of algebraic equations

{
α2(1− i)2 = D(T, V,NH2

)(1− α),

αi2 = I(T, V,NH2
)(1− i),

(4.8)

where

D(T, V,NH2
) ≡ [ZH(T, V )]2

4ZH2
(T, V )

1

NH2

, (4.9)

I(T, V,NH2
) ≡ Zp(T, V )Ze(T, V )

2ZH(T, V )

1

NH2

. (4.10)

The partition function for the hydrogen molecule is as
discussed so far, namely,

ZH2
(T, V ) =

(
mH2

kT

2π~2

) 3
2

zrv(T/Tv)

× gel
H2

e(De−EH2,0)/kT V.

(4.11)

The partition function of the hydrogen atom is taken in
the form

ZH(T, V ) = Ztr
H
(T, V )Znuc,el

H
(T )

=

(
mHkT

2π~2

) 3
2

gn
H
Zel

H
(T )V.

(4.12)

The electronic partition function Zel
H
(T ) must include the

energy levels of the electron in the excited bound quantum

states2 of the hydrogen atom, namely, the energy values

En = − IH

n2
, n = 1, 2, . . . (4.13)

where IH =
meq

4
e

8h2ǫ20
= 13.60 eV denotes the ionization energy

of the hydrogen. However, the partition function

Zel
H
(T ) = gel

H

∞∑

n=1

n2 e−En/kT = gel
H

∞∑

n=1

n2 eTi/n
2T , (4.14)

with Ti = IH/k = 157 800K, cannot be used directly
since the series is divergent. To circumvent this obstacle,
a method originally introduced by Fermi is adopted [15].
The rule of Fermi consists in assigning an a priori prob-
ability of the quantum state, decreasing with the volume
of the excited atom and depending on the gas density, to
give

Zel
H
(T, v) = gel

H

∞∑

n=1

n2 eTi/n
2T e−4BN̂(v) n6

(4.15)

= gel
H
eTi/T

∞∑

n=1

n2 e−
(
1−

1
n2

)
Ti

T − 4BN̂(v) n6

,

where B = 4
3πa

3
0, a0 = 4πǫ0~

2

meq2e
= 5.29×10−11 m is the Bohr

radius, and N̂(v) = 1/(vmH) is the density of hydrogen
nuclei. Thus, the definition Zel

H
(T, v) = gel

H
eTi/T zH(τ, v),

allow us to introduce the atomic partition function, de-
pendent both on the dimensionless temperature τ = T/Ti,

zH(τ, v) =
∞∑

n=1

n2 e−
(
1−

1
n2

)
1
τ − 4BN̂(v) n6

, (4.16)

and on the specific volume v, due to the presence of N̂(v)
in the Fermi cutoff (as in other similar rules, see below).
The Fermi cutoff is a form of the occupation probability
methods, that are used to have a finite internal partition
function zH, in the study of dense plasmas, see, e.g., [8]. In
these applications the numbers Nn of atoms in the elec-
tronically excited state En are retained as independent
thermodynamic variables. Some criticisms are presently
raised concerning the consistency of some expressions of
the free energy used by the occupation probability meth-
ods [24]–[26]. These criticisms do not apply to the present
derivation since our thermodynamic model is limited to
diluted conditions and, above all, has a single variable NH

to describe the total number of all neutral atoms, irrespec-
tive of their state of electronic excitation. Stated in other
terms, the Fermi cutoff is used here not to represent the
occupancy of the excited level, but only to reduce them to
a finite number, so as to make a path toward the produc-
tion of pairs of (noninteracting) charges available, much
in the same manner of the molecular dissociation mecha-
nism.

2 In this section, n denotes the principal quantum number
of the atomic electron state, and is not the quantum number
of the molecular vibrations, as elsewhere in the paper.



10 L. Quartapelle, A. Muzzio: A simple thermodynamic model of diluted hydrogen gas/plasma for CFD applications

Alternatively, according to Zel’dovich [12, p. 199] an
even simpler manner to avoid the divergence is to truncate
the sum by retaining only the electron states before the
size of the electronically excited atom is large enough to
interfere with the neighboring atoms at the considered gas
density. This leads to the truncated series, with τ = T/Ti,

zcutoff
H

(τ, v) =

ncutoff(v)∑

n=1

n2 e−
(
1−

1
n2

)
1
τ , (4.17)

where

ncutoff(v) =
1

2

(mHv

a30

) 1
6

(ncutoff ≥ 1). (4.18)

Thus, the complete partition function for the hydrogen
atom for modelling the gas/plasma is assumed to be

ZH(T, V ) =

(
mHkT

2π~2

) 3
2

gn
H
gel
H
eIH/kT zH(T/Ti, v)V.

(4.19)
Finally, the partition functions for the free proton and
electron are

Zp(T, V ) = 2

(
mpkT

2π~2

) 3
2

e−Ep,0/kT V, (4.20)

Ze(T, V ) = 2

(
mekT

2π~2

) 3
2

e−Ee,0/kT V, (4.21)

where the 2’s are due to the spin 1
2 of proton and electron.

