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1. Introduction

Spherical symmetry is a useful test-bed for open problems of astrophysical interest in General
Relativity. Among them, a very relevant one is that of the final state of gravitational collapse
and, therefore, of the validity of a ‘Cosmic Censorship’ hypothesis. In particular, the study
of spherically symmetric perfect fluid spacetimes is a recurrent topic in relativistic literature,
and the final state of the gravitational collapse of spherically symmetric isotropic fluids is still
a matter of debate. What makes isotropic fluids’ collapse one of the most intriguing problem
in gravitational collapse theory is that, on one side, these fluids are useful to model stars in
astrophysics and, on the other, that they are a obvious, physically natural generalization of the
so-called Lemaitre–Tolman–Bondi (LTB) dust solutions. LTB models play a distinct role in
cosmology as perturbed Friedmann models; in such a framework the effects of pressure become
relevant when the models are extended back in time, and inhomogeneous perturbations of the
radiation-dominated universe are considered [15, 16]. From the analytical point of view, the
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LTB models are one of the few known-in-details families of solutions dynamically collapsing
to a singularity, and are long known to form both black holes and naked singularities in
dependance from the choice of the initial data (the first example was discovered in [7], and
the complete analysis is due to [21]). A class of anisotropic perturbations, whose causal
behavior strongly resembles that of LTB models has been studied in [10]. On the other side,
the situation for isotropic fluids is quite less clear; some results are actually known from
numerical relativity, in particular for barotropic perfect fluids with linear equation of state:
in the spirit of a pioneering work by Choptuik [6] on the gravitational collapse of a scalar
field—yet today one of the cornerstones in this line of research—these analyses were basically
focused to study a one-parameter family of solutions, aiming to detect a critical value of the
parameter separating a branch of solutions with energy dispersion from another branch leading
to a black hole. The solution related to that critical parameter is usually a naked singularity
(see [12] and references therein). Naked singularities also occur in self-similar models, as
shown by Ori and Piran [28] and Harada [13]. Choptuik himself has worked with Neilsen
[26] to the ‘ultrarelativistic’ case of pressure close to energy density, as well as Snajdr [30].
Other contributions on the subject were [9, 23]. Unfortunately, outside the realm of numerical
relativity, little is known about the geometry of these spacetimes: whether a singularity is
developed, and if that is the case, what is the causal structure of the solution.

The main difficulty in approaching the perfect fluid collapse is, of course, that few exact
solutions are known [2, 3]. So motivated, we developed a conditioned approach, which allows
the analysis of perfect fluid spacetimes for general equations of state provided that certain
regularity assumptions are satisfied by the (generally unknown) solution. These assumptions
essentially require Taylor-expandability of the solution in a special system of coordinates and
allow for a quite general picture of barotropic perfect fluids (with pressure proportional to
energy density) as well as for some other cases of interest. The qualitative picture emerging
from these models is quite different from the LTB case. In particular, a crucial role is played
by the pressure in the neighborhood of the singular boundary in order to determine the causal
structure of the spacetime, as already hinted at in [19], where homogeneous dust collapse is
perturbed adding a small amount of pressure.

2. Isotropic fluids

Let us consider the general spherical line element in comoving coordinates

ds2 = −e2ν(t,r) dt2 + e2λ(t,r) dr2 + R(t, r)2 d�2. (1)

Gravity is coupled with a perfect fluid matter tensor of the form

T μ
ν = 1

8π
diag{−ε(t, r), p(t, r), p(t, r), p(t, r)}. (2)

Here ν, λ and R are all functions of (t, r) only, such as the energy density ε and the pressure p.
Denoting by ḟ and f ′ the partial derivatives with respect to t and r respectively, and introducing
the so-called Misner–Sharp mass function

m = R

2
(1 − (R′e−λ)2 + (Ṙ e−ν )2), (3)

a complete set of Einstein equations is given by

2m′ = εR2R′, (4a)

2ṁ = −pR2Ṙ, (4b)

