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Abstract

Accurate dynamic modelling of helicopter aeromechanics isbecoming increasingly important, as pro-
gressively stringent requirements are being imposed on rotorcraft control systems. System identification
plays an important role as an effective approach to the problem of deriving or fine tuning mathemati-
cal models for purposes such as handling qualities assessment and control system design. In this paper
the problem of deriving continuous-time models for the dynamics of a small-scale quadrotor helicopter
is considered. More precisely, the continuous-time predictor-based subspace identification approach is
adopted and the results obtained in an experimental study are presented and discussed.

1 Introduction

The quadrotor architecture is a very popular one for the development of rotorcraft UAV platforms (see,

e.g., [CLD05, BBS07] and the references therein), in view of its favorable dynamic characteristics (see

[DSL09]): indeed, although they are frequently open-loop unstable, like most rotorcraft architectures,

quadrotors exhibit a good degree of decoupling (i.e., unlike conventional helicopters, acting on one of the

controls essentially affects the corresponding degree of freedom only) which makes them easier to control.

As discussed in,e.g., [HMLO02, PM09, MK12] and the references therein, mathematical models for the

dynamics of quadrotors are easy to establish as far the kinematics and dynamics of linear and angular mo-

tion are concerned. In fact a significant portion of the literature dealing with quadrotor control is based on

such models, probably also because of the elegant mathematical methods which can be deployed to design

feedback controller on this basis. Unfortunately, characterising aerodynamic effects and additional dynam-

ics such as,e.g., the response of the controlled speed of the individual rotors, is far from trivial, and has led

to the development of many approaches to the experimental characterisation of the dynamic response of the

quadrotor. Broadly speaking, two classes of methods to dealwith this problem can be defined. The first

∗Corresponding author

1



class of methods is based on the calibration of the parameters of detailed physical models, see for example

[KT04, DMB06]. The second class of methods is based on a black-box identification approach and as such

aims at extracting the information about the dynamics of thesystem directly (and solely) from measured

input-output data (see for example [LCMK02, KCL06, HOBM08]). Note, in passing, that system identifi-

cation has been known for a long time as a viable approach to the derivation of control-oriented dynamic

models in the rotorcraft field (see for example the survey paper [HK97], the recent books [TR06, Jat06] and

the references therein). Black-box identification of rotorcraft models leads to very specific requirements for

identification methods: it is customary to work with continuous-time models, so that dedicated identifica-

tion methods are needed; most rotorcraft vehicles are open-loop unstable, so that methods for closed-loop

identification are desirable; data is collected in separateexperiments for each input channel, so the capabil-

ity to handle separate datasets is important; finally, the identification problem is a multivariable one. To our

best knowledge, none of the above cited references providesmethods compliant with all the above listed

requirements.

In the system identification literature, on the other hand, one of the main novelties of the last two decades

has been the development of Subspace Model Identification (SMI) methods (see,e.g., [VODM96, VV07]),

which have proved extremely successful in dealing with the estimation of state space models for multiple-

input, multiple output (MIMO) systems. Surprisingly enough, until recently these methods have received

limited attention from the rotorcraft community, with the partial exception of some contributions such as

[VV94, BL97, Lov03]), which however rely on SMI methods assuming open-loop operation. SMI methods

are particularly well suited for rotorcraft problems, for anumber of reasons. First of all, the subspace

approach can deal in a very natural way with MIMO problems; inaddition, all the operations performed by

subspace algorithms can be implemented with numerically stable and efficient tools from numerical linear

algebra. Finally, information from separate data sets (such as generated during different flight experiments)

can be merged in a very simple way into a single state space model. Recently, see [LI11], the interest in SMI

for helicopter model identification has been somewhat revived and the performance of subspace methods

has been demonstrated on flight test data. However, so far only methods and tools which go back 10 to 15

years in the SMI literature (such as the MOESP algorithm of [Ver94]) have been considered. Therefore,

the further potential benefits offered by the latest developments in the field have not been fully exploited.

Among other things, present-day approaches can provide unbiased model estimates from data generated

during closed-loop operation, as is frequently the case in experiments for rotorcraft identification because
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of open-loop instability (see,e.g., [CP05, Chi07, HDQ05]) and the direct estimation of continuous-time

models from (possibly non-uniformly) sampled input-output data (see [BL11b] and the references therein).

