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A B S T R A C T

School rankings based on value-added (VA) estimates are subject to prediction errors, since VA is defined as the
difference between predicted and actual performance. We introduce the use of random forest (RF), rooted in the
machine learning literature, as a more flexible approach to minimize prediction errors and to improve school
rankings. Monte Carlo simulations demonstrate the advantages of this approach. Applying the proposed method
to Italian middle school data indicates that school rankings are sensitive to prediction errors, even when ex-
tensive controls are added. RF estimates provide a low-cost way to increase the accuracy of predictions, resulting
in more informative rankings, and more impact of policy decisions.

1. Introduction

School rankings are increasingly being used as a means to
strengthen accountability in the education sector (Nunes, Reis, &
Seabra, 2015). Value-added (VA) models are considered a best practice
to rank schools and have been adopted in, among others, the UK, Hong
Kong, and the USA (Leckie & Goldstein, 2017). Apart from school
rankings, VA models are being used to evaluate teachers (Backes et al.,
2018), school principals (Branch, Hanushek, & Rivkin, 2012), and even
physicians (Fletcher, Horwitz, & Bradley, 2014). Estimating VA is a
high-stakes statistical exercise, as rankings based on VA estimates often
determine personnel decisions or school closure (Angrist, Hull, Pathak,
& Walters, 2017).

Two caveats are worth noting with respect to school rankings based
on VA estimates. First, earlier research has argued that nonrandom
selection of students into classes and schools (sorting) biases VA esti-
mates (Rothstein, 2009). Including controls can partially account for
this bias, in those cases where sorting is on observables
(Koedel, Mihaly, & Rockoff, 2015). Let alone data issues, it is generally
difficult to tell which, and how variables influence student sorting.1

Second, estimating VA requires predictions, as VA indicates the differ-
ence between actual and predicted performance. Hence, VA estimates
are subject to prediction errors. Particularly, nonlinear interactions
between inputs in the education production function might result in

unrealistic predictions when conventional linear estimates are used.
Moreover, this issue of prediction errors remains in place, even when all
relevant sorting variables are included.

This paper proposes the use of a ‘random forest’ as an alternative
approach to estimate VA and to obtain school rankings. Random forests
add flexibility by capturing nonlinearities and complex interactions
(Breiman, 2001). A recent trend towards machine learning in eco-
nomics advocates such models for predictions, as they may allow for
more effective ways to model complex relationships (Mullainathan &
Spiess, 2017; Varian, 2014). Especially when modelling the education
production function, discontinuous relationships and nonlinear inter-
action effects are more naturally accommodated by a random forest.
This machine learning approach does not require prior knowledge of
the education production function (inside the ‘black box’). Using the
same set of variables, this added flexibility results in more accurate
predictions.

We use Monte Carlo simulations to demonstrate that random forest
estimates reflect more closely the VA of schools, compared to conven-
tional estimates, resulting in more reliable school rankings. We then
illustrate the benefits of the proposed approach using Italian middle
school data. In addition to the availability of rich data, the Italian case
is particularly interesting as there is an ongoing policy debate on the
most appropriate statistics to publish as indicators of school quality.
This paper contributes to this public debate, which is also present in
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many other countries. For example, a new VA measure was recently
introduced in the UK and has been heavily criticized (Leckie &
Goldstein, 2017).

Our simulations and empirical application indicate that school
rankings based on conventional VA estimates are very sensitive to
prediction errors emanating from restrictive functional form assump-
tions. Reducing prediction errors yields more accurate VA estimates,
more informative rankings for parents, and more impact of policy de-
cisions. Moreover, our results indicate that the improved accuracy from
more flexible random forest estimates is comparable to the accuracy
gains from adding more data in the conventional linear model. This
suggests a low-cost way to improve VA estimates, particularly when
limited data is available. Similar gains in accuracy can be expected in
other value-added contexts, for example when predictions are used to
evaluate teachers (Chetty, Friedman, & Rockoff, 2014; Hanushek &
Rivkin, 2010). The proposed method is likely to be fruitful in other
public sector activities as well, such as health and social services, where
entities are ranked and evaluated based on value-added estimates.2

2. Empirical strategy

The value-added (VA) of a school measures how much better a
school is doing than expected. Estimating school VA implies predicting
individual student test scores and averaging the prediction errors for
each school. A conventional approach is to predict test scores using a
linear OLS regression of previous scores and students characteristics:3

= +A vXi i i (1)

= +v µwhere i j i

with Ai the test score (e.g. mathematics or reading) for student i, Xi the
set of predictor variables, μj the effect of school j, and ϵi the unobserved
error in scores, unrelated to the school VA. The VA of school j (μj), can
then be obtained by averaging the prediction errors for school j:4

=
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Schools that, on average, manage to help students achieve test scores Ai

beyond their prediction Âi are considered to be adding value to the test
scores, and vice versa. Student characteristics Xi and ϵi may be corre-
lated with μj in the likely event that students self-select into schools.
Accounting for such sorting behavior is the key challenge in obtaining
unbiased VA estimates.