Ṙ′ = λ̇R′ + ν ′Ṙ, (4c)

p′ = −(ε + p)ν ′. (4d)



As a consequence of the above equations, the equation of motion

ε̇ = −
(

2Ṙ

R
+ λ̇

)
(ε + p)

also holds.
For obvious physical reasons, the above system is underdetermined until a further physical

condition—an equation of state or a kinematic condition on the fluid’s motion—has been
imposed. The most natural choice to close the system is that of the so-called barotropic
equation of state:

p = p(ε). (5)

Once the equation (5) has been prescribed, initial data for the system may be given assigning
R at initial time. Without loss of generality we will take

R(0, r) = r (6a)

in such a way that an independent set of initial data, for example, is

m(0, r) = μ0(r), (6b)

Ṙ(0, r) = ζ (r). (6c)

Remark 2.1. It is easy to see that all the other initial data are determined by (6a)–(6c). Indeed,
we get ε(0, r) from (4a) and hence p(0, r) from (5) and ṁ(0, r) from (4b). From (4d) we
obtain ν′(0, r) which can be integrated to get ν(0, r) since ν(0, 0) can be set to zero up to
time rescaling. Equations (3) and (4c) give λ(0, r) and λ̇(0, r) respectively. Deriving (4a) with
respect to time we get ε̇(0, r) and ṗ(0, r) again from (5), which can be used in (4d) derived
with respect to t to get ν̇(0, r).

In the following we will be interested in the study of solutions to equations (4a)–(4c)
modeling a star undergoing complete collapse until a singularity is possibly developed. To
describe this situation correctly, a number of physical reasonability conditions must be satisfied.
First of all, the dominant energy condition (DEC) must hold:

ε � 0, |p| � ε. (7)

Then, we require that there exists an initial time (say, t = 0) at which the solution is regular,
so that the singularities will be a sincere outcome of the collapse. In particular, the energy
density must be finite and outwards decreasing:

lim
r→0+

ε(0, r) ∈ R,
d

dr
ε(0, r) � 0. (8)

This implies, using (4a) and (6a), that the mass function μ0(r) at initial time (see (6b)) can be
chosen to be a regular function at r = 0 such that

μ0(r) = 1
2 m0r3 + o(r3). (9)

Some conditions on the metric must also be imposed, to prevent a bad behavior of the center
of symmetry due to the coordinate choice, so that the polar ‘singularity’ r = 0 can be removed
using a local Cartesian frame [22]:

R(t, 0) = 0, R′(t, 0) = eλ(t, 0). (10)

Finally, we also ask for the solution to be free from shell–crossing singularities. A sufficient
condition, that we will required, is given by

R(t, r) > 0 ⇒ R′(t, r) > 0, (11)



that ensures that shell crossing singularities will not appear prior to shell-focusing singularities,
namely those due to the vanishing of R(t, r). Shell-crossing singularities usually correspond
to Tipler-weak divergences of the curvature, though in some cases the spacetime extension
problem beyond them has been discussed [25]. It must also be observed that (11) is only
sufficient, since in principle R′ may vanish in such a way that m′/R′ remains finite, see (4a),
and then no shell-crossing singularity actually takes place [20].

To model collapse dynamics, we shall always require Ṙ � 0, which results in choosing
the negative sign from extracting the square root from (3):

Ṙ = −e−ν

√
2m

R
− 1 + (R′e−λ)2. (12)

In order to obtain the model of a collapsing compact object, a matching with an external space
should be performed at a boundary surface, which in comoving coordinates can be always
taken as {r = rb = const.}. Using Israel–Darmois junction condition, from (4b) it follows
easily that a necessary and sufficient condition to match the solution with a Schwarzschild
exterior is that the pressure p vanish on the matching surface. A milder condition which
also fufils physical requirements is to ask for a matching to a radiating metric such as the
generalized Vaidya spacetime, as done for instance in [5].