In view of the above discussion, the aim of this paper is to demonstrate by means of the experimen-

tal case study of a small-scale quadrotor helicopter the applicability of state-of-the-art SMI methods to

the identification of rotorcraft flight dynamics. More precisely (see also the preliminary results presented

in [BL11a, SBL12]), the continuous-time predictor-based subspace identification approach proposed in

[BL11b] is applied to flight data collected during dedicatedidentification experiments and a model for the

hovering quadrotor is derived. Particular emphasis is placed on the analysis of the uncertainty associated

with the identified model, both in the frequency domain and inthe time domain, which provides useful

information in a control design perspective. To this purpose, the bootstrap approach to uncertainty analy-

sis first proposed in [BL00] for discrete-time SMI is extended to the continuous-time case and applied to

the quadrotor problem. To the best knowledge of the Authors this is the first contribution considering the

application of a closed-loop identification method to the identification of a rotorcraft system and providing

a detailed analysis of model uncertainty associated with flight experiments, with specific reference to the

issues arising because of closed-loop operation.

The paper is organised as follows. Section 2 provides some background on the model identification

technique considered in this paper and on the problem of assessing model uncertainty associated with the

identified models. The experimental setup considered in this paper, as well as the approach followed in

the identification and validation experiments are presented in Section 3. Finally, the results obtained in

the estimation of linear models for the hovering quadrotor and in the analysis of their characteristics are

presented in Section 4.

2 Approach

2.1 Requirements for quadrotor model identification

The identification of rotorcraft flight dynamics poses a number of challenges, which in turn give rise to very

specific requirements in the choice of a suitable method. First of all, in the rotorcraft community (and, in

general, in aerospace applications) it is customary to workwith continuous-time models rather than with

discrete-time ones, mainly because they are more intuitive, so that identification methods for continuous-

time models are needed. In addition, rotorcraft systems tend to be open-loop unstable (in this respect the

quadrotor is no exception and is quite representative), so that identification experiments have to be carried
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out in closed-loop, either under feedback from a human operator or under automatic control (see,e.g.,

[TR06] for a detailed discussion of the pros and cons of the two approaches), and a model identification

method capable of providing unbiased estimates of the open-loop dynamics from data collected in closed-

loop would be preferable. Furthermore, in view of both the open-loop instability and the complexity of some

piloting tasks, data for identification are frequently collected in separate experiments in which each input

channel is excited separately. The capability to handle easily such separate datasets in a single identification

procedure is therefore desirable. Finally, even taking into account the fact that for a quadrotor the individual

axes can be identified separately, the identification problem remains a multivariable one as typically more

than one output variable per axis must be considered.

All the above discussed requirements have led to the choice of the adopted approach, as detailed in the

following Section.

2.2 Continuous-time predictor-based subspace model identification

As is well known, SMI methods offer a simple way of dealing with multivariable identification problems,

so they can take into account the last of the requirements listed in the previous Section. Similarly, dealing

with data collected in multiple experiments is quite natural in the SMI framework as information from

data is encoded in the form of algebraic equations (the so-called data equations), which can be stacked

alongside each other regardless of the number of experiments in which the data have been collected. As

for, respectively, the requirement to provide unbiased estimates from closed-loop data and the need for

continuous-time models, the two issues have been tackled separately in a number of publications (see,e.g.,

[LM96, CV97, CP05, Chi07, HDQ05] for closed-loop SMI and [JVC99, Hav01, OKY02, OK04, MOGG08]

for continuous-time SMI) and more recently in a unified approach (see [BL11b]). In view of this discussion,

the method proposed in the last cited reference has been adopted; a short overview of the key ideas is

provided in the following.

Consider the linear, time-invariant continuous-time system

dx(t) = Ax(t)dt+Bu(t)dt+dw(t), x(0) = x0

dz(t) =Cx(t)dt+Du(t)dt+dv(t) (1)

y(t)dt = dz(t)

wherex∈R
n, u∈R

m andy∈R
p are, respectively, the state, input and output vectors andw∈R

n andv∈R
p
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are the process and the measurement noise, respectively, modelled as Wiener processes with incremental

covariance given by

E

{

[

dw(t)
dv(t)

][

dw(t)
dv(t)

]T
}

=

[

Q S
ST R

]

dt.

The system matricesA, B, C and D, of appropriate dimensions, are such that(A,C) is observable and

(A, [B,Q1/2]) is controllable. Assume that a dataset{u(ti),y(ti)}, i ∈ [1,N] of sampled input/output data

(possibly associated with a non equidistant sequence of sampling instants) obtained from system (1) is

available. Then, the problem is to provide a consistent estimate of the state space matricesA, B, C andD

(up to a similarity transformation) on the basis of the available data. Note that unlike most identification

techniques, in this setting incorrelation betweenu andw,v is not required, so that this approach is viable

also for systems operating under feedback.