If all sorting variables are observed, and are included in Xi, the
conventional OLS estimate of Xi would potentially still lead to biased
VA estimates due to anomalies in the education production function.
For example, decreasing returns to scale not captured by (1), can result
in erroneous predictions of Â ,i and hence µ̂j. This source of bias in VA
estimates can be reduced by increasing the accuracy of predictions
A A( ^ )i i .

Using regression trees we can improve predictions for students,

without the need to specify a functional form for the education pro-
duction function. This can be done using the same set of variables,
included in Xi. For example, one could predict a student’s test score
with a regression tree using his or her previous test score(s) and the test
scores of the student’s classmates to account for peer effects. As in (1),
the school fixed effect is not included when predicting Âi with re-
gression trees. Instead, equivalent to the conventional approach, the
school effect is obtained by averaging prediction errors for each school.

Regression trees can be seen as a set of rules resulting from recursive
partitioning observations into groups, or “leaves” - incorporating non-
linearities and interactions by construction (Breiman, Friedman, Stone,
& Olshen, 1984). These leaves are chosen to minimize the residual sum
of squares (RSS) of the predictions. Fig. 1 illustrates how regression
trees add flexibility when predicting individual test scores. In this ex-
ample tree, mathematics scores in Y1 (here [0-100]) are predicted using
individual and peers’ scores in Y0, and sex. In this fictitious example, a
split at the mathematics score in Y0 equal to 50 is best able to reduce
the RSS compared to all other binary splits of all variables. Therefore, it
is chosen as the first split, at the top of the tree. Along the same lines, an
additional split on sex only reduces the RSS for high achieving students
(Y0 math > 80). As illustrated by this example, regression trees allow
for nonlinear relationships between variables and the predicted out-
come. Once the regression tree is built using recursive partitioning, the
predicted outcome of a new observation then equals the average of the
leaf where we end up by following the set of rules embodied by the tree.
For example, a student with a mathematics score in Y0 above 50 and
above 80 is predicted to score 85 if the student is a girl.

Using the nonlinear patterns identified by regression trees, predic-
tions can be made for each student. Then, the added value of schools
can be computed by comparing students’ actual test scores, relative to
the predicted test scores - i.e. the prediction errors. Averaging the
prediction errors for each school yields the VA estimate, as in (2).

The accuracy of regression trees can be substantially improved by
constructing them iteratively. A random forest (RF) constructs a large
number of trees using randomly drawn samples and randomly drawn
predictors as candidates at each split (Breiman, 2001; James, Witten,
Hastie, & Tibshirani, 2013). Corresponding parameters are ideally ob-
tained using cross-validation to prevent overfitting. We will use random
forests in the empirical application and in the Monte Carlo simulations
to improve predictions, and hence, VA estimates and school rankings.

3. Data and specification

We construct school rankings for Italian middle schools by esti-
mating each school’s value-added for mathematics. We use data from
the National Institute for the Evaluation of the Educational System of
Education and Training (INVALSI). It contains extensive information on
all Italian students and schools for the 2013 cohort. INVALSI resembles
the OECD PISA data, although data are collected for all students in
Italy, and at different moments in time. It was designed in this way for
the purpose of estimating the value-added of schools and to construct
corresponding rankings. Every student is observed twice in the data:
grade 5 data is collected at the end of primary school, and grade 8 data
at the end of middle school. Hence, the change in mathematics test
scores between grade 5 and grade 8 can be used to measure the added
value of middle schools for mathematics.5

We first estimate a baseline model to predict grade 8 mathematics
test scores including lagged test scores as the only predictor variables
(i.e. in grade 5). This specification corresponds to VA in its most
common form (Todd & Wolpin, 2003) - or the ‘VA2’ model used to
compile school league tables in the UK. Using these predictions (and

2 An R template code for other applications is available upon request.
3 Our results are analogous for alternative specifications (linear-log, and

higher degree polynomials), as the flexibility provided by random forests goes
beyond these functional form adjustments. Note, however, that these adjust-
ments are rather uncommon, with a linear specification of predictor variables
being the conventional functional form.

