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1. INTRODUCTION

In this article we introduce a Bayesian nonparametric model for cluster analysis. Typi-
cally, clustering means to partition a set of n objects (i.e., data) into k groups, even if the 
common features of the objects in each group are unknown or unobservable (i.e., latent). In 
general, data do not belong to a unique correct clustering, but, depending on the application, 
we would like to estimate a “true” one.

There are plenty of cluster analysis algorithms or models that, in the last decades, have 
been proposed. Here, we find it useful to distinguish between model-based and heuristic 
clustering techniques. The former class refers to those methods that require a statistical 
model to describe the problem, that is, mixture modeling; see, for instance, McLachlan
and Peel (2000). The latter class includes those algorithms defined from a given starting 
partition, and carried on following some heuristic scheme. Very popular examples are
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the hierarchical clustering (Johnson 1967), and k-means (MacQueen 1967). While these
methods have been widely used in practice, they may suffer from serious limitations. For
example, a distance between the objects must always be available, but in general it depends
on problem features and data characterization. Moreover, for some of these methods, the
number of clusters must be fixed in advance.

Here we propose a Bayesian nonparametric model, that combines two ingredients:
species sampling mixture models of Gaussian distributions (in a nutshell, mixtures of
infinite Gaussian densities with random weights), and a heuristic clustering procedure,
called DBSCAN. The DBSCAN algorithm (Ester, Kriegel, and Xu 1996) is a density-
based clustering technique, where the word density refers to the spatial disposition of data
points, that are dense when forming a group: two data points are in the same cluster if
their distance is smaller than the threshold. As far as the species sampling mixture model
is concerned, it is well known that this model is convenient to assign a prior directly on
the partition of the data, representing the natural parameter in the cluster analysis context.
Moreover, the number of clusters is not fixed a priori, but it is estimated as a feature of the
partition of the observations.

To summarize, our model is based on the slackness of the natural clustering rule of species
sampling mixture models of parametric densities, when we mean that two observations
Xi and Xj are in the same cluster if, and only if, the latent parameters θi and θj are
equal. We say instead that two observations share the same cluster if the distance between
the densities corresponding to their latent parameters is smaller than a threshold ε. We
complete the definition to provide an equivalence relation among data labels. The resulting
new random partition parameter ρε is coarser than the original ρ induced by the species
sampling mixture model, that is, the cardinality of ρε is smaller than that of ρ. Of course,
this procedure depends on the value of the threshold ε and the distance between densities.
As far as the latter choice is concerned, we consider the symmetrized Kullback–Leibler I-
divergence and the L2 distance, since they are easy to interpret, and have a closed analytical
form under Gaussian kernels. On the other hand, the elicitation of a value for ε has a key
role in our model, since this threshold greatly affects the cluster estimate. Here we suggest
to fix a grid of reasonable values for ε, and choose the value maximizing the posterior
expectation of a function of the random partition. In the applications, we consider some
posterior predictive distribution summary statistics, as well as more standard tools like the
silhouette coefficient and the adjusted Rand index. The Bayesian cluster estimate is given
in terms of this new random partition, and results from the minimization of the posterior
expectation of a loss function, as usually done in the literature (see, e.g., Lau and Green
2007).

We discuss implementation and applications of the model to a simulated bivariate dataset
from a mixture of two densities with a curved cluster, and to a dataset consisting of gene
expression profiles measured at nine different times, known in literature as yeast cell
cycle data. We have paid special attention to comparing our model with “competitors” in
the literature. In particular, for the simulated bivariate example, we have compared our
estimates not only to those from heuristic DBSCAN, k-means and hierarchical algorithms,
but also with estimation provided by the nested Dirichlet process mixture model (Rodriguez,
Dunson, and Gelfand 2008), particularly helpful in clustering in nested settings. In both
applications, thanks to this empirical thorough comparison, we have concluded that cluster



estimates from our model turn out to be more effective. Our estimates fit data particularly
well when they come from heavy tailed or curved clusters.

The rest of this article is organized as follows. Section 2 describes the underlying
species sampling mixture models. In Section 3 we describe the model under the new
parameterization in details, discussing some of its main features. Section 4 illustrates the
choice of the threshold parameter ε. In Section 5 the simulated bivariate “curved” dataset is
analyzed, with a comparison analysis with competing methods, while Section 6 addresses
the yeast cell cycle data in Cho et al. (1998). We conclude with a discussion in Section 7.