Consider the family of Laguerre filters, defined as

Li(s) =
√

2a
(s−a)i

(s+a)i+1 (2)

and denote withℓi(t) the impulse response of thei-th Laguerre filter. Then, it can be shown that the set

{ℓ0, ℓ1, . . . , ℓi , . . .} is an orthonormal basis ofL2(0,∞). The continuous-time algorithm employed in this

paper is based on the results first presented in [OK04, Oht05], and further expanded in [KO10, Oht11a,

Oht11b], which allow to obtain a discrete-time equivalent model starting from the continuous-time system

(1), along the following lines. Under the stated assumptions, system (1) can be written in innovation form

as

dx(t) = Ax(t)dt+Bu(t)dt+Kde(t)

dz(t) =Cx(t)dt+Du(t)dt+de(t) (3)

y(t)dt = dz(t).

Considering now the sequence of sampling instantsti , i = 1, . . . ,N, the inputu, the outputy and the innova-

tion e of (3) are subjected to the transformations

ũi(k) =
∫ ∞

0
ℓk(τ)u(ti + τ)dτ, ỹi(k) =

∫ ∞

0
ℓk(τ)y(ti + τ)dτ, ẽi(k) =

∫ ∞

0
ℓk(τ)de(ti + τ)dτ (4)

whereũi(k) ∈ R
m, ẽi(k) ∈ R

p andỹi(k) ∈ R
p. Then the transformed system has the state space representa-
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tion

ξi(k+1) = Aoξi(k)+Boũi(k)+Koẽi(k), ξi(0) = x(ti)

ỹi(k) =Coξi(k)+Doũi(k)+ ẽi(k) (5)

where the state space matrices are given by

Ao = (A−aI)−1(A+aI), Bo =
√

2a(A−aI)−1B, Ko =
√

2a(A−aI)−1K (6)

Co =−
√

2aC(A−aI)−1, Do = D−C(A−aI)−1B.

From this point on, one can turn to the problem of estimatingAo, Bo, Co andDo in the discrete-time

model (5), which is abona fidediscrete model identification problem (even though indexk does not refer to

time sampling but rather to projection ontoℓk(t)), to which SMI algorithms for discrete-time identification

can be applied. Once estimates forAo, Bo, Co and Do have been worked out, it is possible to recover

estimates for the continuous-time state space matricesA, B,C andD by inverting the bilinear (and, therefore,

well posed) transformations (6). In view of the requirementto operate with data generated under feedback,

the discrete-time PBSIDopt SMI method proposed in [Chi07] is employed for the estimation of Ao, Bo, Co

andDo, which can guarantee unbiasedness of the estimates even when the inputu and the noise processesw

andv are correlated. A detailed description of the algorithm is omitted for brevity, the interested reader can

check either [BL11b] for a complete presentation of the continuous-time version of PBSIDopt or [Chi07]

for the original discrete-time formulation.

2.3 Quantifying model uncertainty: a bootstrap-based approach

For the purpose of control design it is desirable to have information about the reliability of the identified

model. In this Section a procedure for the evaluation of the uncertainty associated with the frequency re-

sponse of the estimated models is proposed. The statisticaltool we will resort to is the bootstrap method

[ET93, ST95], along the lines of the results in [BL00]. The bootstrap is a computational statistical method

which was originally introduced to solve the following problem ([ET93, ST95]): given a random, indepen-

dent, identically distributed (i.i.d.) samplex= (x1,x2, . . . ,xn) drawn from an unknown distributionF , one

computes an estimatêθ of the parameterθ = t(F) = t[x] on the basis of the available data, and would like

to assess the accuracy of the obtained estimate, in terms of its standard deviation or its variance.

Various approaches have been proposed to apply the bootstrap for variance estimation in time series

analysis ([ST95]), signal processing ([Sha98]) and systemidentification ([BL00, TL02]).
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For the present purposes and with reference to the problem ofevaluating the standard deviation for the

frequency response of the estimated model, the method of bootstrapping residuals can be synthesized as

follows:

1. Estimate the linear model[Â, B̂,Ĉ, D̂, K̂] from the available input/output data(u,y) and compute the

estimate for the points of interest of its frequency response Ĝ( jωk), k= 1, . . . ,N.

2. Compute the optimal prediction error for the identified model:

e(t) = y(t)− ŷ(t). (7)

3. Obtain an estimatêFe for the distributionFe of the prediction error. In this work a parametric estimate

will be considered and the normality assumption for the distribution of the residual will be made.

4. GenerateB replications(u∗(i),y∗(i)), i = 1, . . . ,B of the original data set(u,y), with u∗(i) = u andy∗(i)

obtained by feeding the identified model[Â, B̂,Ĉ, D̂, K̂] with the deterministic inputu∗(i) = u and the

stochastic inpute∗(i), i = 1, . . . ,B wheree∗(i) is constructed by resampling (with replacement) from

the distributionF̂e.

