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Background
The extensive use of scientific computing in many fields of science and engineering 
requires more and more frequently to reach a compromise between modeling reliabil-
ity and computational efficiency [1]. This goal is currently pursued in the literature via 
the set up of two complementary methodologies, i.e., surrogate solutions and surrogate 
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models. Surrogate solutions are generally formalized with a reduction of the size of 
the finite dimensional solution, as in the reduced basis approach [2], or in the proper 
orthogonal decomposition (POD) [3] and proper generalized decomposition (PGD) 
methods [4, 5].

Surrogate models directly replace the reference model via a simplified formulation 
as with a geometric multiscale modeling [6, 7] or with compressed sensing [8]. This is 
usually accomplished by taking advantage of specific features of the problem at hand, 
such as a prevalent direction in the involved dynamics rather than in the geometry of the 
computational domain. This is exactly the criterion exploited to settle the hierarchical 
model (HiMod) reduction proposed in [9, 10]. The HiMod technique derives enriched 
1D surrogate models to describe phenomena characterized by a leading dynamics albeit 
in the presence of locally significant transverse features. In particular, the description 
properties of purely 1D models are enhanced by keeping track of the transverse dynam-
ics in the reduced model. This is achieved by enriching a finite element discretization of 
the mainstream with a modal representation of the secondary dynamics. This strategy 
leads to a 1D finite element model with ad-hoc coefficients that implicitly include the 
generally non-constant description of the transverse dynamics. The possibility of locally 
tuning the modal expansion to match spatial heterogeneities represents one of the main 
strengths of the HiMod approach [11].

In this paper, we focus on the pointwise HiMod reduction strategy proposed in [12], 
where the modal tuning is performed on the finite element nodes. For this reason, the 
pointwise approach turns out to be the most flexible one among the available HiMod 
procedures [13], being suited to model both localized and widespread dynamics. In par-
ticular, with a view to practical applications, we extend the pointwise HiMod formula-
tion to an unsteady setting by resorting to a discretization discontinuous in time. We 
generalize the cG(s)-dG(q) formulation in [14–16] to the HiMod setting, by defining a 
reduced solution that we denote by c[M(M)G(s)]-dG(q) approximation. We replace the 
full model with a solution that is continuous in space and discontinuous in time. It is 
obtained via a Galerkin spatial approximation that combines finite elements of degree 
s with the modal expansion identified by the index M, and via discontinuous piecewise 
polynomials of degree q in time.

The selection of the modal distribution as well as of the space–time discretization rep-
resents a crucial step of the HiMod reduction. For this reason, we introduce a preproc-
essing phase to automatically identify the HiMod solution, for fixed values of s and q. 
The final outcome of this phase is a table that identifies the time partition and then, for 
each time interval, selects the corresponding 1D finite element mesh together with the 
associated modal distribution. We call this table HiMod lookup diagram. To this pur-
pose, we resort to an adaptive procedure based on an a posteriori analysis of the global 
(modeling plus space–time discretization) error. We rely upon a goal-oriented setting 
[17–19], so that the prediction of the c[M(M)G(s)]-dG(q) model is driven by a physical 
quantity of interest.

The estimator for the global error consists of a modeling and of a discretization contri-
bution, which are preserved distinct [11, 20–22]. This represents a crucial property with 
a view to a global adaptation algorithm. In particular, the modeling estimator is a gen-
eralization of the goal-oriented hierarchical a posteriori error estimator derived in [11] 
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to a time dependent setting, and it includes the temporal discontinuities of the c[M(M )
G(s)]-dG(q) scheme. The estimator for the discretization error, in turn, keeps separate 
the temporal from the spatial contribution [23–26] and it is obtained by including the 
intrinsic dimensionally hybrid nature of a HiMod approximation into the standard goal-
oriented analysis, as in [11].

Although the HiMod lookup diagram is strictly tailored to the problem at hand, we 
will show that it can be employed to deal with certain variants of such a problem. Thus 
the computational effort characterizing the preprocessing pays off.

A first validation of the HiMod reduction procedure is also provided in this paper, by 
dealing with an experimental and modeling study of solute transport in porous media 
[27].

The full setting
We introduce the reference parabolic model we aim at reducing via an adaptive space–
time model reduction procedure. A standard notation is adopted for the Sobolev spaces 
associated with the spatial independent variable only, as well as for the space of the 
functions bounded almost everywhere [28]. Concerning a space–time dependence, 
we introduce the spaces L2(0,T ;W ) =

{
v : (0,T ) → W :

∫ T
0
�v(t)�2Wdt < +∞

}
 , 

H1(0,T ;W ) =
{
v, ∂v

∂t ∈ L2(0,T ;W )
}
, C0([0,T ];W ) =

{
v : [0,T ] → W continuous :

∀t ∈ [0,T ], �v(t)�W < +∞
}
, where W denotes a generic Hilbert space, with � · �W  the 

associated norm [29].

The problem

We select as model to be reduced the unsteady problem

where � ⊂ R
d (d = 2, 3) is the computational domain, ŴD and ŴN constitute a meas-

urable non-overlapping partition of ∂� such that ∂� = ŴD ∪ ŴN and 
◦
ŴD ∩

◦
ŴN = ∅, 

I = (0,T ) is the time window of interest, and L is a generic second-order elliptic opera-
tor with diffusive contribution given by −∇ · (D∇u) so that D∇u · n ≡ ∂νu is the conor-
mal derivative of u, n being the unit outward normal vector to ∂�. Concerning the data, 
we choose the source f ∈ L2(0,T ; L2(�)), the diffusivity tensor D = [dij] ∈ [L∞(�)]d×d 
such that the uniform ellipticity condition holds, the initial datum u0 ∈ L2(�), and the 
Neumann datum g ∈ L2(0,T ; L2(ŴN )). In the next section, further requirements are 
added on the computational domain as well as on the boundary conditions in view of the 
HiMod procedure.

We consider the weak formulation associated with (1), given by: find 
u ∈ V = L2(0,T ;H1

ŴD
(�)) ∩H1(0,T ; (H1

ŴD
(�))′), with (H1

ŴD
(�))′ the dual space of 

H1
ŴD

(�), such that

(1)





∂u

∂t
(z, t)+ Lu(z, t) = f (z, t) (z, t) ∈ Q = �× I ,

u(z, t) = 0 (z, t) ∈ ∂QD = ŴD × I ,

D∇u(z, t) · n = g(z, t) (z, t) ∈ ∂QN = ŴN × I ,

u(z, 0) = u0(z) z ∈ �,

(2)

∫

Q

∂u

∂t
v d� dt +

∫

I
a
(
u, v

)
dt =

∫

Q
fv d� dt +

∫

∂QN

gv ds dt ∀v ∈ V ,
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with u(x, 0) = u0(x), and where a(·, ·) : H1
ŴD

(�)×H1
ŴD

(�) → R is the bilinear form 
associated with operator L, here assumed continuous and coercive. Problem (2) repre-
sents the full problem, with u the full solution.

The continuous embedding V →֒ C0([0,T ]; L2(�)) ensures the temporal continuity to 
the weak solution u in (2).

The computational domain

Problems suited to a HiMod reduction are defined on domains characterized by a preva-
lent dimension and the leading dynamics is aligned with such a dimension.

Thus, we assume � to coincide with the d-dimensional fiber bundle 
� =

⋃
x∈�1D

{x} × γx, where �1D is the supporting 1D fiber described by the independent 
variable x and aligned with the dominant dynamics, while γx ⊂ R

d−1 denotes the trans-
verse fiber that is, in general, a function of x and parallel to the transverse dynamics. For 
the sake of simplicity, we assume �1D ≡]x0, x1[ to be rectilinear and we refer to [30] for 
the more general case of a curved supporting fiber. We partition the boundary ∂� of � 
into three disjoint sets, Ŵ0 = {x0} × γx0, Ŵ1 = {x1} × γx1 and Ŵ∗ =

⋃
x∈�1D

∂γx, such that 
∂� = Ŵ0 ∪ Ŵ1 ∪ Ŵ∗ (see Remark 2 for further details).

Now, we map the domain � into a reference bundle �̂, where the computations are 
easier, free from undetermined constants, and are carried out once and for all. To this 
aim, for any x ∈ �1D, we introduce the map ψx : γx → γ̂d−1 between the generic fiber γx 
and the reference fiber γ̂d−1 ⊂ R

d−1. Maps ψx are instrumental to define the global map 
� : � → �̂, where �̂ =

⋃
x∈�1D

{x} × γ̂d−1 denotes the reference computational domain 
(see Fig. 1 for an example of map �). Regularity assumptions are introduced on the maps 
ψx and �. In particular, we assume ψx to be a C1−diffeomorphism, for all x ∈ �1D, and � 
to be differentiable with respect to z (essentially to exclude any kinks along Ŵ∗).

We also demand that the supporting fiber �1D is preserved by map �, so that 
the generic point z = (x, y) ∈ � is mapped into ẑ = �(z) = (x̂, ŷ), with x̂ ≡ x and 
ŷ = ψx(y) . Finally, without reducing the generality, we assume �1D to be the subset of � 
with y = 0, i.e., �1D exactly coincides with the centerline of �.

Remark 1 In a 2D setting, we may always select ψx as a linear transformation, so that 
ŷ = ψx(y) = y/L(x), with L(x) = meas(γx). In 3D a similar choice is possible only for 
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Fig. 1 Map � between a 2D sinusoidal domain � and the rectangular reference domain �̂
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specific configurations, for instance when � is a cylindrical domain. In this case L(x) 
coincides with the diameter of the pipe along the centerline.

HiMod reduction
The HiMod technique has been proposed in [9, 10] with the idea of exploiting the fiber 
structure demanded on �, or, likewise, the preferential dynamics of the phenomenon at 
hand. Currently, three versions of HiMod reduction have been investigated, from both a 
theoretical and a numerical viewpoint (see [13] for a survey on the different approaches). 
Independently of the selected technique, the idea is to manage in a different way the 
dependence of the solution on the leading and on the transverse dynamics. In particu-
lar, since HiMod aims at providing enriched 1D models to be associated with the domi-
nant direction, only the dominant dynamic is discretized via a standard finite element 
scheme, while getting information on the transverse dynamics via a modal expansion. In 
this section, we consider two of the available HiMod formulations.

Uniform HiMod reduction

The distinguishing feature of a uniform HiMod formulation is the adoption of a unique 
level of detail (i.e., the same number of modal functions) in modeling the transverse 
dynamics. For the sake of simplicity, we start from a steady setting. The function space 
associated with a uniform HiMod approach is

where m ∈ N
+ is a given integer, V1D ⊆ H1(�1D), and B = {ϕj}j∈N+ is a modal basis of 

functions in H1(γ̂d−1), orthonormal with respect to the L2(γ̂d−1)-scalar product. The 
boundary conditions assigned on Ŵ0 and Ŵ1 are taken into account by the space V1D , 
while the boundary data on Ŵ∗ are included in B. Space Vm represents the hierarchy of 
models. We complete definition (3) by adding a conformity (Vm ⊂ V ) and a spectral 
approximability (limm→+∞ inf vm∈Vm �v − vm�V = 0, for any v ∈ V ) hypothesis on Vm 
[9, 10].