By taking EH2,0 = −2IH and Ep,0 = Ee,0 = 0, the
equilibrium constants of dissociation and ionization are
respectively

Kd(T, v) = Cd ·
(

T

Tv

) 3
2

e−TD/T [zH(T/Ti, v)]
2

zrv(T/Tv)
, (4.22)

Ki(T, v) = Ci ·
(
T

Ti

) 3
2 e−Ti/T

zH(T/Ti, v)
, (4.23)

with the constant Cd is defined in (3.5) while

Ci =
2

gn
H
gel
H

(
mpmekTi

2πmH~
2

) 3
2

. (4.24)

Using the partition functions (4.11), (4.19), (4.20) and
(4.21) the system of the equilibrium equations is recast
in the form

{
α2(1− i)2 = D(t, v)(1− α),

αi2 = I(t, v)(1− i),
(4.25)

with the functions D = 1
4mH2

Kdv/vd and I = mH2
Kiv/vi

controlling the coupled dissociation and ionization equi-
libria defined by

D(t, v) = t
3
2 e−tD/t [zH(t/ti, v)]

2

zrv(t)

v

vd
, (4.26)

I(t, v) =
(
t

ti

) 3
2 e−ti/t

zH(t/ti, v)

v

vi
, (4.27)

where tD = TD/Tv = De/kTv, ti = Ti/Tv = IH/kTv and

v−1
d =

mH2
Cd

4
and v−1

i = mH2
Ci. (4.28)

The calculation yields vd = 2.26564×10−6 m3/kg and vi =
4.02157× 10−3 m3/kg.

The two equilibrium equations (4.25) are both quadra-
tic, the first both in α and i, while the second only in i. The
system reduces to a single fourth order algebraic equation

i4 + ai3 + bi2 + ci+ d = 0 (4.29)

with the four coefficients a, b, c, d defined in terms ofD(t, v)
and I(t, v):

a =
(D + 4I)I
D − I2 , b = − (D + 6I)I

D − I2 ,

c =
4I2
D − I2 , d = − I2

D − I2 .
(4.30)

For all values v > 10−5 m3/kg and T < 106 K this equa-
tion has been found to possess only one real root in the
unit interval [0, 1]; for higher temperatures, a solution i
extremely near to 1 is easily selected as the proper one
among three real admissible values. The dissociation α is
given by α = I(1− i)/i2.

A fourth-order equation for the electron partial pres-
sure Pe is considered in Capitelli’s monograph [20], whose
coefficients are defined in terms of the equilibrium con-
stants for dissociation and ionization. When they are known
as a function of T , the gas total pressure P can be de-
termined and subsequently also α and i. Actually, the
equilibrium constants are function of two thermodynamic
variables, and therefore the problem for the partial pres-
sure is nonlinear, beyond the algebraic quartic character.
However, in practice the dependence of the solution on
the second thermodynamic variable v is rather weak and
a couple of iterations are sufficient to guarantee a very
accurate solution to the pressure equation starting from
the initial value v0 = 1m3/kg.

On the contrary, the equation for i (4.29) allows the di-
rect determination of the dissociation and ionization in the
gas for given thermodynamic conditions defined in terms
of variables T and v. The gas pressure is calculated only
subsequently from the values of T, v, α and i. From the nu-
merical viewpoint, we have solved the fourth-order equa-
tion for i and that for Pe by means of Ferrari algorithm,
see, e.g., [27], and have found that the solution of the for-
mer is much more stable numerically than the latter.

5 Equations of state of hydrogen gas/plasma

The equation of state of the energy is obtained from E =
F−T (∂F/∂T )V,NH2

, NH, Np, Ne
which yields the dimension-

less specific energy ǫ = e/RH2
Tv,

ǫ(t, v, α, i) = 3
2 (1 + α+ 2αi) t

+ (1− α)[ǫrv(t)− tD]

+ 2(1− i)[αǫH(t/ti, v)− 1] ti,

(5.1)
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where ǫH(τ, v) = xH(τ, v)/zH(τ, v) with also xH(τ, v) =
τ2∂zH(τ, v)/∂τ .

The energy at zero temperature is ǫrv(0)−tD−2ti. It is
therefore convenient to normalize the energy by adding the
depth energy De of the Morse potential for all molecules,
as well as the binding energy of all the hydrogen atoms
2ti with the electron in its ground state n = 0. The nor-
malized energy is ǫ̃(t, v, α, i) = ǫ(t, v, α, i) + tD + 2ti and
its final expression, indicated by the same symbol ǫ for
notational simplicity, will be

ǫ(t, v, α, i) = 3
2 (1 + α+ 2αi) t

+ (1− α) ǫrv(t) + αtD

+ 2α[(1− i) ǫH(t/ti, v) + i]ti,

(5.2)

so that at zero temperature ǫ(0) = ǫrv(0).
The specific entropy is obtained in a manner similar to

the energy from the relation S = −(∂F/∂T )V,NH2
, NH, Np, Ne

which gives its dimensionless counterpart σ = s/RH2
:

σ(t, v, α, i) = (1 + α+ 2αi)
(
5
2 + 3

2 ln t
)

+ (1− α)

[
σrv(t) + ln

(
v

v1

)]

+ 2α(1− i)

[
σH(t/ti, v) + ln

(
v

v2

)]
(5.3)

+ 4αi ln

(
v

v3

)
+ Υ (α, i) + σ0,

where the occurrence of the factor 4 in the third volu-
mic term must be noted. Here σH(τ, v) = ln zH(τ, v) +
xH(τ, v)/[τzH(τ, v)], and

v−1
1 = gel

H2
mH2

(
mH2

kTv

2π~2

) 3
2

,

v−1
2 = gn

H
gel
H
mH2

(
mH kTv

2π~2

) 3
2

,

v−1
3 = 2mH2

(√
memp kTv

2π~2

) 3
2

.

(5.4)

Moreover, function Υ (α, i) represents the mixing entropy
of the dissociating and ionizing gas/plasma, which is found
to be

Υ (α, i) ≡− (1− α) ln(1− α)

− 2α(1− i) ln[2α(1− i)]− 4αi ln(2αi).
(5.5)

Note that Υ (α, 0) = Υς=2(α). The specific heat at constant
volume cv = (∂e/∂T )v is calculated from e(T, v, α, i) by

cv =

(
∂e

∂T

)

α,i

+

(
∂e

∂α

)

T,i

αT (T, v) +

(
∂e

∂i

)

T,α

iT (T, v), (5.6)

where the partial derivatives αT = (∂α/∂T )v and iT =
(∂i/∂T )v are evaluated from system (4.25) by implicit dif-
ferentiation. The specific heat at a constant pressure will
be evaluated from cP = cv − T (∂P/∂T )2v

/
(∂P/∂v)T (for

the pressure equation P = P (T, v) see (6.2)). Moreover
the relations

ǫ′rv(t) =
zrv(t) yrv(t)− x2

rv(t)

[tzrv(t)]2
(5.7)

∂ǫH(τ, v)

∂τ
=

zH(τ, v) yH(τ, v)− x2
H
(τ, v)

[τzH(τ, v)]2
(5.8)

will be used, implying that the calculation of cv requires
the moments yrv(t) and yH(τ, v) to assure a full consistency
in the determination of the involved second derivative. Of
course, the energy equation of state will be defined by
e(T, v) ≡ RH2

Tv ǫ(t, v, α(t, v), i(t, v)), with t = T/Tv, and
similarly for the entropy s(T, v).

6 Comparisons

The curves of cv(T, v) are shown in Figure 6. For T <
600K, the specific heat depends only on T but there are
several curves which are valid only in the limit of low den-
sity and which correspond to different forms of the H2

gas. The continuous curve is for the molecular hydrogen
at equilibrium while the dashed and dot-dashed curves
are for the ortho- and para-hydrogen forms, which are
obtained by limiting the sum in (2.22) to odd or even j,
respectively. The dotted curve of Figure 6 located between
those of the ortho- and para-hydrogen corresponds to the
experimental results, with the gas in a state of “frozen”
metastable equilibrium consisting of 3

4 ortho-hydrogen and
1
4 para-hydrogen, as explained in [28, p. 472], such that

cfrozenv = 3
4c

ortho
v + 1

4c
para
v . (6.1)

The four curves reported in Figure 6 for T < 600K are
found in fair agreement with those given in [28, p. 471].
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Fig. 6. Specific heat cv(T, v) as a function of temperature
for different values of specific volume v in the hydrogen ideal
gas/plasma model. The four different curves for T < 103 K are
valid only for low densities. In particular, the unlabeled dot-
ted curve between the curves of the ortho- and para-hydrogen
refers to the gas in a condition of “frozen” metastable equilib-
rium described by (6.1).
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These curves of cv are valid only for a low gas density,
say v > 3vcr = 0.1m3/kg, with vcr denoting the critical
specific volume of H2: vcr = 0.033m3/kg. Actually, for T
about and less than 20K, a dense H2 becomes a liquid and
undergoes a phase transition which is dependent on the
para/ortho ratio. The failure of the ideal gas assumption
at low temperatures and high densities implies that real
gas effects must be included. However, the study of real
gas effects in H2 is beyond the scope of the present work
and the reader interested in these effects in H2 and in its
allotrope forms of ortho- and para-hydrogen is referred to
[29] and [30].

At higher temperatures the specific heat cv depends
also on v in consequence of dissociation and ionization.
The curves of cv(T, v) for v = 10ℓ m3/kg, ℓ = −1, 0, 1, 2, 3
are shown in Figure 6: each has two distinct bells centered
on the crossover temperatures, dependent on v, between
the successive states, namely molecular, atomic and ion-
ized.