5. EstimateB replications of the identified model and of the points of interest for the frequency response

Ĝ∗(i)( jωk), k= 1, . . . ,N.

6. The estimate of the standard error for the frequency response of the model is finally given by:

σ̂Ĝ( jωk)
=

1√
B−1

(
B

∑
i=1

(Ĝ∗(i)( jωk)− ¯̂G∗( jωk))
2)

1
2 (8)

where

¯̂G∗( jωk) =
1
B

B

∑
i=1

Ĝ∗(i)( jωk). (9)

In a similar way one can obtain estimates of the standard deviation for the poles and zeros of the estimated

model.

3 Identification-oriented quadrotor flight testing

The aim of this Section is to provide some information about the experimental set-up used in this study and

a description of the identification and validation experiments which have been carried out to characterise the

dynamic response of the hovering Mikrokopter. In the following we will refer to the body coordinate frame
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attached to the quadrotor and defined according to Figure 1 (the XB axis is aligned with the longitudinal

axis, pointing forward).

XB,ax

YB,ay

ulon

ulat

ucol

uped

p

q r

ZB,az

Figure 1: Definition of the control inputs (left) and of the body reference frame and measured outputs
(right).

3.1 The experimental setup

The quadrotor used in this work is a modified version of the Mikrokopter platform, an open source project

developed and distributed by HiSystems GmbH (Germany). TheMikrokopter consists of a frame composed

by four tubes held together by a metal cross as shown in Figure2, with the four motors placed at the end of

the tubes. The onboard electronics are piled up at the centreof the cross in order to maintain a symmetric

Figure 2: The Mikrokopter quadrotor used in this study.

mass distribution. The size of the quadrotor is approximately 45× 45× 20 cm and its mass is about 1

kg (with battery). The quadrotor is powered with a Lithium-ion polymer battery (11.1 V, 2200 mAh) that
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guarantees an autonomy of about 15 minutes. The original design provides three electronic boards:

Flight-Ctrl It is the main board of the quadrotor. It includes the AVR Atmel 8-bit microcontroller (20

MHz), a set of three MEMS accelerometers and a set of three gyroscopes. This board is the flight

controller, indeed it uses the measurements of the sensors and the command inputs taken through the

receiver to set the motors speed rates in the proper way. The sensors outputs are sampled using the

internal ADC with a 10 bits resolution.

BL-Ctrl (x4) It is the driver of the motor. The microcontroller mounted onthis board is an AVR Atmel

8-bit (8MHz) and it is dedicated to the generation of the PWM signal in order to control the motor

angular rate according to the set-point communicated through the Inter Integrated Circuit (I2C) bus

by the Flight-Ctrl board. It is able to provide up to 5 A at 15 V.

Navi-Ctrl It is dedicated to record the flight data. This board mounts anAVR Atmel 16-bit microcontroller

(25 MHz) and it communicates with the Flight-Ctrl through the Serial Peripherical Interface (SPI).

The original firmware has been modified in order to generate input sequences for the identification and to

obtain flight data at a sampling frequency of 100 Hz. This datais stored in a microSD card during flight

and downloaded for processing after landing.

3.2 Input-output variables selection

In view of identifying a model of the hovering quadrotor for control design, in this paper the variables

considered as inputs and outputs are the ones commonly corresponding to control and measured variables

in a typical quadrotor control architecture.

Concerning the inputs, quadrotors are mostly (though not exclusively) controlled by varying the angular

rates of the four rotors. However, it is well known that the forces and moments generated by the rotors are

quadratic functions of the rotors angular rates (see,e.g., [CLD05]), so adopting the rotor angular rates as

inputs for the model would entail both a strong nonlinearityin the equations (due to the quadratic depen-

dence) and a strong coupling between the inputs and the response of the individual axes (as the angular rates

of the four rotors are always varied simultaneously, regardless of which degree of freedom of the quadrotor

is to be controlled). To avoid these difficulties, a change ofvariables is usually adopted in the literature

on quadrotor modelling and control to define control inputs which enter linearly the equations of motion,
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namely

u=
[

ucol ulon ulat uped
]T

=









Ω2
1+Ω2

2+Ω2
3+Ω2

4
Ω2

4−Ω2
2

Ω2
3−Ω2

1
Ω2

2+Ω2
4−Ω2

1−Ω2
3









,

whereΩi , i = 1, . . . ,4 are the angular rates of the four rotors. Up to a scale factor, ucol (wherecol stands

for collective) can be interpreted as a force along the vertical body axis and is therefore the control input

used to control the vertical motion of the quadrotor (see also Figure 1). Similarly,ulat , ulon anduped can be

interpreted as, respectively, a rolling, pitching and yawing moment around the body axes and therefore can

be used to control the three attitude degrees of freedom (lat standing for lateral,lon for longitudinal andped

for pedal, in analogy with the rotorcraft literature). Ultimately,ulon andulat also control the longitudinal

and lateral motion of the quadrotor (see, again, Figure 1 and[CLD05] for details).