4 Alternative approaches are often applied to mitigate bias in VA estimates of
small schools, for example, by shrinking estimates towards the overall mean
(Angrist et al., 2017; Guarino, Maxfield, Reckase, Thompson, & Wooldridge,
2015) or by using multilevel models. The latter approach has been adopted by
the UK government to rank schools on VA (Leckie & Goldstein, 2017).

5 A more comprehensive description can be found in earlier studies using this
dataset, see for example De Simone (2013, p.14) or Bertoni, Brunello, and
Rocco (2013, p.66–67).

F. Schiltz et al. Economics of Education Review 67 (2018) 207–215

208



prediction errors), a VA estimate can be obtained for each school. We
follow Lefgren and Sims (2012) by including lagged test scores for both
mathematics and reading as predictor variables, to improve predictions
of grade 8 test scores in mathematics. Next, we estimate a final model
which can be seen as the ‘contextual’ VA used in the UK to obtain school
rankings (Leckie & Goldstein, 2017), accounting for differences in stu-
dent characteristics and peers, and hence reducing bias from student
sorting. In particular, we include a set of student characteristics (im-
migrant status, sex, socio-economic status, grade repetition before
grade 5), and peer characteristics, by averaging the same set of vari-
ables both at the class and school level. In addition, we also include the
relative previous position of students in their class, and the relative
previous position of students’ classes in their schools. We do not claim
to perfectly control for nonrandom selection of students into classes and
schools, even though the INVALSI data allows a more complete set of
controls than commonly included. To compare VA estimates and school
rankings, we estimate both baseline and final models using a conven-
tional OLS approach and using a random forest. When estimating the
random forest, we set our parameters as follows: the number of trees
(500), the number of observations per end node (15) and the number of
variables as split candidates (1 and 24, for the baseline and final
model). We chose this combination as it minimizes 10-fold cross-vali-
dation errors, a process often described as hyperparameter tuning. This
way we maximize predictive power without overfitting, a common
issue when using machine learning methods - see for example
Mullainathan and Spiess (2017) for a more elaborate discussion.

4. Results and discussion

4.1. Monte Carlo simulations

In order to compare the ability of conventional and random forest
estimates to reflect the school value-added (VA), we iteratively gen-
erate a sample of students and assign them to schools. First, we compare
the accuracy of conventional and random forest predictions at the
student level (A Âi i). Second, we obtain VA estimates by averaging
these prediction errors. We then compare the VA estimates for each
school relative to the true value added in our simulation (µ µ̂j j ).
Finally, we construct school rankings from these VA estimates and
compare these to the true ranking. As detailed in the appendix of this
paper, three parameters define the data generating process: the effect
size of school VA, the nonlinearity in the education production

function, and the degree to which high ability students are sorted into
high VA schools. Simulations over this set of parameters indicate that
RF provides more accurate predictions of student test scores. Moreover,
when the effect size of school VA is relatively modest, and the education
production function is not strictly linear, we provide evidence that RF
estimates are also better able to reflect the VA of schools, and are hence
more informative about school rankings. This information gain is
especially pronounced when students sort into schools.

We also explore more realistic settings were students are not only
sorting on ability but also on demographics (i.e. high SES students are
more likely assigned to better schools); or when VA effects of schools
are heterogeneous across students (i.e. low SES students are affected
more); or in the absence of peer effects, or when the conventional VA
model accounts for nonlinearities in the EPF using higher degree
polynomials. Our findings are robust to all these alternative scenarios,
strengthening the case for the use of RF estimates in real life applica-
tions.6

4.2. Ranking Italian schools

Table 1 compares the accuracy of predicting individual mathematics
test scores in grade 8 using INVALSI data, in terms of absolute errors
and mean squared errors (MSE).7 Clearly, the random forest predictions
outperform conventional predictions for both baseline and final models.
Adding more data, i.e. going from baseline to final, reduces prediction
errors. However, adding flexibility, i.e. going from conventional to RF,
seems to reduce these errors even further, and significantly. The higher
accuracy of RF predictions reveals the limited ability of conventional
linear estimates to adequately capture the complex education produc-
tion function, and casts serious doubt on accountability prescriptions
based on such measures.

Next, we construct VA estimates using these predictions and rank
Italian schools accordingly. The school ranked first exhibits the largest
VA. Building on the findings from the Monte Carlo simulations, we set
the school ranking obtained from the final RF model as the benchmark
ranking. In Fig. 2, we compare rankings for Italian middle schools based
on conventional estimates (baseline and final) to this benchmark.