In Figure 7 the values of cP (T ) provided by the ap-
poximate energy levels (2.12) in the range T < 600K
have been compared to those calculated in [31] by means
of the nonadiabatic eigenvalues of all bound and quasi-
bound levels. The value of the proposed simple thermo-
dynamic model based on the Harris&Bertolucci approx-
imate spectrum of Morse rotating anharmonic oscillator
are found to be very close to the accurate values of [31],
with a maximum difference not exceeding 1% in the range
0 < T < 600K.
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40
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c P
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/
K

·
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equilibrium

ortho

para

T [K]

Fig. 7. Specific heat cP (T ) of the three forms of H2 ideal gas
for low T and small density. Continuous curves from Harris–
Bertolucci energy levels (2.12) and dotted curves from [31].

The specific heat at constant pressure has been com-
pared also in the temperature range of ionization. In Fig-
ure 8 we plot the cP (T, P ) as a function of T for three
fixed values of pressure: P = 0.01, 1, and100 bar. The con-
tinuous curves refer to the present thermodynamic model
while the dotted curves are reproduced from [20]. For the
intermediate pressure the agreement is satisfactory but at
the other two pressures the differences are larger.

The equilibrium dissociation and ionization predicted
by the proposed model have been compared with the re-
sults from the monograph of Capitelli, Colonna and D’An-
gola [20]. For the fixed pressure P = 1bar the dimension-
less partial pressures PH2

/P, PH/P and Pp/P have been

  104 2 104 3 104 4 104

  105

2 105

3 105

4 105

5 105

 

T [K]

P = 1bar

P = 100 bar

P = 0.01 bar

Fig. 8. Specific heat cP (T, P ) in the range of temperatures in-
volving hydrogen ionization, for some values of P . Continuous
curve: present thermodynamic model. Dotted curves: Refer-
ence [20].

plotted by the continuous curves in Figure 9. The refer-
ence results [20, p. 12] are plotted as the dotted curves.
The very small differences can be explained by the differ-
ent temperature dependence in the equilibrium constants
of the present model with respect to those in [20], which
are exponential functions. At this low pressure the disso-
ciation and ionization are to a good approximation in-
dependent phenomena and the exponential dependence
on T is dominating over the other functions accounting
for the translational energy of molecules and atoms, and
for their internal structure through the involved partition
functions.

For pressure P = 100 bar the partial pressures are re-
ported in Figure 10 and the result of the two models are
found to be appreciably different. At this higher pressure
the dissociation and ionization processes are coupled and
rather different partial pressure at equilibrium are found.
The disagreement can be attributed to the different tem-
perature dependencies in the equilibrium constants, here
by the functions of (4.26) and in [20] by purely exponential
functions entering a single nonlinear equation for the elec-
tron pressure. The role of the more complex temperature
dependence in the coupled regime has been verified by fix-
ing the temperature in the functions other than the expo-
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Fig. 9. Dimensionless partial pressures as a function of T
with gas pressure P = 1bar. Continuous curves: present work.
Dotted curves: Reference [20].
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Fig. 10. Dimensionless partial pressures as a function of T
with P = 100 bar. Continuous curves: present work. Dotted
curves: Reference [20]. Dashed curves correspond to a merely
exponential dependence on temperature in functions D and I.

nential of the proposed model. The corresponding partial
pressures for a fixed value T = 8000K are plotted as the
dashed curves in Figure 10. These curves are found to ap-
proximate fairly well the reference dotted curves of [20] in
the full range of temperatures.

The behaviour of the thermodynamic model for the
hydrogen gas/plasma proposed here is checked at low den-
sities against the model of Alastuey and Ballenegger, in
which the processes of recombination and formation of
molecules and atoms is taken into account within the phys-
ical picture via the Ebeling function and a four-body par-
tition function [11]. The comparison is done along the iso-
chore v = 1m3/kg and considering the equation of state
of pressure P = −(∂F/∂V )T,NH2

, NH, Np, Ne
:

P (T, v) = [1 + α(T, v) + 2α(T, v) i(T, v)]
RH2

T

v
(6.2)

made dimensionless with respect to its value in the purely
molecular state, to give p = P/(2RH2

T/v). The additional
pressure term associated to the v-dependence of zH(τ, v)
is negligible since these variations are extremely small.
The pressure as a function of T is reported in Figure 11:
the continuous line refers to the Fermi treament (4.16) to
make the series of the atomic partition function conver-
gent, the dotted curve is for the Zel’dovich cutoff (4.17),
and the dash-point curve is drawn from the reference re-
sult of [11].