The output vector, on the other hand, includes the measurements provided by the available inertial sen-

sors,i.e., y =
[

ax ay az p q r
]T , whereax, ay andaz are the measurements of the components of

the acceleration of the quadrotor along the three body axes and p, q andr are, respectively, the measure-

ments of the components of the quadrotor’s angular rate, expressed in the body frame according to the sign

conventions depicted in Figure 1.

3.3 Identification experiments

The problem of defining suitable approaches to the experimental testing of a rotorcraft platform has been

studied extensively in the literature of piloted rotorcraft, see for example [HK97, TR06]. The key aspect

when planning the class of inputs to be applied to the vehicleis the domain in which data will be processed in

the identification procedure. Indeed, for frequency-domain approaches such as the ones proposed in [TR06]

periodic excitation is desirable (e.g., frequency sweeps, so as to minimise leakage in the computation of

frequency spectra). For time-domain identification, on thecontrary, this requirement is not necessary so it

is possible to employ input sequences which can excite a broad range of frequencies in shorter experiments

than swept sines or multi-sines. Concerning the execution of identification experiments in flight, they can be

carried out either manually, with the pilot exciting the dynamics of the helicopter using the remote control,

or automatically, by implementing on-board functions to generate the input sequences for the experiments.

In the case of a small-scale helicopter, manual excitation is not sufficiently fast, so an automatic command

generation function has been implemented.

In view of the application of the time-domain identificationmethod described in Section 2, the input sig-
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nal adopted for identification experiments is the so-called3211 piece-wise constant sequence. The numbers

used in the designation refer to the relative time intervalsbetween control reversals, see as an example the

top part of Figure 3 where a double 3211 sequence is depicted.As discussed in [HK97], this input sequence,

developed at the German Aerospace Center DLR for flight dynamics testing, excites a wide frequency band

within a short time period, so it is also suited for moderately unstable systems. Guidelines for the design of

3211 sequences can be derived by the analytical computationof the spectrum of the sequence as a function

of its duration. Details can be found in,e.g., [KM06], where it is recommended to select the duration of the

second (2) step as half the period of the expected dominant mode of the response to be identified. As it is

known from prior knowledge and time-domain analysis of open-loop responses that the dominant dynamics

of the quadrotor (i.e., the pitch and roll responses) is located in the frequency domain at about 5 rad/s, this

guideline led to a choice for the duration of the first (3) stepof 0.9 seconds, which is also close to the max-

imum operable on a quadrotor without it flying too far away from trim. Furthermore, the amplitude of the

steps has been chosen to achieve a satisfactory tradeoff between the conflicting requirements of ensuring

that attitude changes during the experiments remain limited and of achieving a satisfactory signal-to-noise

ratio in the measured outputs. Asymmetry between the amplitude of positive and negative steps has been

also introduced, to obtain tests ending with almost null velocity (see the top panel of Figure 3). For the

identification phase multiple datasets have been used: three double 3211s (the 3211 maneuver has been

repeated to collect more data) for an overall duration of approximately 20 seconds. For the cross-validation

phase (i.e., the choice of the model order as well as of the tuning parameters for the identification algorithm)

a double 3211 has been used for a duration of approximately 6.5 seconds.

Finally, the input signal used for the validation test is a so-called doublet,i.e., a sequence of two opposite

steps of equal duration and amplitude. More precisely, a doublet with a duration of approximately 4 seconds

has been used. All the data has been filtered with a lowpass filter with a cutoff frequency of 5 Hz.

It is important to point out that while experiments excitingucol have been carried out in open-loop, the

identification of the response to the other control inputs has been carried out using closed-loop data because

of the open-loop unstable nature of the platform under study. Note, however, that the identification method

considered in this study (see Section 2) can provide unbiased estimates of the dynamics of the system

regardless of the input/output correlation introduced by feedback control.
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4 Experimental results

4.1 Time-domain data

As an illustrative example of the collected flight data, in Figure 3 the response of the vertical acceleration

to a double 3211 applied toucol is shown (the input command is expressed in terms of percentage of the

trim value). As can be seen from the time history of the input in Figure 3, the actual input sequence applied
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Figure 3: Example of identification data. Top: ideal (grey) and real (black) 3211 collective excitation;
bottom: response of vertical acceleration.

by the on-board electronics is not exactly equal to the desired one, still the (double) 3211 profile is clearly

visible. Figure 4, on the other hand, shows the time histories of all the measured outputs during the same

experiment, to motivate the choice of developing uncoupledmodels for individual DOFs of the quadrotor.