Remark 2 The analysis below is completely general with respect to the boundary data. 
So far the robustness of the HiMod reduction has been verified when either homogene-
ous Dirichlet or homogeneous Neumann boundary conditions are assigned on Ŵ0, Ŵ1, 
Ŵ∗, or when non-homogeneous Dirichlet data are enforced on Ŵ0 and Ŵ1. In general, the 
critical point is the identification of a basis B matching Robin boundary conditions or 
non homogeneous data on Ŵ∗. A new strategy with respect to this issue has been recently 
proposed in [31].

With a view to unsteady problems, we introduce a time partition of the time win-
dow I into N subintervals In = (tn−1, tn] of width kn = tn − tn−1, for n = 1, . . . ,N , with 
k = maxn kn, t0 ≡ 0 and tN ≡ T . This partition induces a subdivision of the cylinder Q 
into N space–time slabs Sn = �× In, with n = 1, . . . ,N . Notice that partition {ti}Ni=0 

(3)Vm =



vm(x, y) =

m�

j=1

�vj(x)ϕj(ψx(y)), with �vj ∈ V1D



,
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is not necessarily uniform, to match the possible time heterogeneities of the problem. 
Now, we look for an approximate solution to (2) coinciding, on each space–time slab Sn, 
with a polynomial of degree at most q in time, with q ∈ N

+, and with an element of Vm in 
space, i.e., a function of the reduced space

The boundary conditions in (2) identifies V1D with H1
γD
(�1D), where γD is a subset of 

{0, 1} according to the definition of ŴD, while functions ϕj,r belong to the modal basis B. 
Moreover, since 0 �∈ I1, the value vm(x, y, 0) has to be specified separately.

A priori, functions in VN
m  may exhibit a discontinuity at each time level, with continuity 

from the left. As a consequence, a different number of modal functions can be selected 
on each time interval In (see Fig. 2). This choice leads to replace in (4) the modal index m 
with the index mn ∈ N

+ with n = 1, . . . ,N . In such a case we adopt the term space–time 
slabwise uniform HiMod reduction and we change the notation in (4) into VN

m , where 
m = [m1, . . . ,mN ]′ ∈

[
N
+]N is the vector that collects the number of modes used on 

each interval In, with vm the generic function in VN
m .

The possible time discontinuity in VN
m  leads us to distinguish between the values 

vn,+m = limt→0+ vm(x, y, tn + t) and vn,−m = limt→0+ vm(x, y, tn − t), and to define the 
temporal jump [vm]n = vn,+m − vn,−m  at the generic time tn, for n = 0, . . . ,N − 1. Notice 
that this jump is identically equal to zero for functions in V. This remark allows us to 
provide a weak formulation for problem (1) equivalent to (2): find u ∈ V  such that

(4)

VN
m =



vm : (0,T ] → H1

ŴD
(�) : ∀n = 1, . . . ,N

vm(x, y, t)
��
In
=

q�

r=0

m�

j=1

tr �v n
j,r(x) ϕj,r(ψx(y)), with �v n

j,r ∈ V1D



.

(5)AcGdG(u, v) = FcGdG(v) ∀v ∈ V ,

y

x

t

In

Fig. 2 Example of modal distribution and finite element discretization associated with a slabwise uniform 
HiMod reduction
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where, for any w, ζ ∈ V ,

with u0,+ = u0,− = u0(x, y) and ∂Qn
N = ŴN × In for n = 1, . . . ,N . The space–time slab-

wise uniform HiMod formulation can thus be stated: find um ∈ VN
m  such that, for any 

vm ∈ VN
m ,

The jump terms in (6) provide now an actual contribution, and we distinguish between 
the HiMod approximation u0,−m ∈ VN

m |I1 of the initial datum u0 and u0,+m  that is unknown. 
The conformity and the spectral approximability hypotheses are now added slabwise 
to guarantee the well-posedness of formulation (8). Indeed, due to the discontinuity in 
time, we can only expect that VN

m

∣∣
Sn

⊂ V
∣∣
Sn

, while VN
m �⊂ V .

Concerning the spatial discretization, following [9, 10], we consider a finite ele-
ment discretization of the function dependence on x, after introducing a subdivi-
sion, not necessarily uniform, of �1D into subintervals. The time discontinuity allows 
to employ a different 1D mesh on each space–time slab (see Fig.  2). In particular, we 
denote by Thn = {Kn

l }
Mn

l=1
 the spatial partition associated with Sn for n = 1, . . . ,N , with 

Kn
l = (xnl−1

, xnl ) the generic subinterval of width hnl = xnl − xnl−1
 for l = 1, . . . ,Mn , 

with hn = maxl h
n
l  and xn0 ≡ x0, xnMn

≡ x1. Then, we furnish each Sn with the space 
X1D,s
hn

 of the conforming finite elements of degree s associated with Thn, and with 
dim(X1D,s

hn
) = Nhn < +∞. A standard density hypothesis in V1D is advanced on each 

finite element space. Thus, the discrete counterpart of formulation (8) is: find uhm ∈ VN
m,h 

such that, for any vhm ∈ VN
m,h,

where

(6)

AcGdG(w, ζ ) =
N�

n=1





�

Sn

∂w

∂t
ζ d� dt +

�

In

a
�
w, ζ

�
dt





+
N−1�

i=1

�

�

[w]i ζ i,+ d�+
�

�

w0,+ ζ 0,+ d�

(7)FcGdG(ζ ) =
�

�

w0,− ζ 0,+ d�+
N�

n=1





�

Sn

f ζ d� dt +
�

∂Qn
N

gζ ds dt




,

(8)AcGdG(um, vm) = FcGdG(vm).

(9)AcGdG(u
h
m, vhm) = FcGdG(v

h
m),

(10)

VN
m,h =



vhm : (0,T ] → H1

ŴD
(�) : ∀n = 1, . . . ,N

vhm(x, y, t)
��
In
=

q�

r=0

mn�

j=1

tr �v n,h
j,r (x) ϕj,r(ψx(y)), with �v n,h

j,r ∈ X1D,s
hn

∩ V1D



,
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uh,0,−m ∈ VN
m,h|I1 is a discrete HiMod approximation of u0, and uh,0,+m  is an unknown.1 It 

follows VN
m,h ⊂ VN

m , i.e., also the discrete HiMod space VN
m,h consists of functions contin-

uous in space but discontinuous in time. Notice that, although VN
m,h �⊂ V , in (9) we can 

extend definitions (6) and (7) to VN
m,h taking advantage of the slabwise splitting.

By generalizing the notation used in [14–16] to denote finite elements that are con-
tinuous in space and discontinuous in time, we refer to VN

m,h as to the HiMod c[M(m)
G(s)]-dG(q) space (and, analogously, to (9) as to the c[M(m)G(s)]-dG(q) HiMod formu-
lation). We mean that, on each Sn, the full solution is replaced by a reduced solution 
continuous in space and discontinuous in time, obtained via a Galerkin approximation 
based on finite elements of degree s combined with the modal expansion associated with 
the multi-index m to discretize the space, and piecewise polynomials of degree q for the 
time discretization.

The finite element discretization along �1D allows us to further expand the Fourier 
coefficient ṽ n,h

j,r  in (10) in terms of the finite element basis {ϑl}
Nhn

l=1
 associated with space 

X1D,s
hn

, so that any function vhm ∈ VN
m,h can be represented on the generic time interval  

In as

with n = 1, . . . ,N . The coefficients ũ n,h
j,r,l of uhm become the actual unknowns of the 

c[M(m )G(s)]-dG(q) HiMod formulation (9).

HiMod versus PGD

Following the classification proposed in [5], both HiMod reduction and PGD can be cat-
egorized as a priori approaches since they do not rely on any solution to the problem at 
hand as, for instance, a POD strategy. Both the methods involve the weak form of the full 
problem and are based on a classical separation of variables. Nevertheless, while HiMod 
reduction applies this separation only to the space–time coordinates, PGD involves also 
problem parameters, such as boundary conditions or material properties, thus increas-
ing the dimension of the space of the unknowns. HiMod applies a different discretization 
to the variables based on the physics of the problem. The accuracy for each variable may 
be tuned locally via a posteriori arguments. A PGD approach replaces in (3) the known 
modal function ϕj(ψx(y)), with y = (y, z)′, with a term of the form Fj(y)Gj(z) , with Fj 
and Gj unknowns. The two procedures both lead to 1D algebraic systems. In PGD they 
are intrinsically nonlinear and, in general, of large dimension. PGD requires therefore 
specific methods for the nonlinearity. In addition, the construction of the PGD approxi-
mation via a successive enrichment of an initial solution closely resembles the heuristic 
approach initially used in HiMod for selecting the number of transverse modes [10]. In 
this respect, the automatic selection of the HiMod approximation in [11] may represent 
an important evolution in a PGD setting as well.

1 To simplify notations, with the super-index h we understand both the space and time discretizations.

(11)vhm(x, y, t)
∣∣
In
=

q∑

r=0

mn∑

j=1

Nhn∑

l=1

tr ṽ n,h
j,r,l ϑl(x) ϕj,r(ψx(y))
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Pointwise HiMod reduction

A fixed number of modal functions on the whole � may be too restrictive in the presence 
of spatial heterogeneities. This justifies the formalization of HiMod strategies alternative 
to the uniform approach, where a different number of modes is adopted in different sub-
domains of � (via a piecewise HiMod reduction [10, 11]), rather than in correspondence 
with each finite element node (thanks to a pointwise HiMod formulation [12]). We focus 
on the last approach. The numerical verification in [12] identifies the pointwise method 
as the best-performing one in the presence of either widespread or localized transverse 
dynamics.

The idea exploited in a pointwise HiMod expansion consists in rewriting (11) by 
emphasizing the sum on the finite element nodes, as

and then in making the modal index mn dependent on the nodal index l. Space VN
m,h is 

thus replaced by the new space

where Mn = [mn,1, . . . ,mn,Nhn
]′ ∈

[
N
+]Nhn is the modal nodewise vector collecting 

the number of modes used at each finite element node of the slab Sn for n = 1, . . . ,N , 
whereas M is just the subindex used to denote a pointwise HiMod approximation. The 
nodewise tuning of the number of modes leads to an algebraic system sharing the same 
sparsity pattern as for the uniform case, but with a smaller dimension [12]. The formula-
tion related to space VN

M,h coincides with a space–time pointwise HiMod reduction and 
will be denoted by c[M(M)G(s)]-dG(q) form. It reads exactly as (9), simply by replacing 
space VN

m,h with VN
M,h. Notice that, since definition (12) strictly depends on the finite ele-

ment discretization, there does not exist a weak counterpart of the pointwise HiMod 
formulation.

Uniform versus pointwise HiMod reduction: an example

We compare the uniform and the pointwise HiMod approaches on the steady test case 4 
in [10], where the transport of oxygen in a wavy channel, representing a Bellhouse oxy-
genator for extra-corporeal circulation [32], is modeled. This problem is characterized 
by a widespread dynamics, that is suited to be reduced via both the HiMod techniques.