Fig. 1. An example of a regression tree to predict mathematics scores in Y1 Notes: Outcome variable is mathematics score in Y1 [0-100]. The regression tree displays
the fictitious result of recursive partitioning using Y0 scores, peer scores in Y0 and sex.

6 Simulation results for these scenarios are summarily presented in Table A.3.
Alternative parameter combinations are available upon request.

7 Our results are analogous for alternative definitions of school VA: (1) school
median VA, (2) reading VA, (3) average of reading and mathematics VA.
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Clearly, major changes occur when school rankings are based on RF
estimates instead of conventional estimates of VA. These changes are
especially pronounced in schools ranked at the bottom by conventional
estimates, and even more so at the top. Also, including the extensive set
of controls in the final specification appears to only partially resolve the
diverging rankings. In the right hand side panel, after adding all con-
trols to account for selection on observables, schools ranked highly by
the conventional VA still experience large (downward) rank changes
when compared to the RF rank.

Table 2 presents the share of schools correctly identified as ranked
in the bottom or top quartile. We define ‘correct’ as a match with the
classification obtained from the final RF, considering its ability to
minimize prediction errors. For example, 82% of the schools ranked in
the top quartile by the final RF estimate are also classified in this group

using the final conventional estimate. As can be seen from Table 2, RF
estimates of VA are significantly better at identifying low- and top-
performing schools, also for the baseline model. This suggests a major
advantage of ranking schools based on RF estimates when limited data
is available.

For policy makers, school rankings can be particularly useful to
identify best practices or to target low-performing schools. In practice,
VA measures are used to rank schools and close down schools that end
up at the bottom of this ranking. The impact of any such policy depends
on the ability of rankings to identify schools at the bottom and at the
top of the unknown VA distribution. Back-of-the-envelope calculations
of closing the average school in the bottom quartile and enrolling its
students in the average school in the top quartile indicate that

Fig. 2. Rank changes when improving predictions. Notes: Schools ranked in terms of VA estimates: baseline conventional OLS estimates (left) and final conventional
OLS estimates (right). We ranked all 5,249 Italian schools using their VA estimate based on INVALSI data. We obtain VA estimates for conventional and RF
predictions by averaging the difference between actual and predicted scores, as in (2). The school ranked 1st exhibits the largest VA. Vertical axes indicate the change
in rank when final RF estimates are used to obtain the ranking of schools. See Table 1 for a description of predicted and predictor variables in baseline and final
models.
delins.

Table 1
Comparing accuracy of predictions.

Absolute error Mean squared error

Model: RF Conventional Diff RF Conventional
baseline 20.52 23.78 −3.26*** 716 979
final 9.48 22.54 −13.06*** 151 869

Notes: Predicted variable is mathematics score in grade 8 (mean=198, SD=38).
Predictor variables in baseline model are lagged test scores (grade 5) for
mathematics and reading. Final model adds immigrant status, sex, socio-eco-
nomic status, grade repetition before grade 5, class and school level averages of
this set of variables, the relative previous position of students in their class, and
the relative previous position of students’ classes in their schools. Diff indicates
the difference in absolute prediction errors. ***Indicates significance at 1%.

Table 2
Identifying bottom and top schools.

Q25

Model: RF Conventional Diff
baseline 84.68 81.78 2.90***
final 100 85.75 14.25***

Q75
Model: RF Conventional Diff
baseline 78.60 72.28 6.32***
final 100 81.72 18.28***

Notes: Percentages indicate the share of Italian schools classified as bottom
(Q25) or top (Q75) by both benchmark rankings and the evaluated model using
INVALSI data. See Table 1 for a description of predicted and predictor variables
in baseline and final models. Benchmark rankings are those obtained from the
final RF model. Bootstrapped SEs: ***Indicates significance at 1%.
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achievement gains could be as large as 0.16 standard deviations (SD).8

This is the policy impact when rankings are constructed using the final
RF estimates. However, when baseline conventional estimates of VA are
used to obtain rankings, this effect reduces to 0.14 SD, as schools are
being closed that are not actually in the bottom and students are sent to
schools that are not actually in the top. A school closure policy based on
RF estimates and limited data (i.e. the baseline model) would yield the
same benefits (0.15 SD) as a policy based on conventional estimates
using the full set of controls (i.e. the final model). This implies that the
policy impact can be increased by almost 0.01 SD when extensive
controls are added to the specification, and the impact can be increased
by another 0.01 SD when flexibility is added to estimate VA and to rank
schools. Although this effect appears negligible, it suggests that RF
predictions provide an effective, low-cost way to improve rankings,
irrespective of the data available.