Indeed, it is apparent from the figure that the excitation ofucol has a significant effect only on the vertical

acceleration, while all the other outputs are essentially unaffected. Similar considerations can be made for

the other input variables - the details have been omitted forbrevity. Finally, correlation analyses between

inputs and outputs have been used to assess the possible presence of delays in the quadrotor’s response.

Unlike what occurs typically in full scale helicopters, time delays in this case are negligible.

4.2 Identification of uncoupled models for the individual DOFs

Both model order and the tuning parameters of the identification algorithm (i.e., the position of the Laguerre

polea and the parameters of the PBSIDopt algorithm) have been selected using a cross-validation approach.
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Figure 4: Response of measured variable to 3211 collective excitation. Left: pitch and roll rates; right:
acceleration components.

Input Model order (n) Laguerre pole (a)
Collective 3 16

Pedal 3 16
Longitudinal 3 21

Lateral 3 15

Table 1: Selected tuning parameters of the algorithm for theidentification of each model.

More precisely, as is the case with all SMI algorithms, the choice of model order can be based on the

inspection of the singular values of the estimated state sequence for the identified model, while the selection

of a and of the parameters of the PBSIDopt algorithm has been carried out by checking the norm of the

simulation error over the cross-validation dataset. The results of this step are shown in Table 1 for the

model order and the position of the Laguerre polea. Before the validation step, the identified models have

been simplified by removing zeros occurring at frequencies well above the excitation bandwidth. For the

sake of completeness, the identified models are reported hereafter in equations (10)-(13).

Gcol(s) =
az

ucol
=

1.2498(s+0.3451)
(s+16.49)(s+5.309)(s+1.933)

(10)

Gyaw(s) =
r

uped
=

0.077646(s+5.475)(s−0.2086)
(s+11.03)(s2+0.2838s+0.06947)

(11)

Glon(s) =





q
ulon

ax
ulon



=







0.22016(s+0.2579)(s−0.2596)
(s+1.865)(s2−1.285s+8.067)

−0.011659(s−3.271)(s+3.681)
(s+1.865)(s2−1.285s+8.067)






(12)
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Glat(s) =





p
ulat

ay
ulat



=







−0.20194(s2+0.09235s+0.2532)
(s+1.82)(s2−1.388s+10.02)

−0.00359(s−9.182)(s+4.164)
(s+1.82)(s2−1.388s+10.02)






. (13)

As can be seen from equation (10), the response of the quadrotor on the vertical axis is asymptotically stable

and non-oscillatory, being characterised by real poles only. The dominant mode is located at about 2 rad/s,

corresponding to a dominant time constant of approximately0.5 s. Similarly, as can be seen from (11) the

response of the yaw rate is also asymptotically stable, but with an oscillatory dominant mode. As expected,

on the other hand, the response of the roll and pitch axes is characterised by an unstable, oscillatory mode.

Note, in passing, the significant symmetry between the models for lateral and longitudinal response. In

particular, the models have the same structure (up to the location of the zeros, on which more comments

will be made in subsections 4.4 and 4.5) corresponding to theoverall symmetry of the quadrotor platform,

which therefore has been successfully captured by the identified models. Small differences in the numerical

values of the poles positions can be attributed to asymmetries such as,e.g., different inertial properties due

to the mounting of the battery on the quadrotor (aligned withthe roll axis, which therefore has a smaller

moment of inertia and, accordingly, a slightly faster response, as can be seen by comparing the poles of

Glat(s) andGlon(s)).

4.3 Time-domain validation

The performance of the identified models has been checked by comparing the simulated outputs with the

measured response to a doublet excitation applied on each ofthe control variables, as discussed in Section

3.3. The results of the validation experiments are presented in Figure 5 for the response of the vertical

acceleration to the collective input, Figure 6 for the response of the yaw rate to the pedal input and Figures

7 and 8 for, respectively, the response of the pitch (roll) rate and of the longitudinal (lateral) acceleration to

the longitudinal (lateral) input. As for the identificationphase, the validation experiments for the response

to changes inulat , ulon anduped have been carried out in closed-loop.

As can be seen from the figures, the identified models capture the essential features of the response of

the quadrotor along all the axes.

Finally, to complete the analysis of the results the bootstrap-based approach to uncertainty analysis

summarised in Section 2.3 has been applied to both the frequency responses associated with the transfer

functions in equations (10)-(13) and the corresponding positions of poles and zeros in the complex plane.