3. The qualitative analysis

To approach the problem of the singularities without knowing explicitly the metric it is
convenient to use a system of coordinates where the singularity curve is mapped to a ‘point’.
A relatively suitable system [10, 11] is that of the area radius coordinates (r, R, θ, φ) where
the shell focusing singularity is mapped into R = 0. This proves to be a good choice for the
study of charged dust [27] and also for vanishing radial stress models [14, 22]. However, in
view of (14), this choice has the disadvantage of mapping the center of symmetry of the star
(r = 0) in the point (R = r = 0) regardless of whether the center is singular or not. This
suggests a slight variant of the above choice, first used in [29]: coordinates (r, a, θ, φ) where

a = R(t, r)

r
.

In this way the Cauchy surface of initial data t = 0 corresponds to the set a = 1, while a = 0
is the singularity curve. The price is that one has to be careful because it is not guaranteed that
all the values in the interval {0 < a < 1} are dynamically admissible. This can be inferred
from the study of the sign of the quantity under square root in (12), which now is a function
of (r, a). The region where this quantity becomes negative cannot, of course, be reached.
Moreover, also when the whole strip {0 < a < 1} is allowed, it must always be controlled that
the singularity is developed in a finite amount of comoving time.

To write the system of Einstein equations in this new setting we will introduce the
following functions of (r, a):

γ = p

ε
, B = eλ, F = eν, Y = R′e−λ. (13)

Moreover, recalling (9), we will use the function

M(r, a) = 2m

r3
(14)

in place of Misner–Sharp mass (3). Finally, we also make the positions

w = a′, z = ȧ, (15)



that will be used to trace back information on the comoving system from the current framework.
In this way equations (4a) and (4b) become

3M + Mrr + wrMa − εa2(wr + a) = 0, (16a)

Ma + γ εa2 = 0, (16b)

(where subscripts a and r stand for partial derivatives) whereas equations (4c) and (4d) take
the form

(k + 1)ε(wr + a)Ya + Y [(kε)r + w(kε)a]r = 0, (16c)

r(Fr + wFa)Y − (wr + a)YaF = 0, (16d)

where z and w are given by

z = −F

(
M

a
+ Y 2 − 1

r2

)1/2

, (16e)

w = Y B − a

r
. (16f)

Finally, an equation is needed to express the compatibility property between w and z introduced
in (15), i.e. ẇ = z′, that in the (r, a) system reads as

zr + wza − zwa = 0. (16g)

Remark 3.1. Equations (16a)–(16g) is a system of PDE in the unknown B, F, Y, ε, M under
the functional dependences (16e)–(16f), and can be closed as before with the prescription of
an equation of state

γ = γ (ε). (17)

A set of independent initial data at a = 1 can be proved—similarly to remark 2.1—to be
M(r, 1) and B(r, 1), whereas condition (6a), using (16f), states that

w(r, 1) = 0. (18)

Remark 3.2. Equation (7) states that the 1-form

1

z
(da − w dr)

is an exact differential. The comoving time t(r, a) is its integral, thus given by

t(r, a) = t(0, 1) −
∫ r

0

w(s, 1)

z(s, 1)
ds +

∫ a

1

1

z(r, ā)
dā. (19)

and so, choosing t(0, 1) = 0 and using (18) we get

t(r, a) = −
∫ 1

a

1

z(r, ā)
dā. (20)

Example 3.3. As a particular case here we briefly recall the well known dust model, a trivial
isotropic model since pressure vanishes (p = 0). Equation (4b) implies m = m(r) and in
comoving coordinates the metric is given by

−dt2 + R′2

1 + f (r)
dr2 + R2 d�2,



where

Ṙ = −
√

2m(r)

R
+ f (r),

and f (r) is a free initial data function which is equivalent to ζ (r) (see (6c)). Let us consider
for the sake of simplicity the so-called marginally bound case, corresponding to the choice

f (r) ≡ 0. Then R′ = eλ and Ṙ = −
√

2m(r)
R , from which

R(t, r) = r(1 − k(r)t)2/3, with k(r) = 3

2

√
2m(r)

r3
.