5. Conclusion

For parents and policy makers, the main concern regarding school
rankings is whether they provide a valid tool to compare school quality.
However, since ‘value-added’ (VA) is defined as the difference between
predicted and actual performance, prediction errors can lead to biased
rankings. This paper introduced random forests to estimate school VA,
as this approach more naturally accommodates discontinuous re-
lationships and nonlinear interaction effects in the education produc-
tion function. Using Monte Carlo simulations we demonstrated that
random forest estimates not only provide better individual predictions,
but also provide a better approximation of school VA compared to
conventional estimates, in nearly all parameter configurations. We then
compared rankings of Italian middle schools constructed using random
forest and conventional estimates. Clearly, rankings were strongly di-
vergent, to an extent that could not be accounted for by including a set

of controls at the individual, class, and school level. Finally, we pro-
vided back-of-the-envelope calculations to assess the impact of a hy-
pothetical school closure policy in Italy, strictly based on rankings. Our
calculations indicate that the impact of this policy is increased by 0.01
standard deviations when random forest estimates are used to rank
schools instead of conventional estimates.

When it comes to predictions, machine learning methods are pre-
vailing in economics. They are often referred to as ‘black box’ methods
due to their lack of transparency (Varian, 2014). This poses possible
threats when implementing such models to guide education policies
(e.g. school closure). However, similar claims can be made about con-
ventional VA models - the UK government scrapped contextual value-
added models in 2010 motivated by their lack of transparency, claiming
it was ‘difficult for the public to understand’ (DfE, 2010, p.68). At a very
basic level, regression trees are intuitive to explain a predictive process,
as human decisions tend to follow a tree-structured approach as well.
There is a clear scope for further research in terms of communicating
machine learning models more intuitively, e.g. in a visual manner.
Nonetheless, considering the high-stakes nature of school rankings, and
VA estimates in general, improving accuracy may outweigh reduced
transparency, as small improvements can imply major changes for
school principals, parents, and students.
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Appendix A. Monte Carlo simulations

In order to compare the ability of conventional and random forest estimates to reflect the true school value-added (VA), we iteratively ( =B 100)
generate 10,000 student observations, grouped in 100 schools. First, we compare the accuracy of predictions at the student level, measured as the
mean squared error (MSE). Second, we compare the MSE of VA estimates for each school relative to the true value added in our simulation. Finally,
we compare the resulting rankings to the true ranking using rank order correlation coefficients (Spearman’s ρ and Kendall’s τ).

A1. Data generating process

We define the data generating process (DGP) of student achievement in Y1 as a function of previous test scores, peer test scores in Y0, and the
added value of schools. For each student, we calculate test scores in Y1 as follows:

= +M f M M µ
N

^ ( , , )
with (0, 1)

i
p

s i

i

1 0 0

(A.1)

A1.1. Functional form: α
The functional form underlying the DGP and connecting mathematics test scores in Y0 and Y1 is specified as a linear combination of a linear and

nonlinear function. In particular:

= + + + + +M M M M M µ^ (1 )[ ( )] ( )i M i p i
p

k

Mk i p i
p k

s i1 0 0
1

0 0
(A.2)

We set =k 4, obtaining a fourth degree polynomial function in the second part of (A.2). As this part is clearly a nonlinear function of M, α indicates
the degree of nonlinearity in the education production function (EPF). For = 0, (A.2) reduces to a strictly linear specification, whereas = 1
imposes the polynomial functional form on the EPF. In our simulations, mathematics test scores in Y0 are drawn from the normal distribution,
truncated corresponding to the empirical distribution in Italy. Fig. A.3 displays the relationship between mathematics test scores in Y0 and Y1, for
different values of α.

8 Following Angrist, Hull, Pathak, and Walters (2017), we ignore possible transition effects such as disruption due to school closure, peer effects from changes in
school composition, and other factors that might inhibit replication of successful schools.
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A1.2. Student sorting: γ
In reality, high ability students are more likely to end up in better schools. The sorting of students on ability into better schools is captured by γ.

For each student, a random number is drawn around the student’s mathematics score in Y0 (M0), with a standard deviation (SD) equal to 1,000(γ)4.
Based on this individual number, students are assigned to equally sized schools, where students with the highest numbers are assigned to the schools
with the highest VA. For = 1, students are assigned to schools in a random manner, avoiding bias from student sorting. As γ approaches 0, students
sort themselves into schools based on mathematics scores in Y0. For = 0, sorting is perfect: the first x spots available in the school with the highest
VA are taken by the x highest performers.