The temperatures of crossover between the molecular
and atomic phases and between the atomic and ionized
ones are predicted with comparable accuracy by the meth-
ods. Along the considerd isochore the ionized charges are
weakly coupled and the present thermodynamic model
with Fermi treatment reproduces the results of [11] for
temperatures T > 5 × 104 K accurately. In this range
the cutoff of Zel’dovich overestimates the reference value
slightly. Both treatments give correct pressure values ap-
preciably different from those of the Saha approximation
in the region of nearly complete ionization, not reported
in the figure, cf. [11]

To determine the limitation of the present model at
higher densities due to not accounting for the electric in-

    103     104     105     106
0

1

2

T [K]

p

Fig. 11. Dimensionless pressure along the isochore v =
1m3/kg. Continuous line: present work with Fermi cutoff
(4.15). Dotted curve: present work with Zel’dovich truncation.
Dot-dashed curve: method of Alastuey and Ballenegger [11].

teraction of the charges, we have calculated the pressure
in the density range 1 < ρ < 103 kg/m3 at the three tem-
peratures T = 104.1 K = 1.2589 × 104 K, T = 104.5 K =
3.1623× 104 K and T = 105.3 K = 1.9953× 105 K, consid-
ered by Poteckhin [32], as shown in Figure 12.
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Fig. 12. Pressure as a function of density ρ for three tem-
peratures T = 104.1 K = 1.2589 × 104 K, T = 104.5 K =
3.1623× 104 K and T = 105.3 K = 1.9953× 105 K. Continuous
curves: present thermodynamic model. Dashed curves: occupa-
tion probability method for the hydrogen plasma of Poteckhin
[32].
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The pressure values in this range provided by the pro-
posed method are compared with the values of the hydro-
gen plasma model of Poteckhin, which includes the effect
of the electric interaction by means of an occupation prob-
ability method [32]. The plots in the Figure show the three
isotherms in the ρ-P plane with logarithmic scales. The
comparison of the two models for the highest tempera-
ture T = 1.9953 × 105 K shows clearly a fair agreement
in the considered density range. At lower temperatures,
the agreement is restricted to the domain of low densities;
in particular, for T < 104 K the electric interaction has
substantial effects on pressure even at the intermediate
density ρ ≈ 10 kg/m

3
, namely already for v ≤ 0.1m3/kg.

The comparison shows that the proposed method is suffi-
ciently accurate only in the limit of high temperatures and
of low density, while it is unsuited to describe the thermo-
dynamics of dense hydrogen at not high temperatures.

7 Gas/plasma model under classical rotations

For T ≫ Tr, the classical approximation for the molecular
rotations of a homonuclear (symmetric) molecule Zrot(T ) =
1
2T/Tr can be exploited to avoid the calculation of the dou-
ble sum of the roto-vibrational partition function zrv(t)
and replace it by the simpler function zv(t). The partition
function for the hydrogen molecule under the assumption
of fully excited rotations is

Z⋆
H2
(T, V ) =

(
mH2

kT

2π~2

) 3
2

(gn
H
)2

T

2Tr
zv(T/Tv)

× gel
H2

e(De−EH2,0)/kT V.

(7.1)

The (purely) vibrational partition function zv(t) can be
evaluated starting from either the “nonrotating” eigenval-
ues E0,n, with 0 ≤ n ≤ 14, of Pachucki and Komasa [13]
or those of the nonrotating Morse oscillator, namely:

EMorse
n

De
= −1 +

[
2−

(
n+ 1

2

)
χe

](
n+ 1

2

)
χe. (7.2)

In the latter case, the partition function and its moments
are defined quite simply by



zv(t)

xv(t)

yv(t)


 ≡

Nmax∑

n=0



1

an

a2n


 e−an/t, (7.3)

where Nmax = 1/χe− 1
2 and an =

[
1−

(
n+ 1

2

)
χe

2

](
n+ 1

2

)
.

Using (7.1) with (4.19), the new dissociation equilibrium

constant K⋆
d(T, v) =

[ZH(T,V )/V ]2

Z⋆
H2

(T,V )/V is found to be

K⋆
d(T, v) = C⋆

d · (T/Tv)
1
2 e−TD/T z2

H
(T/Ti, v)

zv(T/Tv)
, (7.4)

where

C⋆
d =

1√
2

(gel
H
)2

gel
H2

Tr

Tv

(
mHkTv

2π~2

) 3
2

, (7.5)

since the nuclear spin multiplicity of H and H2 in (4.19)
and (7.1), respectively, cancel in the equilibrium constant,
as usual in the approximation of fully excited rotations.
Correspondingly, the definition (4.26) of function D(t, v)
is replaced by

D⋆(t, v) =
√
t e−tD/t [zH(t/ti, v)]

2

zv(t)

v

v⋆d
(7.6)

with the new scale v⋆d for the specific volume defined by

(v⋆d)
−1 =

mH2
C⋆

d

4
. (7.7)

The calculation yields v⋆d = 0.3233×10−3 m3/kg. The new
equation of state for the energy is obtained in the form

ǫ⋆(t, v, α, i) = 1
2 (5 + α+ 6αi) t

+ (1− α)[ǫv(t)− tD]

+ 2(1− i) [αǫH(t/ti, v)− 1] ti,

(7.8)

where ǫv(t) = xv(t)/zv(t). By adopting the same energy
normalization employed before, the addition of tD + 2ti
gives the quantity ǫ̃⋆ = ǫ⋆+ tD +2ti, and the final expres-
sion of the new normalized dimensionless energy, denoted
by ǫ⋆ for notational simplicity, reads

ǫ⋆(t, v, α, i) = 1
2 (5 + α+ 6αi) t

+ (1− α) ǫv(t) + αtD

+ 2α[(1− i) ǫH(t/ti, v) + i]ti

(7.9)

Here α and i are solution to the D⋆-counterpart of system
(4.25), through the solution of the quartic equation (4.29).