The results are reported in the following subsections.
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Figure 5: Response of vertical acceleration to collective doublet (measured: solid line; estimated: dashed
line).
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Figure 6: Response of yaw rate to pedal doublet (measured: solid line; estimated: dashed line).
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Figure 7: Response of pitch rate (top) and longitudinal acceleration (bottom) to longitudinal cyclic doublet
(measured: solid line; estimated: dashed line).
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Figure 8: Response of roll rate (top) and lateral acceleration (bottom) to lateral cyclic doublet (measured:
solid line; estimated: dashed line).
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4.4 Uncertainty analysis: frequency responses

The results of the uncertainty analysis for the frequency responses of the identified models are reported

in Figures 9-14, where the frequency responses corresponding to the identified models are compared with

1000 replications computed using the bootstrap.
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Figure 9: Frequency response of vertical acceleration to collective (black line: nominal model; grey lines:
bootstrap replicas).

As can be seen from Figure 9, the response of the vertical axisis captured by the model with very

good accuracy, the uncertainty band having a very limited amplitude both in magnitude and phase over

the excitation bandwidth (approximately 1-10 rad/s). Clearly some uncertainty is to be expected at low

and high frequency, however since for the purpose of controller design what is really relevant is model

accuracy around the crossover frequency, this level of model accuracy can be considered adequate. The

reader, however, should recall that the response of the vertical axis is asymptotically stable and therefore its

identification has been carried out in open-loop.

Uncertainty analysis is particularly informative in the case of unstable models generated from closed-

loop data. Indeed, in such a case gathering accurate information about the low frequency response is harder

than in open-loop identification, due to both limitations inthe duration of the experiments and the low-

frequency action of the feedback controller which ”masks” the true dynamics of the open-loop system. As

a consequence, one expects significant uncertainty appearing in the low frequency part of the frequency
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Figure 10: Frequency response of yaw rate to pedal (black line: nominal model; grey lines: bootstrap
replicas).

10
−1

10
0

10
1

10
2

−100

−80

−60

−40

−20

0

M
ag

ni
tu

de
 (

dB
)

Output q, Input u
lon

10
−1

10
0

10
1

10
2

−400

−300

−200

−100

0

P
ha

se
 (

de
g)

Frequency (rad/sec)

Figure 11: Frequency response of pitch rate to longitudinalcyclic (black line: nominal model; grey lines:
bootstrap replicas).
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Figure 12: Frequency response of longitudinal acceleration to longitudinal cyclic (black line: nominal
model; grey lines: bootstrap replicas).
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Figure 13: Frequency response of roll rate to lateral cyclic(black line: nominal model; grey lines: bootstrap
replicas).
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Figure 14: Frequency response of lateral acceleration to lateral cyclic (black line: nominal model; grey
lines: bootstrap replicas).

response of the identified model. Fortunately, however, basic insight in the dynamics of the system can be

exploited to reduce such uncertainty: for example, if the sign of the gain is knowna priori in view of the

physical interpretation of the control inputs, one can confirm whether the nominal identified model, in spite

of the spread of the low-frequency uncertainty, is essentially correct.

This effect is clearly visible in the response of the yaw axis, depicted in Figure 10, which is captured

quite accurately by the identified model starting from about1 rad/s but is not equally accurate at lower

frequencies.

Figures 11 and 12 on the other hand represent the frequency responses for the longitudinal response

of the quadrotor. In the responses one can readily recognisethe unstable complex conjugate poles which

dominate the response. In addition, note that in this case the uncertainty associated with the identification

procedure is concentrated at low frequency for the responseof the pitch rate and at high frequency for

the response of the longitudinal acceleration. The lateralresponse of the quadrotor, reported in Figures

13 and 14, is qualitatively similar to the longitudinal one (again, confirming the essential symmetry of

the considered configuration), except for the low frequencybehaviour of the roll rate frequency response

(Figure 13). Indeed in this case, the low frequency derivative character of the response is captured in the

model by means of a complex conjugate pair of zeros, which leads to a significantly different phase curve

with respect to the pitch rate one. Note however that even though this portion of the estimated response is
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associated with large uncertainty, there is no ambiguity about the sign of the gain of the response, which is

knowna priori from physical considerations and coincides with the one of nominal model. This can be also

confirmed by the histogram of the values of the low-frequencyphase for the 1000 bootstrapped models, see

Figure 15. As can be seen, more than 75% of the models exhibit aphase close enough to−180◦ to validate
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Figure 15: Histogram of the low-frequency phase for the frequency response of the 1000 bootstrapped
models of the roll rate.

the prior knowledge of a negative gain. A very small number ofbootstrapped models exhibit a phase close to

0◦, while less than 10% of the bootstrapped models show an initial phase around+180◦.Over the excitation

bandwidth, however, the identified model appears to be accurate also in this case.