Next, the leave-out-mean is calculated for each student and included in the DGP as M i
p

0 . A student’s test score in Y1 is influenced by his peers (M i
p

0 )
following the same functional form, see (A.2). Depending on the value of βp, student sorting affects predictions of M1. In accordance with the
literature on peer effects (Sacerdote, 2014), we evaluate two scenarios where peer effects are either nonexistent (βp=0) or moderate (βp=0.1), as
“half the studies do not find evidence of peer effects in test scores [and] approximately half the studies find either modest or large effects on test
scores” (Sacerdote, 2014, p.269). Note that, in the absence of peer effects, βp=0, Y1 mathematics test scores are still correlated to school-level
average test scores, when the sorting of students groups students of high ability into high VA schools, and vice versa.

In addition to sorting on ability (test scores in Y0), we explore an alternative scenario where students with a low socio-economic status (SES) are
discriminated against when choosing a school. In our simulation, we randomly assign 20 percent of the students to be in the low SES group and
reduce their randomly generated number by 1 SD of test scores in Y0. As a result, low SES students are three times less likely to enroll in a school that
is in the top quartile in terms of school value-added. Note that SES status and test scores in Y0 are assumed to be independent, and it does not appear
directly in the education production function. Test scores in Y1 are only affected through weaker peers and lower VA schools, as low SES students on
average sort into schools with weaker peers. In Table A.2, results are shown when peer effects are assumed to be zero, hence only the latter
mechanism applies here. When making predictions, a dummy for low SES is included in the regression equation of the conventional approach and as
an additional variable in the random forest model.

A1.3. School VA: μ
The size of the school VA chosen here reflects the literature on school effects (Hattie, 2008, p.74), suggesting a small (range of 0.1 SD of M0), or

intermediate (range of 0.3 SD) effect.9 Schools are assigned a VA randomly drawn from a normal distribution where the range reflects the assumed
size of the effect. For example, when assuming an intermediate effect, the VA for each school will be drawn from a N(0, 0.3) distribution, truncated to
cover a range of 0.3.

We evaluate two scenarios of school value-added. First, the added value μs is assumed to be constant for all students within the same school, but
different across schools. Second, we assume schools to only make a difference for the group of low SES students. As such, we calculate test scores in
Y1 using two education production functions, one for each group of students. Again, when making predictions, a dummy for low SES is included in
the regression equation of the conventional approach and as an additional variable in the random forest model.

Fig. A1. Functional form of the EPF as a function of α.

9 In Italy, the difference in VA between the average school in the top quartile and the average school in the bottom quartile is estimated to equal approximately 0.16
standard deviations (see 4.2).
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Table A.1
Prediction errors and school rankings (βp=0.1).

Size of school VA
(μ):

0.1 0.3

Student sorting (γ): 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Decrease in prediction error: MSE
Functional form

(α): 0
−0.73 −0.74 −0.72 −0.76 −1.18 −1.52 −1.13 −1.13 −1.12 −1.96 −5.73 -8.90

0.2 −71.72 −71.60 −64.41 −51.07 −49.98 −49.93 −71.53 −71.72 −64.46 −52.25 −54.50 -57.39
0.4 −283.83 −284.37 −254.94 −202.01 −196.31 −196.35 −285.22 −283.43 −258.01 −203.41 −201.39 -203.18
0.6 −639.26 −640.81 −574.12 −455.04 −441.93 −437.97 −637.16 −636.77 −574.49 −451.84 −446.15 -446.10
0.8 −1140.54 −1137.24 −1019.50 −808.16 −785.03 −777.00 −1136.04 −1134.91 −1016.75 −808.29 −787.08 -785.17
1 −1774.04 −1770.40 −1589.97 −1256.17 −1219.43 −1212.26 −1775.94 −1783.94 −1589.89 −1261.63 −1221.48 -1221.55

Decrease in VA error: MSE
Functional form

(α): 0
0.04 0.04 0.02 0.07 0.31 0.49 0.43 0.43 0.34 0.86 3.11 4.96

0.2 −70.59 −70.29 −32.18 −0.88 −0.18 0.00 −70.14 −69.72 −31.56 −0.07 2.58 4.42
0.4 −281.73 −281.65 −128.37 −3.69 −1.64 −1.46 −282.57 −280.24 −128.64 −2.86 1.16 2.92
0.6 −634.73 −634.93 −290.52 −8.60 −4.00 −3.72 −634.45 −630.93 −288.29 −7.44 −1.18 0.65
0.8 −1133.87 −1127.30 −514.81 −14.80 −7.48 −7.24 −1129.95 −1125.41 −511.57 −14.06 −4.49 -2.65
1 −1763.56 −1754.63 −803.31 −22.94 −11.94 −11.94 −1767.12 −1768.72 −801.94 −22.61 −9.24 -7.03