The new equation for the entropy reads

σ⋆(t, v, α, i) = 1
2 (5 + α+ 6αi)(1 + ln t) + (1 + α+ 2αi)

+ (1− α)

[
σv(t) + ln

(
v

v⋆1

)]

+ 2α(1− i)

[
σH(t/ti, v) + ln

(
v

v2

)]
(7.10)

+ 4αi ln

(
v

v3

)
+ Υ (α, i) + σ⋆

0 ,

where σv(t) = ln zv(t) + xv(t)/tzv(t) and

(v⋆1)
−1 =

(gn
H
)2 gel

H2

2
mH2

Tv

Tr

(
mH2

kTv

2π~2

) 3
2

, (7.11)

while the constants v2 and v3 have already been defined
in (5.4).

The two hydrogen gas models, one including the quan-
tum treatment of rotation and the other assuming classical
rotations, are compared by evaluating the sound speed by
means of the well-known expression

c =

√(
∂P

∂ρ

)

s

= v

√
T

cv

(
∂P

∂T

)2

v

−
(
∂P

∂v

)

T

. (7.12)
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The values of c(T, v), based on the general gas/plasma
model described in section 5, are shown in Figure 13 for
different values of v. At low temperatures, the sound speed
of the hydrogen gas coincides with that of a diatomic
ideal gas with rigid molecules, with γrig.dia. =

7
5 , namely

crig.dia.(T ) =
√
(7/5)RH2

T , for any density. Then, for T >
1000K, the molecular oscillations come into play and make
the dissociation possible, so that the sound speed depends
also on v. About T ≈ Tv the dissociation tends to be com-
plete and the gas becomes monatomic, so all curves tend
to one and the same sound speed curve of the monatomic
gas ca(T ) =

√
γaRHT =

√
(10/3)RH2

T . For higher T , the
ionization sets in and the sound speed of the partially ion-
ized gas depends substantially on its density, but tends
uniformly to the limit value cplasma(T ) =

√
γa2RHT =

2
√

(5/3)RH2
T which corresponds to a monatomic gas with

an average atomic mass half of that of H, the electron mass
being negligible with respect to the proton one.

Figure 14 contains an enlargement of the curves of Fig-
ure 13 in the range of low temperatures and for the same
density values. The sound speed of the general thermody-
namic model (continuous curves) are compared to that of
the simplified gas/plasma model under classical rotations
described in this section (dashed curves). The two models
are found to agree fairly well at the lower densities and
the differences do not exceed a few % at the highest con-
sidered density of v = 0.1m3/kg, confirming the adequacy
of the simpler model for gasdynamic applications.

As a last demonstration of the suitability of the pro-
posed thermodynamic model of the hydrogen gas/plasma
for applications in computational fluid dynamics, we de-
termine the Rankine–Hugoniot adiabats for shock waves
involving dissociation and ionization. Since the equations
of state e(T, v) and P (T, v) in (7.9) and (6.2) are available,
the Hugoniot relation is written in the form

e(T, v)− e0 +
1
2 [P0 + P (T, v)](v − v0) = 0 (7.13)

which represents an implicit definition of the function v =
vRH(T ) along the Rankine–Hugoniot adiabat. This non-
linear equation can be solved by Newton method. Fig-
ure 15 contains the curves of the irreversible adiabats
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Fig. 14. Sound speed c(T, v) in the temperature range of dis-
sociation for different values of v. Continuous curves: general
thermodynamic gas/plasma model (5.2)–(5.3). Dashed curves:
simpler model under classical rotations (7.9)–(7.10). The mean-
ing of the dotted curves is as in Figure 13.

P = PRH(v) ≡ P (TRH(v), v), issuing from several initial
states, all with v0 = 103 m3/kg but for different dimen-
sionless temperatures t0 = T0/Tv = 0.05, 0.1, 0.25, 0.5,
1, 2, 2.5, 3, 5.

Differently from the ordinary Rankine–Hugoniot adia-
bats of an ideal gas, which are always monotonic curves,
the adiabats in hydrogen may have one or three local ex-
trema (function v = vRH(P )) depending on the initial
state, due to the fact that the pre-shock hydrogen con-
ditions may be very different. In fact, the gas can be ini-
tially either fully molecular, or mainly atomic after a great
dissociation, or also in a prevalently ionized state. Accord-
ing to each of these initial conditions, shocks of increasing
intensity may or may not involve dissociation or ioniza-
tion or both. This is at the origin of the very different
behaviours of the hydrogen adiabats shown in Figure 15.
In particular, the lowest curve starts at the smallest initial
temperature T0 = 315K and the gas compression initially
follows the standard hyperbolic curve with P →∞ tend-
ing to a vertical asymptote.