Let us rewrite this model using (r, a) coordinates. We have F(r, a) = Y (r, a) = 1, and
M = 4

9 k(r)2. Consequently,

w(r, a) = −2k′(r)
3k(r)

(
1√
a

− a

)
,

z(r, a) = −2k(r)

3
√

a
,

B(r, a) = a

(
1 − 2rk′(r)

3k(r)

(
1

a
√

a
− 1

))
,

and ε(r, a) can be obtained from (16a).

Notice that an interesting property of the dust solutions above, which is actually the reason
that allowed previous studies to gain a complete picture of the nature of their singularities, is
that all the relevant quantities can be expanded in power series with respect to r around r = 0
if so does the initial datum k(r) (which of course is non-vanishing in r = 0). This property
inspires the work we are carrying out here, since we are now going to assume this behavior
on the general solution to equations (16a)–(16g). Accordingly, we set.

Definition 3.4. A solution is said to be r-expandable if B, F, Y, ε and M are regular up to
r = 0 with respect to the variable r. In other words, for n sufficiently large, each of them can
be written in the form

G(r, a) =
n∑

i=0

Gi(a)ri + o(rn), ∀r ∈ [0, rb], ∀a ∈]0, 1]

where o(r) above and hereafter must clearly be intended as a function of both (r, a).

For such solutions the model equations can be expanded with respect to r, in order to
obtain relations between the Taylor coefficients. Some of these relations are fixed directly by
the regularity conditions. First of all, local flatness means that R′e−λ → 1 (that is B → 1)
approaching r = 0, a > 0. Moreover, up to time reparameterization, we can suppose ν → 1
as r → 0, a > 0. All these facts generate conditions F0(a) = B0(a) = 1. Now, the integral in
(20) evaluated in a = 0 reads∫ 1

0

√
r

2Y1(ā)
+ o(r) dā.

If this integral exists and is finite, then its limit as r → 0 must be zero, but this in turn
would mean that the center is already singular at the initial comoving time. Thus, physical
reasonability demands

Y1(a) = 0. (21)



It must also be remarked that under the above assumptions the function w(r, a) can be
developed with respect to r and one has

w(r, v) = B0(a) − a

r
+ B1(a) + o(1).

Actually w is not one of the unknown functions for which we require Taylor expandability.
However, one would like to have w(r, a) continuous up to the regular center r = 0: indeed,
we already know (see (18)) that w(r, 1) = 0, in order to be able to integrate the 1-form dt and
calculate t(r, a) along the path suggested in integral (19). But in principle, one should be able
to perform integration along the path {(0, ā) : v � ā � 1} ∪ {(s, a) : 0 � s � r}, because
otherwise the time t = 0 would be a sort of ‘privileged’ time for the central shell, which is
manifestly unphysical. For this reason we will consider the quite natural cases where w(r, a)

is continuous up to the regular center, and then B0(a) = a. This also implies, developing (2)
and (5) in r up to order 1 and 0 respectively, we get F1(a) = 0 and

ε0(a) = 3M0(a)

a3
. (22)

Under the above assumptions, the field equations read as follows:(
4M1(a) − a3ε1(a) + B1(a)

(
−3M0(a)

a
+ M′

0(a)

))
r + o(r) = 0, (23)

−aM′
1(a) + B1(a)(2M′

0(a) − aM′′
0 (a))

a3
r + o(r) = 0, (24)

(2F2(a) − aY ′
2(a))r2 + o(r2) = 0, (25)

1

2
a−2

(
2Y2(a) + M0(a)

a

)− 1
2

[−a(M1(a) + 2aY3(a) − 2(M0(a) + 2aY2(a))B′
1(a))

+ B1(a)(M0(a) − a(M′
0(a) + 2aY ′

2(a)))] + o(1) = 0. (26)

One could at this point let the Mi’s free, together with Y2. On the other hand, as (24) suggest,
finding B1 from M0 and M1 is possible only under the condition that