Increase in Spearman rank correlation
Functional form

(α): 0
−0.26 -0.26 −0.03 0.01 −0.03 −0.06 −0.32 −0.30 −0.06 −0.01 −0.05 −0.08

0.2 0.13 0.14 0.30 0.18 0.15 0.10 0.09 0.10 0.25 0.02 −0.02 −0.05
0.4 0.15 0.15 0.30 0.28 0.36 0.33 0.12 0.12 0.29 0.11 0.05 0.01
0.6 0.16 0.14 0.28 0.32 0.44 0.48 0.14 0.14 0.30 0.19 0.14 0.08
0.8 0.16 0.17 0.28 0.35 0.51 0.54 0.14 0.16 0.29 0.24 0.21 0.17
1 0.13 0.19 0.27 0.37 0.57 0.61 0.14 0.17 0.31 0.26 0.28 0.24

Increase in Kendall rank correlation
Functional form

(α): 0
−0.20 −0.20 −0.04 −0.01 −0.03 −0.09 −0.25 −0.24 −0.07 −0.02 −0.05 −0.11

0.2 0.13 0.14 0.22 0.10 0.11 0.11 0.09 0.09 0.16 −0.02 −0.02 −0.07
0.4 0.15 0.15 0.23 0.18 0.26 0.30 0.13 0.12 0.20 0.04 0.04 0.01
0.6 0.16 0.15 0.22 0.22 0.32 0.41 0.15 0.14 0.22 0.10 0.10 0.09
0.8 0.16 0.17 0.22 0.23 0.37 0.45 0.15 0.16 0.22 0.14 0.16 0.16
1 0.14 0.18 0.21 0.25 0.41 0.50 0.15 0.17 0.23 0.16 0.21 0.23

Table A.2
Prediction errors and school rankings (βp=0).

Size of school VA (μ): 0.1 0.3

Student sorting (γ): 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Decrease in prediction error: MSE
Functional form (α): 0 −0.73 −0.74 −0.72 −0.77 −1.16 −1.52 −1.14 −1.17 −1.15 −2.03 −5.80 −9.01
0.2 −28.88 −28.72 −29.06 −29.18 −29.43 −29.91 −29.08 −28.87 −29.41 −30.36 −34.35 −37.31
0.4 −114.11 −113.92 −113.89 −114.11 −114.88 −114.67 −113.41 −112.88 −114.99 −115.26 −120.02 −122.34
0.6 −254.76 −255.50 −255.22 −256.06 −256.27 −256.76 −254.86 −253.93 −256.31 −256.20 −261.07 −264.20
0.8 −454.37 −453.67 −450.96 −456.54 −455.51 −453.01 −448.82 −451.65 −453.99 −455.44 −460.93 −462.12
1 −706.20 −710.69 −709.07 −713.04 −708.52 −711.93 −706.28 −709.87 −708.53 −709.54 −716.02 −716.29

Decrease in VA error: MSE
Functional form (α): 0 0.04 0.04 0.03 0.08 0.30 0.48 0.45 0.48 0.40 0.93 3.13 5.00
0.2 −28.15 −27.84 −12.43 −0.36 0.02 0.20 −27.76 −27.54 −12.08 0.45 2.94 4.71
0.4 −113.05 −112.25 −50.01 −1.63 −0.81 −0.63 −112.41 −111.31 −49.70 −0.75 2.10 3.85
0.6 −252.87 −252.76 −112.10 −3.86 −2.19 −2.05 −253.90 −252.17 −111.14 −2.98 0.77 2.67
0.8 −451.24 −449.15 −197.39 −6.80 −4.09 −3.90 −448.23 −447.32 −198.86 −6.00 −1.00 0.77
1 −702.38 −703.81 −311.89 −10.51 −6.72 −6.35 −703.15 −704.19 −311.04 −9.90 −3.96 −1.70