Three different possible asymptotes are plotted in the
figure as dotted vertical lines. They correspond to the
lower bound for the ratio vasympt/v0 = (γ − 1)/(γ + 1)
that the adiabat cannot overcome, since P →∞, for three
possible ideal gas models. The first asymptote on the right
in the figure corresponds to a monatomic gas with γa = 5

3

and the value (vasympt/v0)a = 1
4 . The second intermediate

asymptote corresponds to a diatomic ideal gas with rigid
molecules and fully excited rotations such that γrig.dia. =

7
5

and (vasympt/v0)rig.dia. =
1
6 . The third asymptote, on the

left, corresponds to a diatomic ideal gas with fully ex-
cited rotations and vibrations so that γvib.dia. = 9

7 and

(vasympt/v0)vib.dia. =
1
8 .
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Fig. 15. Post-shock pressure PRH(v)/RH2
Tv scaled in density

units of kg/m3 along several Rankine–Hugoniot adiabats as a
function of the ratio v/v0. Shock waves in hydrogen gas/plasma
may cause dissociation and/or ionization: initial states with
v0 = 103 m3/kg and with different values of the initial temper-
ature T0.

The compression adiabat lowest in the figure tends ini-
tially toward the most left asymptote (vasympt/v0)vib.dia. =
1
8 , but, for higher P and T , the curve deviates as a conse-
quence of molecular dissociation. The dissociable molec-
ular hydrogen can become denser than permitted to its
undissociable ideal counterpart. The dissociation proceeds
further and a condition is reached in which compression
and temperature can increase while the gas density de-
creases: the molecular dissociation allows an augmentation
of the internal energy at a lower density due to duplica-
tion of the number of particles with their kinetic energy.
At higher and higher compression and temperature, the
atomic hydrogen starts to ionize and the adiabatic curve
has a behaviour similar to that found in the dissociation
zone. Eventually, for extremely strong compressions, the
curve tends to the first vertical asymptote (vasympt/v0)a =
1
4 pertaining to an atomic gas. However, it must be noted
that the adiabat tends to the monatomic asymptote from
the left side, and not from right side, as occurs in a truly
monatomic ideal gas.

Considering now different adiabats with higher initial
temperatures T0 = 630K and T0 = 1575K, their be-
haviour is very similar to the first one, with three similar
local extrema, since the initial dissociation degree of the
gas in the two initial conditions is very small, α0 ≈ 0 and
α0 ≈ 0.22 × 10−4, respectively. The initial temperature
of the fourth adiabat is T0 = 3150K with α0 = 0.43 and
i0 = 0 and the three local extremes are still present since
the dissociation has still to play an essential part of its
role, while the distance between the first minimum and
the local maximum is decreasing.

The next adiabat starts at T0 = 6300K with an ini-
tial dissociation almost complete, α0 = 0.998 and a rather
small initial ionization i0 ≈ 0.16× 10−4. The correspond-
ing curve has only one local extremum due to the ioniza-
tion occurring for increasing compression. This behaviour
is shared also by the next two adiabats starting at T0 =
12600K and T0 = 15750K, which are characterized by an
appreciable initial ionization of i0 = 0.133 and i0 = 0.44,
respectively. These adiabats involving a progressive ioniza-
tion toward the fully ionized state tend to the monatomic
asymptote still from the left.

For the last two adiabats starting at the relatively high
temperatures T0 = 18900K and T0 = 31500K, the initial
ionization is higher i0 = 0.75 and i0 = 0.98 and the curves
have the usual monotonic behaviour, with the graph tend-
ing to the atomic vertical asymptote, this time from the
right, as in any ideal gas.

8 Conclusions

We have presented a simple approximate thermodynamic
model for the hydrogen gas including the possibility of
molecular dissociation into neutral atoms and of their ion-
ization to form a gas/plasma. The physical model is re-
stricted to the regime of low densities and assumes that
the system consists of an ideal gas mixture of free non-
interacting particles. While this assumption is adequate
in representing molecular dissociation under diluted con-
ditions, it fails when ionization occurs, since the electric
interaction between the charges is always present at any
density and temperature. However, for low densities up
to the moderate density ρ ≈ 1 kg/m3, the ionized charges
remain weakly coupled [12, p. 216] and the ideal gas ap-
proximation can be accepted.

The proposed model is based on either the very accu-
rate spectrum of the roto-vibrational states of the molecu-
lar hydrogen calculated recently by Pachucki and Komasa
[13] or the energy levels derived from the Morse rotating
oscillator by Harris and Bertolucci [14]. The latter lev-
els are given by a simple closed-form analytical expres-
sion, that has been shown to provide an internal partition
function of H2 approximating rather closely that derived
from Pachucki and Komasa energy levels, to the point of
giving virtually indistinguishable equations of state. Thus
the two spectra provide alternative descriptions equally
suitable for thermodynamic purposes.