Figure  3, left shows the full solution u computed with FreeFem++ [33] on an 
unstructured uniform mesh of about 50,000 elements and via 2D affine finite elements. 
The irregular shape of the domain strongly affects the main stream of the flow on the 
whole domain as highlighted by the bent contour lines.

vhm(x, y, t)
��
In
=

Nhn�

l=1

ϑl(x)




q�

r=0

mn�

j=1

tr �v n,h
j,r,l ϕj,r(ψx(y))


,

(12)

VN
M,h =



vhM : (0,T ] → H1

ŴD
(�) : ∀n = 1, . . . ,N

vhM(x, y, t)
��
In
= vhMn

(x, y, t) =
Nhn�

l=1

ϑl(x)




q�

r=0

mn,l�

j=1

tr �v n,h
j,r,l ϕj,r(ψx(y))






,



Page 10 of 45Perotto and Zilio   
Adv. Model. and Simul. in Eng. Sci.  (2015) 2:25 

As far the HiMod reduction, we discretize the dependence of u on x via affine finite 
elements after introducing a partition of uniform step h = 0.1 on �1D. The transverse 
dynamics are described with a basis B of sinusoidal functions. To evaluate the integrals 
of the modal functions, we resort to Gaussian quadrature formulas based on four quad-
rature nodes per wavelength, at least. No stabilization scheme is used. We first apply the 
uniform HiMod approach by resorting to 11 modal functions (see Fig. 3, right). Indeed, 
as shown in [10], at least 11 modes are required to obtain a sufficiently reliable HiMod 
approximation.

As second assessment, we build the pointwise HiMod approximation uhM associated 
with the modal distribution M in Fig. 4, center. By comparing Fig. 3, right with Fig. 4, 
left we recognize that the two reduced solutions are very similar. In particular, the inner-
most contour lines associated with uhM are more accurate, despite the lower number of 
dof involved by the pointwse approximation (48,400 dof characterize uh11 to be compared 
with 28,282 dof for uhM, see the corresponding sparsity pattern in Fig. 4, right).

In accordance with [12], results in Figs. 3 and 4 show the improved modeling capabili-
ties of the pointwise HiMod method vs the uniform approach, for a fixed computational 
effort. The main issue related to a pointwise formulation is the selection of the nodewise 
modal distribution. This corroborates the need for an automatic modal selection.

Adaptive HiMod reduction
Due to its significant impact on practical applications, we consider a goal-oriented 
framework (see, e.g., [17–19]), so that the predicted reduced model fits a goal func-
tional representing a physical quantity of interest (e.g., mean or pointwise values, fluxes 
across sections or regions, the energy of the system, the vorticity of a turbulent flow). We 
denote by J the selected functional and we assume it is linear. We aim at approximating, 
within a prescribed tolerance TOL, the value J(u), with u solution to the full problem (2), 
via J (uhM), where uhM is the reduced solution identified by a preprocessing phase.

At this stage, we use a uniform and sufficiently fine discretization 
{(

xnl , tn
)Mn

l=1

}N
n=1

 on 
�1D × I so that we can neglect the error due to the space–time discretization.

The a posteriori modeling error analysis

We generalize the error analysis in [11] to an unsteady setting, to automatically produce 
the HiMod lookup diagram that provides the number of modes to be switched on at 
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Fig. 3 Wavy channel test case: full solution (left); uniform HiMod solution for m = 11 (right)



Page 11 of 45Perotto and Zilio   
Adv. Model. and Simul. in Eng. Sci.  (2015) 2:25 

0
0.
2

0.
4

0.
6

0.
8

1
1.
2

1.
4

1.
6

1.
8

2

0.
81

1.
2

1.
4

1.
6

1.
82

2.
2

00.
2

0.
4

0.
6

0.
8

11.
2

0
0.
2

0.
4

0.
6

0.
8

1
1.
2

1.
4

1.
6

1.
8

2
024681012141618

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

n
z 

=
 2

8
2
8
2

Fi
g.

 4
 W

av
y 

ch
an

ne
l t

es
t c

as
e:

 n
od

ew
is

e 
H

iM
od

 s
ol

ut
io

n 
(le

ft)
 w

ith
 c

or
re

sp
on

di
ng

 m
od

al
 d

is
tr

ib
ut

io
n 

(c
en

te
r) 

an
d 

sp
ar

si
ty

 p
at

te
rn

 (r
ig

ht
)



Page 12 of 45Perotto and Zilio   
Adv. Model. and Simul. in Eng. Sci.  (2015) 2:25 

each finite element node and at each time of the space–time partition 
{(

xnl , tn
)Mn

l=1

}N
n=1

 
(see Fig. 7, left for an example). The a posteriori analysis is carried out on the slabwise 
uniform HiMod formulation, while the pointwise approximation uhM constitutes the out-
put of the adaptive procedure in the next section.

According to a goal-oriented approach, we introduce the dual problem associated with 
(8): find zm ∈ VN

m  such that, for any vm ∈ VN
m ,

where, for any ζ ∈ V ∪ VN
m ,

where j̃  is the density function associated with the goal functional J. Notice that, since 
VN
m �⊂ V , J has to be defined on V ∪ VN

m  and analogously for JcGdG. A null final condition, 
zN ,+
m = 0, allows to get rid of the first integral in (14), whereas boundary contributions 

may modify the definition of JcGdG when functional J involves a control on the boundary. 
The assignment of boundary conditions to the dual problem is a crucial issue that is usu-
ally tackled via the Lagrange identity.

Remark 3 The bilinear form AcGdG(w, ζ ) in (6) can be alternatively rewritten integrat-
ing by parts the time derivative and recombining the jump terms as

for any w, ζ ∈ V ∪ VN
m . This form better fits the dual setting due to the reverse time 

scale.
To derive the a posteriori modeling error estimator, we need to introduce the enriched 

primal and dual slabwise uniform HiMod problems,

with m+ > m (i.e., m+
i > mi for i = 1, . . . ,N). The inclusion VN

m ⊂ VN
m+ guarantees the 

orthogonality relations

The analysis derived in [11] can be applied to the slabwise uniform HiMod formulations, 
to state the following

Proposition 1  Let em = u− um ∈ V ∪ VN
m  and em+ = u− um+ ∈ V ∪ VN

m+ be the 
modeling error associated with the reduced formulation (8) and (15), respectively for 

(13)AcGdG(vm, zm) = JcGdG(vm),

(14)JcGdG(ζ ) =
∫

�

zN ,+
m ζN ,− d�+

N∑

n=1

∫

Sn

j̃ ζ d� dt,

N�

n=1




−
�

Sn

∂ζ

∂t
w d� dt +

�

In

a
�
w, ζ

�
dt





−
N−1�

i=1

�

�

[ζ ]i wi,−
m d�+

�

�

ζN ,− wN ,− d�,

(15)find u+m ∈ VN
m+ s.t. AcGdG(um+ , vm+) = FcGdG(vm+) ∀vm+ ∈ VN

m+ ,

(16)find z+m ∈ VN
m+ s.t. AcGdG(vm+ , zm+) = JcGdG(vm+) ∀vm+ ∈ VN

m+ ,

AcGdG(um+ − um, vm) = 0, AcGdG(vm, zm+ − zm) = 0 ∀vm ∈ VN
m .
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m,m+ ∈
[
N
+]N and with m+ > m. Let us assume that the final dual data zN ,+

m  and zN ,+
m+  

are identically equal to zero. Then, if there exists a positive constant σm < 1 and a modal 
multi-index M0 ∈

[
N
+]N such that, for m+ > m ≥ M0,

the following two-sided inequality holds

with δumm+ = um+ − um.
Thanks to the requirement on the dual final data, we have that JcGdG ≡ J . Result (18) 

identifies the estimator ηmm+ for the modeling error J (em) with the value |J (δumm+)| , 
while guaranteeing the efficiency and the reliability of ηmm+ via the lower and upper 
bound, respectively. Following [11], to evaluate estimator ηmm+, we can adopt three 
equivalent formulas, i.e.,

with δzmm+ = zm+ − zm, and where ρp(um)(·) = FcGdG(·)−AcGdG(um, ·), and 
ρd(zm)(·) = JcGdG(·)−AcGdG(·, zm) denote the weak primal and dual residual associ-
ated with formulation (8) and (13), respectively. Moreover, to make computable ηmm+, 
we replace the reduced primal and dual solutions with corresponding discrete approxi-
mations. Estimator ηmm+ exhibits the structure typical of a hierarchical error estimator, 
yet in a goal-oriented framework. We refer to [11] for further computational remarks 
and for some considerations on hypothesis (17) that represents a generalization of the 
standard saturation assumption [34–36] to a goal-oriented setting.

Construction of the HiMod lookup diagram

Estimator ηmm+ is now used to automatically select the pointwise HiMod approximation 
uhM for problem (2) that guarantees the desired accuracy TOL on the functional error 
J (u− uhM).

To start the adaptive algorithm, we assign two initial (possibly small) values to the uni-
form modal indices m and m+. Then, we resort to the following five-stage procedure:

(S1)  we compute the discrete uniform reduced primal and dual solutions, uhm, uhm+, zm, 
zh
m+, on the whole space–time cylinder Q;

(S2)  we evaluate the modeling estimator ηnmm+ = ηmm+
∣∣
Sn

 localized to each space–
time slab Sn;

(S3)  we apply the adaptive procedure outlined in Fig. 5 on each slab Sn to predict the 
corresponding nodewise modal distribution Mn, i.e., to build the HiMod lookup  
diagram (see below for all the details);

(S4)  we compute the discrete pointwise reduced primal and dual solutions, uhM, uh
M+, 

zM, zh
M+, associated with the HiMod diagram yielded at stage (S3);

(S5)  we evaluate the global modeling error estimator ηMM+ by employing the point-
wise solutions identified at stage (S4). Then, if the global tolerance is met, i.e., 

(17)|J (em+)| ≤ σm |J (em)|,

(18)
|J (δumm+)|
1+ σm

≤ |J (em)| ≤
|J (δumm+)|
1− σm

,

(19)ηmm+ = AcGdG(δumm+ , δzmm+) = ρp(um)(zm+) = ρd(zm)(um+)
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ηMM+ ≤ TOL, the procedure stops, providing the HiMod lookup diagram in (S3) 
as final outcome. Vice versa, if ηMM+ > TOL, we come back to (S2).

Before detailing the adaptive procedure at stage (S3), some remarks are in order.

The computational effort associated with stage (S1) takes advantage of the time dis-
continuity of the c[M(M)G(s)]-dG(q) scheme. More sophisticated approaches such as 
checkpointing [37] may be adopted to further reduce the computational costs. The mod-
eling estimator can obviously be evaluated in correspondence with any HiMod approxi-
mation [uniform as in (S2), slabwise uniform as in (19), pointwise as in (S5)]. Indeed, via 
the first definition in (19), it suffices to properly evaluate the bilinear form (6). Concern-
ing the localization of the estimator to Sn at stage (S2), by exploiting again the first defi-
nition in (19), we have

Finally, the HiMod pointwise approximations uhM, zhM and uh
M+, zh

M+ at stage (S4) are the 
solutions to problems (5), (13) and (15), (16) settled in the space VN

M,h and VN
M+,h, respec-

tively. In particular, we assume that VN
M,h and VN

M+,h share the same spatial partitions Thn 
for n = 1, . . . ,N , so that M+ identifies reduced solutions with a pointwise larger number 
of modes with respect to uhM and zhM.