(2M′
0(a) − aM′′

0 (a)) 
= 0. (27)

As a consequence, in order not to lose generality, we prefer to let B1(a) free and find the
expression for M1(a):

M1(a) = m1 +
∫ 1

a
τ−1B1(τ )(τM′′

0 (τ ) − 2M′
0(τ )) dτ. (28)

Then, through equation (23) we get ε1(a), equation (25) yields F2(a), and (26) gives Y3(a).
This scheme can be iterated, in such a way that:

(1) first, the leading term of (16a) at nth order gives the relation M′
n(a) = fn, where fn is a

regular function depending on M0,Y2, B1, . . . , Bn and possibly their derivatives, and then
can be integrated to find Mn(a);

(2) the leading term of (2) at nth order gives an algebraic relation εn(a) = gn algebraically,
where gn is a regular function depending on M0,Y2, B1, . . . , Bn and possibly their
derivatives;

(3) same as above, (5) leading term at (n+1)th order gives Fn+1(a) as functionally dependent
on M0,Y2, B1, . . . , Bn and possibly their derivatives, through an algebraic relation;



(4) finally, (7) at (n − 1)th order gives the functional dependence of Yn+2(a) in terms of
M0,Y2, B1, . . . , Bn and possibly their derivatives.

With the above iterative scheme, the coefficients of the solutions can be determined up
the to freedom in choosing M0(a), Y2(a), Bi(a) and Mi(1) (with i � 1). Mi(1) is the initial
condition coming from step (3) above which is the only one involving the integration of a
differential equation. Of course, specifying also the equation of state (17) allows us to choose
M0 and all coefficients Bi(a) (up to their initial data Bi(1)) in such a way that the only freedom
left is in the choice of the function Y2(a). It is this function that encodes all the degrees of
freedom which are left, pertaining to the initial data and to the matching with an external
solution or the imposition of asymptotic behavior leading to local flatness at space infinity.
Indeed, as we will see in the examples below, M(r, 1) and B(r, 1) are given in terms of Y2(a)

and all its derivatives evaluated in a = 1. Interestingly enough, the initial data in (18) impose
a constraint that results in the vanishing of all odd order coefficients; the matching conditions
with generalized Vaydia spacetime instead do not add constraints, since the resulting mass of
the exterior solution is fixed by the internal one. We stress however that, of course, the method
does not guarantee a priori convergence of the series, that would require a priori estimates on
the remainder.

Example 3.5. The dust models recalled in 3.3 are of course the first example of a class fulfilling
the above assumptions. A second relevant example is that of shearfree perfect fluids (see e.g.
[2–4]). With the notations used here the shearfree conditions can be written as

B(r, a) = h(r)a

with h(r) an arbitrary function. For the sake of simplicity we consider here only the
(homogeneous) case h(r) = 1. In this way all the arbitrary functions Bi(a) are set to zero for
i � 1, the initial conditions are constrained to satisfy Mi(1) = Y2(1) = 0 (i � 1), and this
completely sets all arbitrary functions except M0(a) and Y2(a). Their choice determines the
leading term of energy and pressure near the center, indeed:

ε(r, a) = 3M0(a)

a3
− 3r2Y2(a)(aM′

0(a) − 3M0(a))

2a3
+ o(r2),

p(r, a) = −M′
0(a)

a2
+ r2(Y2(a)(aM′′

0 (a) − 2M′
0(a)) + (aM′

0(a) − 3M0(a))Y ′
2(a))

2a2
+ o(r2).

4. The nature of the singularities

In the present section we study the formation and nature of singularities for some physically
interesting models of isotropic fluids under the hypothesis of r-expandability. In particular, we
want to investigate the correlation between models which may generically give rise to naked
singularities and the behavior of the pressure in the late stage of the collapse, starting from a
situation where this quantity diverges together with the energy density.