In the model, the degree of dissociation and ionization
α and i are determined by solving a very simple system of
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two coupled second order equations, with coefficients de-
pendent on the thermodynamic state of the gas. The sys-
tem reduces to a single fourth order equation for i which
has been found to have only one physically admissible so-
lution i ∈ [0, 1] for densities in the range v > 10−5 m3/kg
and for T < 106 K; for higher temperatures, a solution i
extremely near to 1 is easily selected as the proper one
among three admissible real values.

The equations of state for energy, entropy and spe-
cific heat have been given in closed form as analytical
expressions which are useful for representing the thermo-
dynamical processes encountered in fluid dynamic appli-
cations such as, for example, the Hugoniot adiabats and
the rarefaction waves. This thermodynamic model is very
crude since it is based on the ideal gas hypotesis and disre-
gards completely the Coulomb interactions in the plasma
state. The model is therefore limited to low densities and
it excludes also molecular ionization and negative ion for-
mation. However the model encompasses the full range
of temperatures, from very low, where both ortho- and
para-hydrogen forms of the gas may manifest, through
the intermediate values where molecular dissociation sets
in, up to the high temperatures of partial and eventually
full ionization.

The values of pressure in the presence of dissociation
and ionization at equilibrium have been compared with
those calculated by recent refined models formulated in
the framework of the physical picture [11] and of the chem-
ical picture [32]. The comparison of pressure values pro-
vided by pressure equation proposed in this work with
those given by the two more refined models has shown
that for moderate densities not higher than ρ ≃ 1 kg/m3

the new simple thermodynamic model is of a comparable
accuracy. This confirms the potentialities of the proposed
thermodynamic model for numerical simulations of super-
sonic and hypersonic flows of the hydrogen at thermody-
namical and chemical equilibrium, cf. e.g. [33].
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9. D. Mihalas, W. Däppen and D. G. Hummer, Astrophysical
J., 331, (1988) 815–825.

10. A. Alastuey, V. Ballenegger, F. Cornu and Ph.A. Martin,
J. Stat. Phys., 130, (2008) 1119–1176.

11. A. Alastuey and V. Ballenegger, Contrib. Plasma Phys.,
52, (2012) 95–99.

12. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock

Waves and High-Temperature Hydrodynamic Phenomena,
Academic Press, New York, 1967.

13. K. Pachucki and J. Komasa, J. Chem. Phys., 130, 164113
(2009).

14. D. C. Harris and M. D. Bertolucci, Symmetry and Spec-

troscopy, Dover, New York, 1989.
15. E. Fermi, Zs. Phys., 26, (1924) 54–56.
16. Y. Babou, Ph. Rivière, M.-Y. Perrin and A. Soufiani, Int.
J. Thermphys., 30, (2009) 416–438.

17. G. A. Blake, www.gps.caltech.edu/~gab/ch21b/lectures/
lecture07.pdf, Lecture # 7, Vibration-Rotation Spectra of
Diatomic Molecules (2009).

18. G.V.Yukhnevich, Doklady Physics, 45, 5, (2000) 201–204.
19. D. Bruno, F. Esposito and V. Giovangigli, J. Chem. Phys.,
138, (2013) 084302.

20. M. Capitelli, G. Colonna and A. D’Angola, Fundamen-

tal Aspects of Plasma Chemical Physics: Thermodynamics,
Springer, New York, 2011.

21. J. M. L. Martin, J. P. Francois and R. Gijbels, J. Chem.
Phys., 96, (1992) 7633–7645.

22. G. Emanuel, Advanced Classical Thermodynamics, AIAA
Education Series, Washington, D.C., 1987.

23. W. Grimus, arXiv:1112.3748v1 [physics.hist-ph] 16

Dec 2001.

24. M. R. Zaghloul, Phys. Plasmas, 17, (2010) 062701.
25. A. Y. Potekhin, Phys. Plasmas, 17, (2010) 124705.
26. M. R. Zaghloul, Phys. Plasmas, 17, (2010) 124706.
27. Don Herbison-Evans, Technical Report TR94-487, Basser
Department of Computer Science, University of Sydney, Aus-
tralia, Updated 31 March 2011.

28. T. L. Hill, Statistical Mechanics, Principles and Selected

Applications, Dover, New York, 1987.
29. R. T. Jacobsen, J. W. Leachman, S. G. Penoncello and E.
W. Lemmon, Int. J. Thermophys., 28, 3, (2007) 758–772.

30. J. W. Leachman, R. T. Jacobsen, S. G. Penoncello and
E. W. Lemmon, J. Phys. Chem. Ref. Data, 38, 3, (2009)
721–748.

31. R. J. Le Roy, S. G. Chapman and F. R. W. McCourt, J.
Phys. Chem., 94, (1990) 923–929.

32. A. Y. Poteckhin, Phys. Plasmas, 3, (1996) 4156–4165.
33. M. MacLean, A. Dufrene, T. Wadhams and M. Holden,
AIAA Paper, (2010) 2010–1562.


	FronteRivista
	EPJ_D_v_NE