In summary, it can be concluded that the performance of the identified model is adequate for control

systems design provided that the control loops are closed within the above mentioned excitation bandwidth.

In order to further reduce the residual uncertainty in the models, additional experiments ought to be carried

out, trying to maximise the length of the available datasetsso as to improve the low frequency content.

Note, however, that limited performance in the identification of the low frequency portion of the response

is intrinsic in the closed-loop operation during experiments.

4.5 Uncertainty analysis: poles and zeros

A similar analysis, again based on the bootstrap method, canbe carried out for the location of poles and ze-

ros of the identified models. Note in particular that for the longitudinal and lateral responses we focus on the

zeros of the individual transfer functions rather than on the MIMO ones in view of the fact that conventional
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control architectures for quadrotor control would lead to separate loop closures on the individual transfer

functions (angular rate for attitude control, acceleration for position control). As is well known, the position

of zeros and poles in the complex plane plays a major role in determining the achievable closed-loop perfor-

mance. In particular, for the case of unstable and/or non-minimum phase systems, the position of right-half

plane zeros and poles imposes, respectively, upper and lower bounds to the closed-loop bandwidth (see,

e.g., the classical papers [FL85, Ste03]). Along the lines of theprevious subsection, the bootstrap method

has been applied and 1000 replicas of the identified models have been obtained. For the vertical response of

the quadrotor, the results are depicted in Figure 16, where the left panel shows a histogram of the position

of the 1000 replicas of the poles, while the right one shows the same results for the zeros. It appears that

all the 1000 replicated models remain asymptotically stable and the two dominant poles (nominal loca-

tions at−1.933 and−5.309) are estimated with a very low uncertainty, while the ”fast” pole located in the

nominal model at−16.49 has a much more significant uncertainty associated with it(again, not surprising

as its location is above the excited bandwidth). Similarly,the zero of the transfer function appears to be

estimated very accurately and, most importantly, remains minimum phase for all the bootstrapped replicas.

For the response of the yaw axis, in Figure 17 the histograms for the natural frequencies and the damping
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Figure 16: Histograms of poles (left) and zero (right) of thetransfer function from collective to vertical
acceleration.

factors of the poles are depicted, while the zeros are illustrated in Figure 18. Concerning the poles, the

peaks in the histograms associated with the complex conjugate poles and the real pole are clearly visible;

again, the dominant complex conjugate mode is captured withsmall dispersion, while the faster real pole

is determined with larger uncertainty. As for the zeros, it is interesting to note that the (low frequency)

non-minimum phase one is actually characterised by an uncertainty range which lies across the imaginary
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axis, which reflects the high level of uncertainty in the phase response of the yaw rate apparent from Figure

10.
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Figure 17: Histograms of poles of the transfer function frompedal to yaw rate. Left: natural frequencies;
right: damping factors.

Finally, the results for the response of the longitudinal axis are presented (the lateral response is omitted

for brevity) in Figures 19-20 (poles) and 21 (zeros). Concerning the poles, it appears form Figure 19

that the dominant, unstable complex conjugate mode is identified with great accuracy, while there is some

uncertainty associated with the real pole, for which a histogram is presented in Figure 20. The natural

frequency of the unstable mode, which can be placed at 2.84 rad/s therefore provides information about

the minimum bandwidth for the control of the longitudinal response. As for the zeros of the two transfer

functions associated with the longitudinal axis, Figure 21clearly shows the non-minimum phase of the

responses, confirming also in a statistical sense the characteristics of the identified model. Note in particular

that the estimation of the right-half plane zeros is quite accurate.

5 Concluding remarks

The problem of black-box model identification of the dynamics of a quadrotor helicopter has been con-

sidered. In view of the open-loop instability of the quadrotor, closed-loop experiments have been carried

out and a continuous-time subspace model identification approach capable of dealing with such experimen-

tal conditions has been adopted. Furthermore, a complete analysis of the uncertainty associated with the

identified model has been performed, using tools from the field of computational statistics. The results of

the study show that the considered approach is an effective one as far as the characterisation of the local

dynamics of the quadrotor is concerned and can also provide useful uncertainty information for the pur-

23



−10 −8 −6 −4 −2 0
0

20

40

60

80

100

120
Output r, Input uped − Zeros

O
cc

ur
re

nc
es

Zeros position

Figure 18: Histogram of zeros of the transfer function from pedal to yaw rate.
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pose of robust control system design, both in the frequency domain and in the time domain. Future work

will deal with the problem of optimising the input sequencesused in the identification experiments (some

preliminary results are available in [BBL11]), which in turn will allow the analysis of the platform in more

general flight conditions, and to consider additional sensors in the model identification.
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