Let us focus now on the adaptive procedure devised to commute the slabwise evalua-
tions of ηmm+ into the lookup diagram predicted at stage (S3). We focus on the generic 
space–time slab Sn and on the case of linear finite elements:

(S3_1) we assign a number of modes equal to m to each node and to each subinterval of 
partition Thn;

(20)

ηnmm+ = AcGdG(δumm+ , δzmm+)
∣∣
Sn

=
∫

Sn

∂δumm+

∂t
δzmm+ d� dt +

∫

In

a
(
δumm+ , δzmm+

)
dt +

∫

�

[δumm+]n−1 δzn−1,+
mm+ d�.

Fig. 5 Example of the modal adaptive procedure at stage (S3)
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(S3_2)   we evaluate the estimator ηn,lmm+ = ηn
mm+

∣∣
Kn
l
 localized to each interval Kn

l  of Thn, 
for l = 1, . . . ,Mn;

(S3_3)  we invoke an equidistribution criterion on the slabs as well as on the subinter-
vals Kn

l . If ηn,lmm+ > TOL δ1M/(NMn), we increase by one the modal index associ-
ated with Kn

l  (model refinement); if ηn,lmm+ <TOL δ2M/(NMn), we decrease by 
one such an index (model coarsening); otherwise, we preserve the current modal 
index;

(S3_4)  we update the number of modes associated with each finite element node by 
assigning to the generic node xnl , for l = 1, . . . ,Mn − 1, a number of modes 
equal to mn,l = min(mKn

l
,mKn

l+1
), with mKn

l
 the number of modes assigned 

on the interval Kn
l  . In particular, to avoid an abrupt variation of modes on 

consecutive nodes, the actual value m∗
n,l associated with xnl  coincides with 

max(0.5mn,l−1 + 0.5mn,l+1 − 3,mn,l) . The endpoints of �1D are updated sepa-
rately as mn,0 = mKn

1
 and mn,Mn = mKn

Mn
 if Dirichlet boundary conditions are 

not imposed on Ŵ0 and on Ŵ1, respectively. The assignment of the modal indices 
mn,l predicts the modal multi-index Mn = [mn,1, . . . ,mn,Nhn

]′ for the slab Sn.

The procedure in (S3) is exemplified in Fig. 5 for a partition Thn of �1D consisting only of 
three subintervals Kn

l  (l = 1, 2, 3).
Of course, steps (S3_1)–(S3_4) are replayed on the enriched modal index m+, with a 

view to the evaluation of the modeling error estimator at stage (S5).
The adaptive modal algorithm includes both model refinement and coarsening. A min-

imum number of modes constrains the modal coarsening, while a maximum number of 
adaptive iterations is fixed to avoid too restrictive demands on TOL. The tuning parame-
ters δ1M and δ2M at stage (S3_3) make the adaptive algorithm more robust, while increas-
ing the corresponding computational efficiency. We set δ1M = 0.5, δ2M = 1.5. Finally, the 
modal update at step (S3_4) plays a crucial role since it explains how to build a pointwise 
HiMod approximation uhM starting from a HiMod lookup diagram, where the modes are 
associated with the subintervals.

Numerical verification

The numerical verification is carried out in a 2D setting. Moreover, to select the discrete 
HiMod space, we choose q = 0 and s = 1, i.e., we use linear finite elements to discretize 
the leading dynamics and functions piecewise constant in time. It can be checked that 
the adopted time discretization is equivalent to a modified backward Euler scheme [15].

Reliability of the adaptive HiMod reduction procedure

We approximate problem (1) on the rectangular domain � = (0, 3)× (0, 1) for 
t ∈ I = (0, 1), and by choosing Lu = −�u+ c · ∇u, with c = [10, 0]′. Besides the direc-
tionality induced by the advective field, we introduce a local heterogeneity via the source 
term f ≡ 10χD, with χD the characteristic function associated with the elliptic region 
D = {(x, y) : (x − 1.5)2 + 4(y− 0.25)2 ≤ 0.01}. Concerning the boundary conditions, 
homogeneous Dirichlet data are assigned on ∂�\ŴN, with ŴN = {(3, y) : 0 ≤ y ≤ 1}, 
where a homogeneous Neumann datum is enforced. Finally, a null initial datum u0 is 
chosen. Figure 6, left shows at five different times, the contour plots of the full solution 
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u approximated with FreeFem++ via a standard 2D cG(1)-dG(0) scheme on a uni-
form unstructured mesh of 10252 triangles. As expected, the convective field acts on the 
purely diffusive phenomenon by horizontally bending the contour lines. From a mod-
eling viewpoint, we are simulating, for instance, the process of convection and diffusion 
of a pollutant emitted by a chimney localized at D, in the presence of a moderate hori-
zontal wind. In this context, the full solution u(t) represents the pollutant concentration 
in the domain � at a certain time t ∈ I

We aim at controlling the mean value of the full solution on the whole � at the final time 
T = 1, i.e., we select the goal functional J as Jmean,T (ζ ) = [meas(�)]−1

∫
�
ζ(x, y, 1) d�. 

The choice of a localized functional is challenging with a view to the mod-
eling adaptive procedure. The dual problem is characterized by the differen-
tial operator L∗z = −�z − c · ∇z, with source term given by the density function 
j̃(x, y, t) = [meas(�)]−1δT associated with Jmean,T, where δT denotes the Dirac distribu-
tion associated with the final time. On ŴN a homogeneous Robin boundary condition is 
imposed, while a homogeneous Dirichlet data is assigned on ∂�\ŴN. A null final value 
zN ,+
m  is selected.
Both the primal and dual problems are computed by discretizing the supporting fiber 

(0, 3)× {0.5} via a uniform partition of size h = 0.15 and the time window with a con-
stant step k = 0.1. The modal basis B consists of sinusoidal functions.

Finally, the modeling tolerance TOL is set to 10−2, while the uniform modal indices m 
and m+ are set to 1 and 3, respectively.
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Fig. 6 Convection–diffusion of a pollutant, control of Jmean,T , modal adaptation: full solution (left) and HiMod 
approximation uh

M
 (right), for t = 0.1, 0.2, 0.5, 0.8, 1 (top–bottom)
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The adaptive algorithm converges after 21 iterations and provides as output the HiMod 
lookup diagram in Fig.  7, left. The diagram coincides with the space–time rectangle 
�1D × I, where �1D and I exhibit the corresponding partition of uniform size h and k, 
respectively. A certain number of modal functions is associated with each cell Kn

l × k 
for l = 1, . . . ,Mn and n = 1, . . . ,N . Thus, by resorting to the procedure in Fig. 5, (S3_4) 
it is possible to build the HiMod pointwise approximation uhMn

 for n = 1, . . . ,N , i.e., the 
reduced solution uhM that guarantees the estimate |Jmean,T (u)− Jmean,T (u

h
M)| <TOL.

The HiMod diagram in Fig. 7, left shows that few modes are demanded on the whole 
space–time domain, except for the two last time intervals, where a larger number of 
modes is switched on in correspondence with the localized source and the downstream 
region. More quantitative information are provided by the plot in Fig. 7, center of the 
number of modes associated with node x = 1.5 as a function of time. Only three modes 
are used on the whole time interval except for the subintervals IN−1 and IN, when five 
and 13 sine functions are required, respectively. The modal distribution predicted by 
the lookup diagram is completely coherent with a goal-oriented approach. Since we are 
interested in the mean value of the solution only at the final time, it is reasonable to 
expect a reliable approximation of the full solution only in correspondence with the last 
time intervals. This trend is confirmed by the corresponding pointwise HiMod approxi-
mation which reproduces more closely the full one during the last times of the simula-
tion (compare Fig. 6, left and right).

In Fig. 7, right we show the value of ηMM+ on the same space–time structure of the 
HiMod diagram. The boxes associated with the largest values of the estimator identify a 
pattern similar to the one in Fig. 7, left.

Sensitivity of the adaptive HiMod reduction procedure to the goal‑functional

We re-run the adaptive procedure by preserving all the input parameters, but for 
J = J leftmean,T (ζ ) = [meas(�left)]−1

∫
�left ζ(x, y, 1) d�

left, with �left = (0, 1.2)× (0, 1). We 
deal now with a functional localized both in time and space. The adaptive procedure 
stops after only three iterations by providing the HiMod lookup diagram in Fig. 8, left. A 
single mode is adopted on the whole time interval in �left where the solution is flat. To 
ensure tolerance TOL, the modeling error estimator identifies the portion of the domain 
around D as the most problematic one. As a consequence, three sinusoidal functions are 
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Fig. 8 Convection–diffusion of a pollutant, control of Jleftmean,T , modal adaptation: HiMod lookup diagram (left); 
HiMod approximation uh

M
 at t = T  (right)
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used in the two consecutive spatial intervals just before x = 1.5 for the whole temporal 
window, except for the last time interval, when a single mode is employed on the entire 
�. The c[M(M)G(1)]-dG(0) HiMod approximation at the final time is shown in Fig. 8, 
right. In agreement with a goal-oriented approach, the reduced solution is far from the 
full one at T in Fig. 6, left-bottom. The mean value is controlled in an area where the full 
solution is extremely smooth so that a single mode is enough.

Robustness of the HiMod lookup diagram

The computational effort demanded by the adaptive procedure is justified by the pos-
sibility to employ the lookup diagram associated with a specific setting to hierarchi-
cally reduce a variant of this. Figure  9 performs this check on three variants of the 
test-case in Fig.  6. In more detail, we adopt the HiMod lookup diagram in Fig.  10, 
top-left to build the HiMod approximation for three new advection-diffusion prob-
lems, characterized by a different choice of the source term, namely, f1 ≡ 10χD1

 
with D1 = {(x, y) : (x − 1.5)2 + 4(y− 0.45)2 ≤ 0.01} (Fig.  9, top), f2 ≡ 10χD2

 with 
D2 = {(x, y) : (x − 1.7)2 + 4(y− 0.25)2 ≤ 0.01} (Fig.  9, middle) and f3 ≡ 10χD3

 with 
D3 = {(x, y) : (x− 1.5)2 + 4(y− 0.25)2 ≤ 0.01} ∪ {(x, y) : (x− 1.5)2 + 4(y− 0.65)2 ≤ 0.01} (Fig. 9, 
bottom), respectively. Figure 9, left shows the HiMod approximations thus obtained. To 
check the reliability of the obtained solutions, we apply the HiMod adaptive algorithm 
directly to the three new problems. The corresponding lookup diagrams are gathered 
in Fig. 10, whereas the associated HiMod approximations are collected in Fig. 9, right. 
The matching between the contour plots in the two columns of Fig. 9 is substantial, in 
particular for the two-source test case which represents the most sigificant variant with 
respect to reference configuration.