Increase in Spearman rank correlation
Functional form (α): 0 −0.28 −0.28 −0.14 −0.02 −0.03 −0.05 −0.30 −0.30 −0.11 −0.02 −0.05 −0.07
0.2 0.15 0.17 0.21 0.10 0.09 0.05 0.11 0.11 0.16 −0.01 −0.04 −0.06
0.4 0.17 0.18 0.24 0.20 0.26 0.22 0.15 0.13 0.24 0.05 0.01 −0.03
0.6 0.18 0.21 0.25 0.27 0.37 0.36 0.17 0.18 0.26 0.11 0.06 0.02
0.8 0.18 0.20 0.27 0.30 0.45 0.45 0.18 0.19 0.29 0.16 0.13 0.08
1 0.20 0.19 0.29 0.31 0.50 0.53 0.20 0.18 0.31 0.21 0.20 0.14

Increase in Kendall rank correlation
Functional form (α): 0 −0.21 −0.21 −0.12 −0.03 −0.03 −0.08 −0.23 −0.23 −0.10 −0.04 −0.05 −0.11
0.2 0.16 0.17 0.16 0.05 0.06 0.05 0.10 0.10 0.08 −0.03 −0.04 −0.09
0.4 0.18 0.18 0.19 0.12 0.19 0.22 0.15 0.14 0.17 0.00 0.00 −0.03
0.6 0.19 0.20 0.20 0.17 0.27 0.32 0.17 0.18 0.18 0.05 0.04 0.02
0.8 0.19 0.20 0.22 0.19 0.32 0.39 0.18 0.19 0.22 0.09 0.09 0.08
1 0.20 0.19 0.23 0.20 0.36 0.44 0.20 0.19 0.24 0.12 0.14 0.14
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A2. Results

Tables A.1 and A.2 present the simulation results for different DGPs (averaged over B). Each table contains results for the conventional OLS
approach and the RF approach advocated in this paper. Numbers displayed are differences between conventional and RF results. Hence, negative
numbers in the top two panels indicate an improvement in accuracy (i.e. lower MSE), while positive numbers in the bottom two panels indicate an
improvement in ranking accuracy (i.e. higher rank correlation). Values of α and γ between 0 and 1 are considered, and we allow different scenarios
for the importance of μs in the DGP. All conventional and RF estimates are obtained by including both the individual score (M0) and the leave-out-
mean (M p

0 ) as predictors of scores in Y1 (M1). In the first scenario (Table A.1), we set = 0.1p such that student sorting affects scores in Y1 through
peer effects in addition to school VA. In the second scenario (Table A.2), we simulate the trivial case where peer effects do not affect individual
achievement, = 0p . In this case, M1 is defined by the school value-added μs, previous scores M0, and measurement error ϵ.

Under both scenarios, we can draw a similar general conclusion: The advantage of RF over conventional estimates is especially pronounced when
the education production function is not strictly linear, and if students are not randomly assigned to schools (i.e. there is some degree of sorting on
ability). If the above conditions do hold, jointly, it can be preferable to apply the conventional approach to estimate the school VA, and rank schools
accordingly. Under all alternative parameter configurations, RF estimates reflect the true VA more closely by minimizing prediction errors.

Table A.3 evaluates alternative specifications under a moderate scenario ( = 0.5 and = 0.5).10 The first two columns replicate the main
simulation set-up, using these parameters. Next, results are provided when low SES students face a lower chance of being assigned to better schools,
independent of ability (see 1.2). The final two columns allow for heterogeneous school effects, where only low SES students are affected by the school
VA (see 1.3). In both additional scenarios, the random forest is better able to predict test scores in Y1, resulting in more accurate VA estimates, and
school rankings.

Parameters used in Monte Carlo simulations:

• α: Nonlinearity of education production function. This parameter captures the relationship between test scores in Year 0 (peers’ and students’ own
scores) and test scores in Year 1. For α=0, this relationship is strictly linear, whereas for α=1, the functional form corresponds to the polynomial
function specified in Section A.1.1.
• γ: Degree of sorting of students into schools. When γ equals 1, all students are equally likely to be assigned to the best school. The rank order
correlation between a student’s own test scores and the rank of his or her school is close to 0. When γ equals 0, students are assigned to schools
following a deterministic rule: the school with the highest VA will consist of the 100 best students and so on. In this other extreme setting, the
rank order correlation between a student’s own test scores and the rank of his or her school is 1.
• μs: The added value of school s. Drawn from the normal distribution around 0, with a range equal to either 0.1 or 0.3 standard deviations of Year 0
test scores.
• βp: Peer effects. This parameter indicates the importance of peers’ test scores on students’ own scores. Peer effects are measured as the lea-
ve−out−mean for student i in school s M( )i

p , and the functional form linking Mi
p to test scores in Year 1 is determined by α.

Supplementary material

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.econedurev.2018.10.011
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