The singularity forms only if the (comoving) time of collapse is finite. Recalling (21), the
function t(r, a) (20) becomes

t(r, a) =
∫ 1

a

1√
2Y2(ā) + M0(ā)

ā

+ o(1) dā

and then supposing that (20) exists finite, the time of collapse of the central shell is given by

ts(0) :=
∫ 1

0

1√
2Y2(ā) + M0(ā)

ā

dā. (29)



In all the examples that we are going to study, we will be concerned with those collapsing
models where the free function Y2(a) is regular up to a = 0. We stress that this condition,
although very reasonable, does not include all the physically relevant cases, as the time of
collapse can of course be finite also with a diverging behavior of Y2(a). The analysis of such
cases is deferred to a future work.

To study the behavior of the central singularity, we will use a method already successfully
exploited for other models [10, 11, 24]. The method consists in investigating the existence of
radial null geodesic by studying the properties of the differential equation satisfied by these
geodesics, which reads

da

dr
= �(r, a) =: z(r, a)

B(r, a)

F(r, a)
+ w(r, a). (30)

Of course, the right-hand side is not defined at r = a = 0 and then standard ODE theory
does not apply. However, a remarkable property can be proved that involves the apparent
horizon curve ah(r). The apparent horizon is the boundary of the region of trapped surfaces; in
spherical symmetry it is the curve implicitly defined by the equation R = 2m (see for instance
[1]). It can be proved that ah(r) is a is a supersolution of (30)—i.e. dah

dr � �(r, ah(r)). Then
if a subsolution a∗(r) exists such that a∗(0) = 0 and a∗(r) > ah(r) for r > 0, comparison
arguments in ODE theory ensure the existence of infinite light rays emerging from the central
singularity and ‘living’ in the untrapped region. We refer the reader to [11, Theorem 2.5] for
more details about the use of supersolutions and subsolutions to find solutions to (30).

Remark 4.1. In principle, one may argue that the singularities emerging from this approach
are only locally naked. As a matter of fact, however, prolongation of the metrics in such a way
that the naked singularity is visible to far-away observers is usually possible [1, 18].

4.1. Linear equations of state

The first model we consider is that of a linear pressure–density relationship p(ε) = βε, where
the constant β ∈ [−1, 1] to comply with the DEC (7). The DEC thus allows for the cases
β > 0 - ‘standard’ barotropic fluids—but also solutions with negative pressures (tensions) up
to the model generating anti-de Sitter space, for which β = −1.

The equation of state fixes

M0(a) = m0a−3β. (31)

Moreover, we have for any n � 1 a condition expressing the vanishing of the nth order
coefficient of k(r, v). If β is not zero (β = 0 corresponds to a dust) this results in fixing
completely all the Bn’s up to the initial data, that are completely determined by the only
function left to be chosen (i.e., Y2(a)). Indeed, M(r, 1) and B(r, 1) (which form a set of
independent data for this problem, see remark 3.1) are given by

M(r, 1) = m0 − 3((1 + β)m0Y ′
2(1))r2

10β
− 3

560β2
((1 + β)m0(m0(9β2Y ′

2(1)

+7Y ′′
2 (1) − 3β(5Y ′

2(1) + 3Y ′′
2 (1)) + 2Y2

(3)(1)) + 2(Y ′
2(1)(−(4 + 13β)Y ′

2(1)

+Y ′′
2 (1)) + Y2(1)((4 − 22β)Y ′

2(1)+(8 − 6β)Y ′′
2 (1)+2Y2

(3)(1)))))r4 + o(r4),

and

B(r, 1) = 1 − Y2(1)r2 + r4

20β
[m0((−5 + 3β)Y ′

2(1) − 2Y ′′
2 (1)) + 2Y2(1)(3β(5Y2(1)

+ 2Y ′
2(1)) − 2(Y ′

2(1) + Y ′′
2 (1)))] + o(r4).