As last investigation, we check the robustness of the HiMod lookup diagram with 
respect to the shape of the computational domain. This is a challenging issue due to 
the crucial role played by the maps ψx and � in the HiMod reduction. For this reason, 
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Fig. 9 Robustness of the HiMod lookup diagram: HiMod approximations based on the reference lookup 
diagram (left) and on the HiMod adaptive algorithm (right) corresponding to the source term f1 (top), f2 (mid-
dle) and f3 (bottom)
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we focus on a steady setting, in particular on the one in Fig. 3. We consider two vari-
ants of the wavy-shaped domain. With the first one, we simply reduce the height of the 
sinusoidal sections (see Fig. 11, top), whereas in the second variant we add a rectangu-
lar channel at the beginning and at the end of the original geometry (see Fig. 11, bot-
tom). Figure  11 compares the solution computed on the modal distribution in Fig.  4, 
center with the HiMod approximation provided by the adaptive HiMod procedure. As 
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Fig. 10 Robustness of the HiMod lookup diagram: reference diagram (top-left); diagram corresponding to 
the source term f1 (top-right), f2 (bottom-left) and f3 (bottom-right)
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Fig. 11 Robustness of the HiMod lookup diagram: HiMod approximations based on the reference lookup 
diagram (left) and on the HiMod adaptive algorithm (right) for two possible variants of the original computa-
tional domain
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expected, the matching between the two approximations is very good in Fig.  11, top. 
Despite the abrupt change in the domain shape, we get acceptable results also for the 
second geometric variant, thus confirming the good robustness of the HiMod lookup 
diagram with respect to possible changes of the original problem.

Combined HiMod reduction and space–time adaptation
Goal of this section is to enrich the information provided by the HiMod lookup diagram 
by predicting also the space–time partition of �1D × I. Consequently, we remove any 
assumption on the finite element discretization as well as on the time partition {In}. In 
practice, we expect to replace the diagram in Fig. 7, left with a new diagram character-
ized by a non uniform horizontal (spatial) and vertical (temporal) spacing.

The a posteriori estimator for the global error

With a view to a global adaptation, following, e.g., [11, 20–22], we derive an a posteriori 
estimator for the global error Eh

m = em + ehm, where the contributions of the modeling 
(em = u− um) and of the discretization (ehm = um − uhm) errors remain distinct. In par-
ticular, since we are interested also in an adaptive selection of the space and time step 
size, we expect that the estimator for the discretization error consists of a spatial contri-
bution separate from the temporal one [23–26].

As for the adaptive HiMod reduction, we carry out the a posteriori analysis in a slab-
wise uniform HiMod setting. The following statement plays a crucial role in the defini-
tion of the global error estimator.

Proposition 2  We assume that saturation assumption (17) holds, and we choose 
zN ,+
m = zN ,+

m+ = 0. Then, for any m, m+ ∈
[
N
+]N , with m+ > m ≥ M0 and M0 defined as 

in Proposition1, it turns out that

Moreover, if there exists a constant � with 0 < � < 1, such that

it additionally holds that

Proof Estimates (21) and (23) follow from Propositions 3 and 4 in [11], respectively. �

Starting from Proposition 2, we adopt the quantity

as a posteriori error estimator for the global error Eh
m. As a consequence, inequalities 

(21) and (23) state the reliability and the efficiency of such an estimator. The first term 
of ηh

mm+ exactly coincides with the modeling error estimator in (19), while the second 

(21)|J (Eh
m)| ≤

1

1− σm
(|J (δumm+)| + |J (ehm)|).

(22)|J (ehm)| ≤ �|J (em)|,

(23)|J (Eh
m)| ≥

1− �

3+ σm − �
(|J (δumm+)| + |J (ehm)|).

(24)ηhmm+ = |J (δumm+)| + |J (ehm)|
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contribution takes into account the error associated with both the spatial and the tem-
poral discretizations. The main effort of this section will be to explicitly estimate this 
term, with the additional requirement of distinguishing the space from the time contri-
bution. As in [11], we modify the standard goal-oriented analysis to tackle the intrinsic 
dimensionally hybrid nature of a HiMod reduced formulation.

Concerning hypothesis (22), it essentially coincides with a sufficient grid resolution 
requirement since establishing a ratio between the modeling and the discretization 
errors. With a view to estimate |J (ehm)|, we preliminarily prove the following Galerkin 
orthogonality property for the discretization error ehm.

Lemma 1  For any vhm ∈ VN
m,h, the following relation holds

Proof We consider the HiMod formulation (8) and the corresponding discrete coun-
terpart (9). The time discontinuity characterizing spaces VN

m  and VN
m,h allows us to select 

the values of vm and vhm independently on each In for n = 1, . . . ,N . Thus, we pick both vm 
and vhm to vanish outside In so that formulations (8) and (9) reduce to a unique equation 
on In: find um ∈ VN

m

∣∣
Sn

 such that, for any vm ∈ VN
m

∣∣
Sn

,

and, likewise, find uhm ∈ VN
m,h

∣∣
Sn

 such that, for any vhm ∈ VN
m,h

∣∣
Sn

,

with AcGdG(w, ζ )
∣∣
Sn

 defined as in (20) and

with w, ζ ∈ V ∪ Vh
m. Now, since VN

m,h

∣∣
Sn

⊂ VN
m

∣∣
Sn

, we subtract (27) from (26) after identi-
fying vm with vhm, to get the orthogonality relation

for any n = 1, . . . ,N . Identity (28) can now be generalized to an arbitrary function 
vhm ∈ VN

m,h by suitably summing through the slabs. This yields identity (25). �
Some notations are now instrumental. Let Rn

l  be the region of � defined by ⋃
x∈Kn

l
{x} × γx, with Kn

l  the generic subinterval of Thn, while we denote the interface 
between Rn

τ and Rn
τ+1 by ζ nτ , for τ = 1, . . . ,Mn − 1 and n = 1, . . . ,N , and with ζ n0 ≡ Ŵ0 

and ζ n
Mn

≡ Ŵ1. Finally, SRnl = Rn
l × In denotes the space–time prism associated with Rn

l , 

(25)

N�

n=1





�

Sn

∂ehm
∂t

vhm d� dt +
�

In

a
�
ehm, vhm

�
dt +

�

�

[ehm]n−1 vh,n−1,+
m d�





= 0.

(26)
AcGdG(um, vm)

∣∣
Sn

= FcGdG(vm)
∣∣
Sn
,

(27)AcGdG(u
h
m, vhm)

∣∣
Sn

= FcGdG(v
h
m)

∣∣
Sn
,

FcGdG(ζ )
∣∣
Sn

=
∫

Sn

f ζ d� dt +
∫

∂Qn
N

gζ ds dt,

(28)AcGdG(e
h
m, vhm)

∣∣
Sn

= 0,



Page 23 of 45Perotto and Zilio   
Adv. Model. and Simul. in Eng. Sci.  (2015) 2:25 

while LRnl = ∂Rn
l × In identifies the corresponding lateral surface. We introduce now the 

spatial and temporal local residuals. For a fixed time interval In and for any Rn
l , we con-

sider the internal residual

and the boundary residual

associated with the discrete HiMod solution uhm, with l = 1, . . . ,Mn and n = 1, . . . ,N  , 
where Lnl  is the restriction of the elliptic operator L in (1) to the prism SRnl  and [∂νuhm] is 
the jump of the conormal derivative of uhm across an edge of the skeleton En

h = {ζ nτ }
Mn−1

τ=1  . 
We consider now the temporal residual associated with uhm and with the time level tn

together with the initial error

Finally, we introduce the time projection operator Tn : VN
m

∣∣
Sn

→ H1
ŴD

(�), for 
n = 1, . . . ,N , such that

and the one-dimensional Clément quasi-interpolant I1 : L2(�1D) → R [38]. By defini-
tion, the projection error v − Tnv is orthogonal to any function c constant in time, so 
that

whereas the estimate

can be proved [16]. Notice that no constant is involved in this result. Concerning the 
Clément quasi-interpolant, the estimates

(29)rRnl =
(
f −

∂uhm
∂t

− Lnl u
h
m

)∣∣∣
SRn

l

jRnl
=





0 on (∂Rn
l ∩ ŴD)× In

2(g − ∂νu
h
m)|SRn

l
on (∂Rn

l ∩ ŴN )× In

−[∂νuhm] on (∂Rn
l ∩ En

h )× In

(30)Jn = [−uhm]n = (−uh,n,+m + uh,n,−m ),

(31)eh,0,−m = u0,−m − uh,0,−m .

Tnv =
1

kn

∫

In

v dt ∀v ∈ VN
m

∣∣
Sn
,

(32)

∫

In

(v − Tnv)c dt = 0 ∀v ∈ VN
m

∣∣
Sn
,

(33)�v − Tnv�L2(In) ≤ kn

∥∥∥
∂v

∂t

∥∥∥
L2(In)

∀v ∈ VN
m

∣∣
Sn

(34)
�v − I1(v)�L2(K ) ≤ C1hK |v|H1(K̃ )

(35)�v − I1(v)�L2(∂K ) ≤ C2h
1/2
K �v�

H1(K̃ )
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hold, for any v ∈ H1(�1D), where K denotes a generic interval of �1D, K̃  is the associated 
patch of elements, and with C1 and C2 constants depending on the relative size of the ele-
ments constituting K̃  [38].

We are now ready to prove the following result:

Proposition 3  Let � ⊂ R
2. Let us assume that the approximation uh,0,−m  of the initial 

datum coincide with the L2-projection PI1(u
0,−
m ) of u0,−m  onto the space VN

m,h

∣∣
I1

. Moreover, 
we choose zN ,+

m = 0. Then, the following estimate for the functional error |J (ehm)| holds

with C a constant depending on the interpolation constants in (34) and (35), on q and on 
maxn mn, where the residuals are defined by

with rRnl = TnrRnl , jRnl = TnjRnl , h
n
l  and kn the length of the generic subinterval Kn

l  and In, 
respectively for l = 1, . . . ,Mn and n = 1, . . . ,N , and with δ1,n the Kronecker symbol asso-
ciated with the first slab S1, while the weights are given by

with

the patch associated with the subinterval Kn
l , L(x) = meas(γx), z̃ nj,r and z̃ n,hj,r  the modal 

coefficients associated with the dual solution zm and with the corresponding discretiza-
tion zhm, respectively.