Therefore, as it can be seen,Y2(1) determines B2(1),Y ′
2(1) determines M2(1),Y ′′

2 (1) determines
B4(1), Y2

(3)(1) determines M4(1) and so on. Noticeably enough, the expansion of these terms
are forced to contain only even-power terms. Using these expansions, it is possible to study
gravitational collapse in a neighborhood of the center. In fact, we can calculate the expression
of the apparent horizon curve ah(r) as follows:

ah(r) = m
1

1+3β

0 r
2

1+3β + o(r
2

1+3β ),

when β 
= −1/3—but see below. Clearly, a special role is played by the quantity β̄ := 1+3β.
In fact, if β̄ < 0, there exists a right neighborhood of r = 0 such that M(r, a)r2 < a,

∀a ∈]0, 1], and then the apparent horizon does not form; this suffices to conclude that the
singularity is globally naked (this behavior of barotropic perfect fluids was already found,
under different assumptions, in [8]). Also the case β̄ = 0 arises as a limit case of the above,
since it is found that M(r, a)r2 − a = −a(1 − m0r2 + o(r2)) and then no horizon forms near
the center.

If β̄ > 0 we must study the null radial geodesic equation. It is sufficient to study the
behavior of this equation along test curves of the kind aλ(r) = (λr2)

1
β̄ (with λ > m0 in order

that the curve stays above ah(r)). In fact these are the curves that, translated in comoving
coordinates, leave r = 0 together with the apparent horizon. The condition for these curves to
be subsolutions of (30) reads

−
λ

1
β̄ β̄r

√
m0
λr2 + 2υ(r, λ) + 2

β̄r
> 0,

where υ is a regular function on r = 0 depending on Y2. Clearly this condition is not satisfied
by any positive λ, and therefore the singularities are covered and the solutions form blackholes.
We summarize the result in the following.

Proposition 4.2. In the collapse of an isotropic, r-expandable fluid solution with linear
equation of state p = βε, β ∈ [−1, 1] \ {0}, the singularity is naked if β � −1/3, while it is
covered if β > −1/3.

Remark 4.3. Recalling that the strong energy conditions (SEC) for isotropic models reads

ε + p � 0, ε + 3p � 0,

then, remarkably enough, the values of β ensuring the SEC—and therefore the ‘attractive’
behavior of gravity—also ensure horizon formation, covering the singularity (except of course
the dust collapse β = 0 [11], and the borderline case β = −1/3).

4.2. Fluids with acceleration vanishing at the singularity

In the above described example, linear equations of state p = βε with β > −1/3 with bounded
Y2(a)—which can be seen as ‘perturbations’ of the dust solutions with the same data—always
lead to blackhole formation. The presence of pressure drives the final state always to a covered
singularity, at least within the hypotheses considered. Clearly, the pressure diverges at the
singularity as well as the density in these models; it is therefore interesting to investigate
cases in which the pressure stays finite at the singularity, to check if pressure divergence is
necessary to halt naked singularity formation. If the fluid is barotropic this clearly requires
‘exotic’ equations of state, since limε→∞ p(ε) must remain bounded.

Actually, it must first be remarked that under the assumption made before, the case in which
p remains bounded but non-zero as the fluid collapses does not lead to singularity formation.
Indeed, the leading term of the pressure in general is given by −M′

0(a)

a2 . Considering a pressure



tending to a non-zero constant as a → 0 fixes the asymptotic behavior of M0(a) = m0a3 as
a → 0, which fixes the leading behavior of the pressure as follows:

p(r, a) = −3m0 − 5m2Y ′
2(a)

4a2
r4 + o(r5),

but at the same time the function z(r, a) is given by

z(r, a) = − a2m0 + 2Y2(a) + o(1).

Then to have p(r, a) not diverging as a → 0, and excluding the non-generic case m2 
= 0, the
functionY2(a) must be such that the integral

∫
z−1 da does not converge in a right neighborhood

of zero, and then the singularity forms in an infinite amount of comoving time, resulting in an
eternally collapsing, but regular, spacetime.