Proof We start from the dual problem (13) by choosing vm = ehm and we apply the 
orthogonality relation (25). It follows that, for any vhm ∈ VN

m,h,

(36)|J (ehm)| ≤ C

N∑

n=1

Mn∑

l=1

[
ρS
Rnl
(uhm) ωS

Rnl
(zm − zhm)+

2∑

i=1

ρTi
Rnl
(uhm) ωTi

Rnl
(zm − zhm)

]
,

ρS
Rnl
(uhm) = hnl �rRnl �L2(SRn

l
) +

1

2
(hnl )

1
2 �jRnl �L2(LRnl )

,

+
hnl

k
1
2
n

(�Jn−1�L2(Rnl ) + �eh,0,−m �L2(Rnl )δ1,n),

ρ
T1

Rnl
(uhm) = kn�rRnl − rRnl

�L2(SRn
l
) + k

1
2
n (�Jn−1�L2(Rnl ) + �eh,0,−m �L2(Rnl )δ1,n),

ρ
T2

Rnl
(uhm) =

kn

2
�jRnl − jRnl

�L2(LRn
l
),

ωS
Rnl
(zm − zhm) =

(
max
x∈Kn

l

L(x)

) 1
2 q∑

r=0

mn∑

j=1

�z̃ nj,r − z̃ n,hj,r �
H1(K̃ n

l )
�tr�L2(In)

ω
T1

Rnl
(zm − zhm) =

∥∥∥∥∥
∂(zm − zhm)

∂t

∥∥∥∥∥
L2(SRn

l
)

, ω
T2

Rnl
(zm − zhm) =

∥∥∥∥∥
∂(zm − zhm)

∂t

∥∥∥∥∥
L2(LRn

l
)

,

(37)
�Kn

l
=





K
n

1
∪ K

n

2
, for l = 1,

K
n

l−1
∪ K

n

l
∪ K

n

l+1
for l = 2, . . . ,Mn − 1

K
n

Mn−1
∪ K

n
Mn

for l = Mn,
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The identification of JcGdG(ehm) with J (ehm) follows from the requirement on the dual final 
datum. We add and subtract the value 

∫
�
eh,0,−m

(
zm − vhm

)0,+
d�, by exploiting in (31) the 

choice uh,0,−m = PI1(u
0,−
m ) for the primal initial datum. A manipulation of the jump con-

tributions combined with the definition of projection operator yields

After exploiting relation (26) with vm = zm − vhm, we integrate by parts on the regions Rn
l : 

Thanks to definitions (29) and (30), we have

We consider separately the four terms (I)–(IV). In particular, we choose vhm coinciding 
with zhm + Tn(I

1(zm − zhm)), with zhm the discrete HiMod approximation of the dual 

∣∣J (ehm)
∣∣ =

∣∣AcGdG(e
h
m, zm)

∣∣

=

∣∣∣∣∣

N∑

n=1

{∫

Sn

∂ehm
∂t

(zm − vhm) d�dt +
∫

In

a(ehm, zm − vhm) dt

−
∫

�

[ehm]n−1v h,n−1,+
m d�

}
+

N−1∑

i=1

∫

�

[ehm]izi,+m d�+
∫

�

e h,0,+m z0,+m d�

∣∣∣∣∣.

∣∣J (ehm)
∣∣ =

∣∣∣∣∣

N∑

n=1

{∫

Sn

∂ehm
∂t

(zm − vhm) d�dt +
∫

In

a(ehm, zm − vhm) dt

+
∫

�

[ehm]n−1(zm − vhm) n−1,+ d�

}
+

∫

�

eh,0,−m

(
zm − vhm

)0,+
d�

∣∣∣∣.

∣∣J (ehm)
∣∣ =

∣∣∣∣∣∣

N∑

n=1

Mn∑

l=1

{∫

In

[∫

Rnl

(
f −

∂uhm
∂t

− Lnl u
h
m

)
(zm − vhm) dRn

l

+
∫

∂Rnl ∩ŴN

g(zm − vhm) ds −
∫

∂Rnl

∂νu
h
m(zm − vhm) ds

]
dt

+
∫

Rnl

[−uhm]n−1(zm − vhm)n−1,+ dRn
l

}
+

M1∑

l̃=1

∫

R1
l̃

eh,0,−m

(
zm − vhm

)0,+
dR1

l̃

∣∣∣∣∣∣
.

(38)

��J (ehm)
�� ≤

N�

n=1

Mn�

l=1





������

�

SRn
l

rRnl
(zm − vhm) dRn

l dt

������
� �� �

(I)

+
1

2

������

�

LRn
l

jRnl
(zm − vhm) dsdt

������
� �� �

(II)

+

�����

�

Rnl

Jn−1(zm − vhm)n−1,+ dRn
l

�����
� �� �

(III)





+
M1�

�l=1

�����

�

R1�l

eh,0,−m

�
zm − vhm

�0,+
dR1

�l

�����
� �� �

(IV)

.
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solution. In particular, the Clément operator involves only the x-dependent modal coef-
ficients since it is one-dimensional. Notice that, since we estimate slabwise the terms 
(I)–(IV), all the functions in VN

m  and VN
m,h have to be meant restricted to In, for each 

n = 1, . . . ,N . Function vhm is extended to zero outside In when considered as a function 
of VN

m,h.
To exploit the projection and the interpolation estimates in (33)–(35), we consider the 

following splitting

Let us focus on term (I). Using the splitting above, the definition of the averaged residual 
rRnl  and of the projection operation Tn, and by combining results (32) and (33) with the 
Cauchy–Schwarz inequality, we obtain

We now consider separately the norm associated with the interpolation error. Let wm be 
a generic element in VN

m . By exploiting the modal expansion for wm and the orthonor-
mality of the modal basis, together with interpolation estimate (34), we obtain

(39)zm − vhm = [(zm − zhm)− Tn(zm − zhm)+ Tn(zm − zhm)− Tn(I
1(zm − zhm))].

(I) =

∣∣∣∣∣∣

∫

SRn
l

(
rRnl − rRnl

)[
zm − zhm − Tn(zm − zhm)

]
dRn

l dt

+
∫

Rnl

[
Tn

(
zm − zhm − I1(zm − zhm)

) ∫

In

rRnl dt

]
dRn

l

∣∣∣∣∣

≤
∫

Rnl

�rRnl − rRnl �L2(In)�zm − zhm − Tn(zm − zhm)�L2(In) dR
n
l

+

∣∣∣∣∣∣

∫

SRn
l

rRnl

(
zm − zhm − I1(zm − zhm)

)
dRn

l dt

∣∣∣∣∣∣

≤ kn�rRnl − rRnl �L2(SRn
l
)

∥∥∥∥∥
∂(zm − zhm)

∂t

∥∥∥∥∥
L2(SRn

l
)

+ �rRnl �L2(SRn
l
)�(zm − zhm − I1(zm − zhm)�L2(SRn

l
).

(40)

�wm − I1(wm)�2
L2(SRn

l
)

=
�

SRn
l





q�

r=0

mn�

j=1

trϕj,r(ψx(y))
�
�wn
j,r − I1(�wn

j,r)
�
(x)





2

dRn
l dt

=
q�

r=0

mn�

j=1

�

In

t2r
�

Kn
l

��

�γ1
ϕ2
j,r(�y)

��D−1(x,ψ−1
x (�y))

�� d�y
��

�wn
j,r(x)− I1(�wn

j,r)(x)
�2

dKn
l dt

=
q�

r=0

mn�

j=1

�

In

t2r max
x∈Kn

l

L(x)��wn
j,r − I1(�wn

j,r)�
2

L2(Kn
l )
dt

≤ C21 max
x∈Kn

l

L(x) (hnl )
2

q�

r=0

mn�

j=1

|�wn
j,r |

2

H1(�Kn
l )
�tr�2

L2(In)
,
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where D(x,ψ−1
x (ŷ)) = L(x)−1 denotes the Jacobian associated with the map ψx, and with 

γ̂1 the reference fiber for the two-dimensional setting. Via this estimate, we obtain the 
following bound for the term (I) in (38):

with C a constant depending on C1 in (34), q and mn. From now on, C denotes a constant 
whose value may change from line to line. Term (II) can be bounded analogously to con-
tribution (I), by restricting the computations on the lateral surface LRnl  of SRnl . This yields

Inequality (40) is replaced by a corresponding trace estimate, obtained essentially by 
invoking result (35) instead of (34), to have

for any wm ∈ VN
m . Combining this result with (42), we attain the following control for the 

second term in (38):

where constant C depends on C2 in (35), q and mn. We focus now on term (III) and, first 
of all, we apply again splitting (39):

Now, thanks to the mean value theorem, we remark that, for any function wm ∈ Vn
m,

(41)

(I) ≤ kn�rRnl − rRnl �L2(SRn
l
)

∥∥∥∥∥
∂(zm − zhm)

∂t

∥∥∥∥∥
L2(SRn

l
)

+ C�rRnl �L2(SRn
l
)h

n
l

(
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x∈Kn

l

L(x)

) 1
2 q∑

r=0

mn∑

j=1

|̃z nj,r − z̃ n,hj,r |
H1(K̃ n

l )
�tr�L2(In),

(42)

(II) ≤
kn

2
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�L2(LRn
l
)

∥∥∥∥∥
∂(zm − zhm)

∂t
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l
)

+
1

2
�jRnl �L2(LRnl )
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l
).
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[
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with t∗n ∈ (tn−1, tn), as well as equality �Jn−1�L2(SRn
l
) = k

1
2
n �Jn−1�L2(Rnl ) trivially holds. 

Moving from these results and by exploiting the definition of the projection operator 
Tn , the Cauchy–Schwarz inequality and estimate (40), we derive the final bound for (III):

with C as in (41). The last term in (38) can be controlled by repeating the same computa-
tions adopted for (III), by replacing the temporal residual Jn−1 with the initial error eh,0,−m  
and by focusing on the first time interval. We achieve the following estimate

with C as in (43). Now, result (36) follows by properly combining the individual estimates 
obtained for terms (I)–(IV).  �

Moving from (36), we propose as error estimator for the discretization contribution in 
(24) the value

so that the estimator for the global functional error, |J (εhm)|, coincides with 
ηh
mm+ = ηmm+ + ηh, with ηmm+ as in (19). In particular, since it is straightforward to dis-

tinguish in ηh the space from the time contribution given by

(III) ≤

������
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l
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l dt

������
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respectively, it is immediate to decompose ηh
mm+ into a modeling, a space and a time 

contribution, as

This splitting will be crucial with a view to the global adaptive procedure. Both the esti-
mators ηhS and ηhT share the structure characterizing a goal-oriented analysis, i.e., they 
coincide with the product of a residual depending on the primal solution and a weight 
related to the dual solution. In addition, we remark that, due to the HiMod procedure, 
the contribution along the x- and y-direction in the weights is split.

Some computational remarks on estimator ηh are now in order.
To make computable the weights, we replace the dual solution zm with a computable 

discrete counterpart z∗,hm . A possibility is to resort to the discrete enriched dual solu-
tion zh

m+. Nevertheless, since the temporal weights involve the time derivative of zm, we 
resort to a temporal recovery procedure yielding an approximation z∗,hm  that is at least 
linear in time. In particular, we follow the approach in [25, 26]. The dependence of the 
weights on the dual discretization error rather than on the dual solution is optimal in 
terms of convergence. Moreover, the time averaged residuals rRnl  and jRnl  make the esti-
mator more reliable since �w�L2(In) ≤ �w�L2(In) as well as �w − w�L2(In) ≤ �w�L2(In), for 
any function w ∈ L2(In). An extra care has to be devoted to the computation of the tem-
poral residual Jn−1 that combines solutions associated with two different meshes. We 
use an interpolation operator from the degrees of freedom of Thn onto the ones associ-
ated with Thn+1

. Finally, the analysis in Proposition 3 may be generalized to a 3D frame-
work provided that map ψx is properly chosen. In particular, the orthonormality of basis 
B may be exploited to derive estimates (40) and (43) only if D−1(x,ψ−1

x (ŷ)) does not 
depend on ŷ. This has to be explicitly demanded in a 3D setting while it always holds in 
a 2D framework.