Thus we search for models where the pressure vanishes dynamically as the singularity
forms. Now, let us recall that the acceleration of the fluid in comoving coordinates is given
by aμ = ν ′δr

μ, therefore, it can be uniquely characterized by the scalar A := √
aμaμ. Since

pressure and acceleration are connected by relation

aμ = − p′

ε + p
δr
μ

and the dust (zero pressure) solutions are also non-accelerating solutions, a simple way to
model such situation is to study those isotropic fluids with non-vanishing acceleration, such
that acceleration goes to zero in the approach to the singularity. To construct such models we
consider the case M0(a) = m0 ∈ R and use ν ′ = R′Y,a

rY , which gives

A = Y,a

r
= Y ′

2(a)r + o(r), p = −3m0Y ′
2(a)

2a2
r2 + o(r2). (32)

Thus the pressure will be bounded at the singularity whenever Y2(a) is constant; consequently
we have Y (r, a) = 1 + y2r2 + o(r2) where y2 is a constant as well, and it is also found
M2(a) = m2 and

A = 2am2 + 4a3y2B′′
2(a) + m0(−3ay2 − 2B2(a) − aB′

2(a) + 2a2B′′
2(a))

4a3
r3 + o(r3),

so it makes sense to suppose that A goes like κR3 = κa3r3, with κ ∈ R, determining the
behavior of B2(a) up to a constant b2—the other constant is given imposing the condition
R′ = 1 at a = 1.

Since, in this situation, the apparent horizon ah(r) goes like m0r2 + m2r4 + o(r4), with
m0 > 0, and m2 < 0 in order to have a outward decreasing energy function at the initial time,
then one obtains the condition for a central naked singularity, that is existence of a subsolution
of equation (30) of the form a∗(r) = λr2 with λ > m0. Interestingly enough, the very same
condition is that preventing the formation of shell crossing singularities near the center, as can
be seen with some algebra. Since y2 
= 0 yields a quite complicate expression, here we report
only the case when y2 = 0, that turns out to be

2(−12κ + 39b2m0 + 26m2)

195m0
< 0.

The above becomes a condition on the coefficients of the functions M0, M2 and B2, and κ as 
well. Thus, we conclude that.

Proposition 4.4. In the complete collapse of an isotropic r-expandable fluid, if acceleration 
vanishes at the singularity a central naked singularity forms.



5. Conclusions

We are still far from a complete understanding of perfect fluid collapse even in spherical
symmetry. However, from the results discussed above—which can be considered as
conditioned results, since we assumed a priori a certain regularity of the solutions—the
role of pressure appears clearly. Pressure influences the qualitative behavior of the solution
and therefore, the causal structure of the collapsing model. In the linear case p = βε the
pressure—when is non-zero, thus excluding LTB model—diverges with the energy density
in the approach to the singularity, and in the cases implying formation of the horizon, this
completely hides the singularity. These models also contains some interesting cases where on
the contrary the horizon does not even form and then the singular boundary is globally naked.
This behavior was already devised in [17] where examples showing a central naked singularity
of this kind were obtained.

A simpler picture arises when the equation of state is perturbed in such a way that the
pressure goes to zero as the energy diverges—here, these models are proper dust perturbations,
since LTB solutions are recovered in the limit μ → 0—and here a central naked singularity
takes place.

To conclude, boundedness of pressure near the singular boundary appears to be a key
ingredient to produce counterexamples to cosmic censorship in the isotropic case since—
within the assumptions of expandability used—finite, non-identically zero pressures always
lead to a central naked singularity. Isotropy, far from simplifying the geometry of the spacetime,
actually adds a series of interesting situations which do not appear in the examples already
known of anisotropic spacetimes (see e.g. [11] and references therein) where both tangential
and radial pressures diverge at the singularity and the endstates are quite similar in structure
to those of the dust solutions. Of course, to get a complete picture one should be able to prove
convergence theorems for the series of the unknown functions of the system. This might in
principle cut out some of the examples discussed here.
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