Building the space–time HiMod lookup diagram

Goal of this section is to keep the global functional error below a fixed tolerance TOL via 
an automatic selection of the modal distribution and now also of the space–time mesh {(
Kn
l , In

)Mn

l=1

}N
n=1

.
Different strategies are followed in the literature to combine model with mesh adapta-

tion [11, 20, 21, 39]. The approach we propose iteratively alternates model with space–
time mesh adaptation, by advantageously exploiting the additive structure of the global 
error estimator (46). For this reason, we distinguish a model (TOL_MODEL) and a mesh 
(TOL_MESH) tolerances, such that TOL_MODEL + TOL_MESH = TOL. Then, we follow 
the procedure outlined in Fig. 12. We distinguish two main modules, ADMOD devoted to 
model adaptation and ADMESH dealing with the space–time mesh adaptation. The mod-
ule ADMOD exactly implements the five-stage adaptive procedure (S1)–(S5). Concerning 
the space–time mesh adaptation, the algorithm set by ADMESH is very straightforward, 
due to the one-dimensional nature of both the spatial and temporal meshes. In particu-
lar, while the space adaptation includes both mesh refinement (via bisection) and coars-
ening (gluing two consecutive intervals where ηhS is below tolerance), the time adaptive 
algorithm deals only with mesh refinement. This suggests to start the adaptive procedure 

(46)ηhmm+ = ηmm+ + ηhS + ηhT .
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on a sufficiently coarse time partition. Error equidistribution drives both the space and 
time adaptation. A maximum value constrains the number of iterations as well as tuning 
parameters δ1H (=0.5), δ2H (=1.5) limit the spatial mesh refinement and coarsening to the 
worst and to the best subintervals, respectively.

After a preliminary check on the accuracy of the global error estimator associated with 
the initial uniform modal distribution and the initial uniform space–time grid, model 
adaptation takes place till the accuracy TOL_MODEL is met by estimator ηMM+. Then, 
we check if model adaptation suffices to provide the global tolerance TOL without any 
space–time mesh adaptation. If not the module ADMESH is activated. In particular, we 
apply the spatial rather than temporal adaptation depending on which of the estimators 
ηhS, ηhT is the greatest one. When ηh < TOL_MESH, we come back to the initial check on 
the global accuracy.

A maximum number of iterations ensures the end of the whole adaptive procedure. 
We remark that each time the space–time partition is updated, a projection of the pri-
mal and dual solutions involved in the evaluation of the error estimator is demanded. As 
for the choice of the tolerances, we resort to a convex combination of the two tolerances, 
by selecting TOL_MODEL = θ TOL and TOL_MESH = (1− θ) TOL, with 0 ≤ θ ≤ 1 [11]. 
The parameter θ settles a relation between model and discretization error, in accordance 
with requirement (22).

Finally, we refer to the outcome of the whole adaptive algorithm as to the space–time 
HiMod lookup diagram. Some instances of this table are provided in the next section.

Numerical verification

In this section we assess the reliability of the global adaptive procedure.

Reliability of the space–time adaptive HiMod reduction procedure

The test case used to validate the modeling adaptive procedure for J = Jmean,T is now 
tackled by activating the mesh adaptation as well. We preserve the same values of the 

Fig. 12 Flowchart of the global adaptive procedure
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previous run for TOL, for the initial uniform modal indices m and m+, and for the initial 
space–time mesh. Then, we set θ = 0.5.

The adaptive procedure converges after 50 iterations, with 23 model iterations fol-
lowed by nine and eight adaptations of the spatial and of the temporal mesh, respectively 
and by ten additional model adaptations. The final outcome of the adaptive procedure 
is the HiMod lookup diagram in Fig. 13, top-left. A comparison between this table and 
the one in Fig. 7, left shows a similar trend for the modes, i.e., a gradual increment of 
the number of modes as we approach the final time and in correspondence with the 
source location and the downstream areas. Nevertheless, the combination of model with 
mesh adaptation reduces from 3 to 1 the number of modes used in the first phase of the 
test case (compare Fig. 7, center with Fig. 14, left). Concerning the spatial adaptation, a 
coarse mesh consisting of less than 20 subintervals and refined around x = 1.5 is pre-
dicted for the first time intervals. Then, this number increases with an abrupt variation 
in the last time interval when it reaches its maximum (see Fig. 14, center). The mono-
tone trend characterizing the model and the spatial mesh adaptation is qualitatively the 
same, exhibiting a refinement of the modes and of the finite element partition confined 
to the last time intervals, in accordance with the goal quantity.

On the contrary, the time adaptation yields a non monotone prediction for the time 
step distribution, as depicted in Fig. 14, right. Essentially we recognize two phases when 
the initial time step is considerably reduced, the first one around the initial time and 
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the second one just before time T. A strong refinement of the initial grid is recurrent in 
mesh adaptation and here it likely balances the initial rough modal and spatial discre-
tizations. The second refinement occurs when the control of the mean value becomes 
more relevant. At time t = 0.8, both the modal discretization and the space–time mesh 
are considerably refined to ensure the imposed tolerance. Probably, a complex interplay 
among the three discretizations takes place during the last time intervals, so that the 
severe demand on the time step can be then relaxed before reaching the final time.

Figure  13 gathers the distribution of the three error estimators on the space–time 
lookup diagram. The choice made for the tolerances leads to values of the same order of 
magnitude for ηMM+ and ηhS, while the error estimator associated with the time discre-
tization assumes larger values.

As shown in Fig. 15, the c[M(M)G(1)]-dG(0) HiMod solution associated with the dia-
gram in Fig. 13, top-left is qualitatively different from the one in Fig. 6, right. The adop-
tion of a single mode till t = 0.7 identifies a reduced solution which is initially very far 
from the full one. Nevertheless, the time steps predicted by the adaptive algorithm are 
enough to refine, during the last time intervals, the number of modes as well as the par-
tition along �1D so that solution uhM becomes fully comparable with the full one at the 
final time.

Assignment of Neumann boundary conditions

We challenge the whole adaptive procedure by modifying the boundary conditions in 
the previous test case. We assign a homogeneous Neumann condition on the whole 
boundary, except for the edge ŴD = {(0, y) : 0 ≤ y ≤ 1} where we preserve the homoge-
neous Dirichlet data. The new condition along the horizontal sides leads to select a new 
modal basis. After identifying the reference fiber γ̂1 with the interval [0, 1], we choose 
B = {ϕj(ŷ) =

√
2 cos(π jŷ)}j∈N.

Figure 16, left shows the cG(1)-dG(0) full solution at four different times, computed 
with FreeFem++ on a uniform unstructured mesh of 10,252 elements. In particu-
lar, the new flux-free configuration erases the horizontal dynamics in Fig.  6, pushing 
the pollutant to contaminate also the northeast and the southeast areas. If we set the 
global adaptive procedure to control Jmean,T, we do not expect much benefit from the 
modal basis since all the cosine functions have a null mean except ϕ0. Figures 17, top 
and 18, top-left collect some results of the global adaptive procedure for TOL_MODEL 
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Fig. 15 Convection–diffusion of a pollutant, control of Jmean,T , global adaptation: HiMod approximation uh
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at t = 0.1, 0.2, 0.8, 1 (top–bottom, left–right)
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= TOL_MESH = 5× 10−3. The adaptive algorithm stops after ten iterations. No model 
adaptation is performed and only function ϕ0 is switched on. On the contrary, both the 
spatial and the temporal meshes are adapted via seven and three iterations, respectively. 
The cardinality of the finite element mesh reaches a minimum in the middle of the inter-
val I, while, after an initial refinement, the time step increases to the initial value 0.1. 
Overall, the modal-space–time discretization is coarse as shown by the HiMod lookup 
diagram. The correspoding c[M(M)G(1)]-dG(0) HiMod solution is provided in Fig. 18, 
bottom for two different times. It is not surprising that uhM looses the essential features 
of the full solution due to the deficiency of the reduced model. Smaller values of TOL, of 
course, do not modify this trend.

A completely different prediction is performed by selecting the goal functional 
Jdown
mean,T = [meas(�down)]−1

∫
�down ζ(x, y, 1) d�

down, with �down = (0, 3)× (0, 0.5). The 
global tolerance TOL = 10−2 is now guaranteed after 30 model iterations, followed by 
seven spatial and nine temporal mesh adaptations, plus a final model adaptation. The 
space–time adaptive HiMod lookup diagram yielded by the adaptive procedure is shown 
in Fig. 18, top-right. The number of cosine functions is gradually increased to eight in 
correspondence with D. Additional modes are now demanded also upstream the source 
location in contrast to Fig. 13, top-left. The modal as well as the spatial mesh cardinal-
ity trend is very similar to the one in Fig. 14, whereas three refinements of the time step 
now occur (see Fig. 17, bottom). The additional refinement about in the middle of the 
time window corresponds to the phase when the pointwise HiMod solution starts to 
become similar to the full one. Indeed, as shown in Fig. 16, right solution uhM is initially 
far from the full one (and similar to the approximation in Fig. 18). Then, from t = 0.5, uhM 
becomes more and more similar to the full solution till, at the final time, the two solu-
tions are almost identical.
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Robustness of the space–time HiMod lookup diagram

We replicate the test performed for model adaptation, by checking the robustness of the 
space–time HiMod diagram with respect to possible variants of the reference problem. 
To this aim, we employ the space–time lookup diagram in Fig. 19, left tailored on the 
problem in Fig. 6 to build the HiMod approximation for the problem identified by the 
source term f3 in Fig. 9, bottom. Figure 20 compares the approximation thus obtained 
(left) with the HiMod approximation yielded by the global adaptive procedure (right), 
whose space–time HiMod lookup diagram is provided in Fig. 19, right. The agreement 
between the two solutions is satisfying. The adaptive procedure optimizes the compu-
tational costs by predicting a lower number of modes and a coarser mesh. Neverthe-
less, the possibility of exploiting a previously computed HiMod diagram thus avoiding 
the cost of the adaptive procedure is a sufficient motivation to exploit the precomputed 
diagram.
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Computational saving

Goal of this section is to verify the benefits due to the HiMod adaptation procedure in 
terms of CPU times2 with respect to a full and a uniform HiMod approximation. For the 
sake of simplicity, we consider a steady problem. We solve on the rectangular domain 
� = (0, 2π)× (0,π) the advection-diffusion problem −�u+ c · ∇u = f , with 
c = (10, 0)′, by assigning homogeneous Dirichlet data on ∂�\ŴN, with 
ŴN = {(2π , y) : 0 ≤ y ≤ π}, and a homogeneous Neumann data on ŴN . Then, we choose 
the source term such that the exact solution coincides with 
u(x, y) = sin y sin

(
0.01y(x3 − 12π2x)

)
 (see Fig.  21, top-left). We first investigate the 

advantages due to a uniform HiMod reduction with respect to a standard 2D finite ele-
ment approximation. We fix a number of dof around 190 and we compute the L2(�)-
norm of the error associated with the full approximation and with the uniform HiMod 
solution based on 17 modes and a uniform subdivision of the supporting fiber into 11 
subintervals (see Fig. 21, top-right). As Table 1 shows, we gain an order of accuracy via 
the HiMod reduction. A comparison in terms of CPU time is not reasonable in such a 
case since the HiMod code is not yet optimized. By resorting to a modal adaptivity and 
for a comparable number of dof, we obtain a HiMod approximation more accurate with 
respect to the uniform one (compare the contour plots in Fig. 21, top-right and bottom-
left and the values in Table  1) with a similar CPU time (in s). The modal distribution 
yielded by the adaptive procedure is shown in Fig. 22, left. A number of modes less than 

2 All the experiments have been performed using Matlab 2011a 64-bit on a Lenovo ThinkPad T430 equipped with a 
Intel Core i5 3320M 2x 2.6–3.3 GHz processor and 4 GB of RAM.
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17 is demanded on the whole domain except for the last three nodes. Concerning the 
CPU time, we quantify only the seconds demanded to build the HiMod approximation 
from the predicted modal distribution, since we have verified the robustness of the 
HiMod diagrams.

We now add the adaptivity of the spatial mesh. Table 2 compares the accuracy of a full 
with a HiMod approximation for about the same number of dof. We adopt two differ-
ent tolerances to drive the global adaptive procedure. The corresponding HiMod dia-
grams are shown in Fig. 22, center and right. The accuracy characterizing the adapted 
HiMod solution is higher in both the cases and the computational times remain con-
tained. Figure  21, bottom-right shows the HiMod approximation characterized by 
622 dof. The maximum number of modes predicted by the adaptive procedure is still 
17 but it is evident that the employment of an adapted mesh improves the reliability of 
the reduced solution as it is qualitatively evident by comparing the two contourplots in 
Fig. 21, bottom.

Validation of the HiMod reduction
This is a first attempt of validation for the HiMod reduction procedure. For this pur-
pose, we focus on the experimental and modeling analysis provided in [27] dealing with 
a reactive transport in homogeneous porous media.

We consider the experimental setting outlined in Fig.  23. It consists of a rec-
tangular laboratory flow cell of dimension 2.5  dm ×1  dm ×0.08  dm along the x-, 
y- and z-direction, respectively. The cell is filled with a porous media with meas-
ured porosity equal to 0.375 and it is initially saturated with an aqueous solu-
tion. Segment Ŵinlet = {(0, y, z) : 0.5 ≤ y ≤ 1, 0 ≤ z ≤ 0.08} coincides with an inlet 
boundary, where a constant concentration, modeling the injection of a reactive 
component, is assigned. Simultaneously, a flow rate of 12  ml/h is set at the outlet 
Ŵoutlet = {(2.5, y, z) : 0 ≤ y ≤ 1, 0 ≤ z ≤ 0.08}, resulting in an average water velocity of 
about 0.404  dm/h at the equilibrium. We remark that the set-up of the experiment is 
designed to have a pseudo-1D flow, parallel to the x-axis. Finally, ten sampling ports are 
located in the cell, to collect measurements of the reactive fluid concentration. Sampling 

Table 1 Computational saving check: comparison between  full and  HiMod approxima-
tions for about the same number of dof

Full Uniform HiMod Model adaptation

dof Error dof Error CPU time dof Error CPU time

190 0.506 187 0.084 0.453 193 0.045 0.407

Table 2 Computational saving check: comparison between  full and  HiMod approxima-
tions for about the same number of dof

Full Model + mesh adaptation

dof Error dof Error CPU time

630 0.148 622 0.027 1.321

989 0.091 966 0.018 2.035
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is performed four times during each experiment. The concentration measurements rep-
resent the data we aim at matching via a HiMod reduced modeling in the same spirit of 
the analysis in [27]. The reactive transport experiment is conducted for 60 h, though a 
stationary state is reached already after 15 h from the beginning of the experiment, so 
that we restrict the time window of investigation to (0, 30).

For all the further experimental data we refer to [27] since a greater level of detail on 
the experimental setting is beyond the purposes of the paper.

From a modeling viewpoint, since the setting is invariant along the z-axis, we can 
simulate the experiment in an effective way as a two-dimensional flow. In particular, we 
adopt the unsteady equation

with � = (0, 2.5)× (0, 1), to model the process of advection and diffusion of the reactive 
component. Notice that (47) represents a simplified version of the original model in [27]. 
A preliminary tuning of the model parameters has been carried out to make the solution 
of the two models as close as possible in the considered experimental context. In more 
detail, we adopt a constant diffusive coefficient whose value is set, via a trial and error 
procedure, to replicate the action of the diffusive tensor used in [27]. Moreover, follow-
ing [27], we select the value for the flux velocity by solving an additional Darcy problem.

Figure  24, left shows the full solution computed with FreeFem++ on a uniform 
unstructured mesh of 13,078 triangles at t = 5, 11, 15, 19 h. The reactive fluid gradually 
spreads into the flow cell.

We now test the HiMod reduction procedure. We first resort to a uniform HiMod 
approximation and we use 20 modal functions to describe the transverse dynamics. We 
adopt a uniform space–time discretization along �1D and (0,  30), with step h = 0.05 
and k = 0.5, respectively. In Fig. 24, right we gather the HiMod solution uh20 at t = 5, 11, 
15, 19 h. The reliability of the reduced solution is satisfactory, despite the considerable 

(47)





∂u

∂t
(x, y, t)− 0.00085�u(x, y, t)+ 0.404

∂u

∂x
(x, y, t) = 0 (x, y, t) ∈ �× (0, 30)

∂u

∂y
(x, 0, t) =

∂u

∂y
(x, 1, t) = 0 0 ≤ x < 2.5, t ∈ (0, 30)

u(0, y, t) = 0 0 ≤ y < 0.5, t ∈ (0, 30)

u(0, y, t) = 0.045 0.5 ≤ y < 1, t ∈ (0, 30)

∂u

∂x
(3, y, t) = 0 0 ≤ y < 1, t ∈ (0, 30)

u(x, y, 0) = 0 (x, y) ∈ �,

A3
A2
A1

A4

C1
C2
C3

D1
D2
D3

Fig. 23 Diagram of the experimental configuration used for the validation
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reduction of the (spatial) dof (1000 vs 13,078). Now, we focus on the actual validation 
phase. For this purpose, in Fig. 25, we compare the measured (circle symbols) with the 
simulated concentrations (diamond symbols for the uniform HiMod approximation and 
star symbols for the 2D finite element discretization) in correspondence with eight of 
the ten sampling ports in Fig.  23. We refer only to one of the two sets of data availa-
ble in [27]. Qualitatively, at each port, we recognize a first phase of about 8 h when the 
chemical breakthrough, characterized by a sigmoid shape curve, occurs; successively, the 
steady state is reached and each curve exhibits a plateau. The agreement between simu-
lated and measured concentrations is good and comparable with the one of Fig. 3 in [27]. 
In particular, the full approximation improves the tracking of the data in correspondence 
with port A4. On the contrary, the prediction at ports A3, C3, D3 is more reliable when 
resorting to the HiMod approximation, despite the reduced number of dof.

As last test, we assess the reliability of the modeling adaptive procedure in a valida-
tion context. We aim at evaluating the reactive fluid concentration at t̃ = 15 h via the 
c[M(M)G(1)]-dG(0) HiMod solution predicted by the modeling adaptive procedure. We 
consequently choose functional J as J15(ζ ) = [meas(�)]−1

∫
�
ζ(x, y, 15) d�. The expec-

tation is to obtain a value for the concentration similar to the one provided by uh20 and 
not so far from the experimental data. We set the adaptive algorithm with TOL = 10−3, 
m = 1, m+ = 3. Concerning the space–time discretization, we fix a uniform space–time 
subdivision of �1D × I, with h = 0.05 and k = 0.5. Finally, we reduce the time window to 
(0, 15) due to the stationary regime of the flow in the interval (15, 30).
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Fig. 24 Reactive transport in porous media: full solution (left) and uniform HiMod approximation uh20 (right) at 
t = 5, 11, 15, 19 h (top–bottom)
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Fig. 25 Reactive fluid concentrations at the sampling ports A1, A2, A3, A4, C1, C3, D1, D3 (top–bottom, left–
right): measured (circle symbols) and simulated concentrations via the full finite element discretization (star 
symbols), uh20 (diamond symbols) and uh

M
 (square symbols)
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The modeling adaptive algorithm converges after 599 iterations and provides the 
HiMod lookup diagram in Fig. 26, left characterized by the space–time distribution of 
ηMM+ in Fig. 26, right. Both the diagrams corroborate the complexity of this experiment. 
In contrast to a more localized phenomenon such as the convection–diffusion of a pol-
lutant in the previous sections, the refinement of the number of modes now gradually 
involves the whole �1D as we approach time t̃ . The non uniform trend of the estimator 
highlights the demanding work performed by the adaptive procedure to guarantee toler-
ance TOL. Despite these difficulties, the maximum number of modal functions required 
by the lookup diagram is 12 to be associated with the area closer to the inlet and with the 
time intervals immediately preceding the steady state. The pointwise HiMod approxima-
tion uhM generated by the online phase is depicted in Fig. 27, for t = 5, 7, 11, 15 h. The 
trend of the adapted solution becomes more and more similar to the one in Fig. 24, as t 
approaches t̃ .

Finally, we examine the concentration values predicted by the adapted HiMod solution 
at t̃ = 15 h in correspondence with the eight ports in Fig. 25 (see the square symbols). It 
is evident the good matching of the simulated concentrations between uh20 and uhM, with 
a slight different prediction at ports C3 and D3.
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Conclusions and perspectives
We have successfully extended the pointwise HiMod approach to an unsteady setting, 
by formalizing the so-called c[M(M)G(s)]-dG(q) HiMod reduction procedure. The goal-
oriented a posteriori error analysis has allowed us to devise an automatic algorithm to 
select the reduced model, that guarantees the desired accuracy on the functional of inter-
est. The results yielded by the global adaptive procedure are very satisfying, despite the 
complex interplay among the three adaptations. The sensitivity of the predicted HiMod 
reduced model with respect to the goal quantity and the assigned boundary conditions 
has been correctly validated. We have also verified the robustness of the HiMod lookup 
diagrams, by showing that, although strictly tailored to the problem at hand, they can be 
employed to deal with certain variants of such a problem. The computational advantages 
guaranteed by a HiMod reduction have been checked as well. Finally, the preliminary 
validation results in the last section are absolutely promising with a view to an effective 
application of HiMod to practical problems.

Prospective extensions of HiMod reduction include the approximation of nonlinear as 
well as 3D problems. This will be a crucial effort with a view to our last goal, i.e., to use 
HiMod reduction for the simulation of the blood flow in the arterial system.
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