2. THE MODEL

We set up a Bayesian model in which the partition of data is a random variable, distributed
according to some prior distribution. If (X1, . . . , Xn) represents the data, its conditional
distribution is

(X1, . . . , Xn)|C1, . . . , Ck, φ1, . . . , φk ∼
k∏

j=1

⎧⎨
⎩

∏
i∈Cj

f (xi ; φj )

⎫⎬
⎭ , (1)

where ρ := {C1, . . . , Ck} is a partition of the data label set {1, . . . , n} and {f (·; φ), φ ∈ �} is
a family of densities on Rp. We assume that the family of densities is identifiable, that is,
Pφ1 = Pφ2 implies φ1 = φ2, where Pφ is the probability measure corresponding to the
density f (·; φ). Observe that here k is the number of clusters in the partition ρ. From (1),
it is clear that, conditionally on ρ, data are independent between different clusters and are
independent and identically distributed (iid) within each cluster. To complete the Bayesian
model we need to assign a prior for (ρ,φ). We assume that

π (ρ) = P (ρ = {C1, . . . , Ck}) = p(#C1, . . . , #Ck), (2)

where p(·) is an infinite exchangeable partition probability function (eppf). Moreover,
conditionally on ρ, we assume that the parameters in φ := (φ1, . . . , φk) in (1) are iid from
some fixed distribution P0 on � ⊂ Rs . By Pitman (1996), for each distribution P0 and eppf
p(·), there exists a unique species sampling prior �(·; p, P0) on the space of all probabilities
on �, such that model (1) under the specified prior is equivalent to

Xi |θi

ind∼ f (·; θi) i = 1, . . . , n

θi |P iid∼ P i = 1, . . . , n P ∼ �(·; p, P0), (3)

where P0 represents the expectation of P. In this model every Xi has density f (·, θi), which
is univocally determined by the value of θi . In this case, we say that θi is the latent variable
corresponding to Xi in the mixture model (3).

In this work we consider only proper species sampling models, that is, P (·) =∑∞
i=1 ξiδτi

(·), where (ξi) and (τi) are independent, (τi)
iid∼ P0(·) and the law of (ξi) is induced

from �(·; p, P0) (see Pitman 1996, for its explicit description); here δτ (·) is the degenerate
probability measure on τ . An interesting example is the normalized generalized gamma
(NGG) process prior, introduced by Regazzini, Lijoi, and Prünster (2003), encompassing
the Dirichlet process. See Lijoi, Mena, and Prünster (2007) and Argiento, Guglielmi, and



Pievatolo (2010) for more details, and, in particular, for the analytic expression of the eppf
under NGG mixture models. On the other hand, when the NGG process prior reduces
to the Dirichlet measure, the eppf turns out to be a variant of Ewens sampling formula
p(n1, . . . , nk) = (�(α + 1)/�(α + n))αk−1 ∏k

j=1(nj − 1)!, with n = n1 + · · · + nk .
Representation (3) is useful to compute posterior inference. On the other hand, formu-

lation (1)–(2) is the most expressive here, since the random parameter contains ρ, which is
the object of the statistical analysis.

Finally, observe that equivalence between models (1)–(2) and (3) holds thanks to the
natural clustering rule and identifiability of {f (·, θ ), θ ∈ �}. By natural clustering rule
we mean the following: given θ1, . . . , θn, Xi and Xj belong to the same cluster if, and
only if, θi = θj . In this case we write Xi ↔ Xj . The partition ρ = {C1, . . . , Ck} represents
the quotient set of the data label set {1, . . . , n} by the equivalence relation ↔, and φ =
(φ1, . . . , φk) are the unique values among the θi’s.

3. RELAXING THE EQUALITY CONSTRAINT IN THE
CLUSTERING RULE

The sensitivity of cluster estimates to hyperparameters in species sampling mixture
models is a well-known issue. First of all, when the tails of the “true” distribution are
heavy, to fit the data, the Bayesian estimate tipically adopts many kernels to reconstruct
the “true” density shape. In this case, a deeper analysis on the prior elicitation could be
accomplished. See for instance, Argiento, Guglielmi, and Soriano (2013) and Griffin (2010).
Second, if the “true” distribution has nonconvex contour lines, as in Section 5 here, the
hierarchical mixture model generally yields cluster estimates where the cluster components
do not represent real data clusters, unless the kernel density has a proper nonconvex shape.

To overcome these problems, here we propose a new rule to assign observations to
clusters, relaxing the equality constraint imposed by the natural clustering rule under the
species sampling mixture model (3). If d(·, ·) is any distance between densities, the natural
clustering rule can be restated as

Xi ↔ Xj ⇔ d(f (·, θi), f (·, θj )) = 0

when the family {f (·; θ ), θ ∈ �} is identifiable. To relax the rule, instead of grouping
elements whose kernel densities are equal, we assign those data whose densities are “close”
to the same cluster.

Definition 1. Given a configuration (θ1, . . . , θn), a threshold ε > 0, and a distance be-
tween densities d(·, ·), two observations Xi and Xj are directly reachable if

d(f (·, θi), f (·, θj )) < ε.

We write Xi
ε� Xj ; since transitivity does not hold in this case,

ε� is not an equivalence
relation.

Definition 2. Given a configuration (θ1, . . . , θn), a threshold ε > 0, and a distance be-
tween densities d(·, ·), two observations are reachable if there exists a finite sequence



Xj1 , . . . , Xjm
such that

Xi
ε� Xj1

ε� Xj2

ε� · · · ε� Xjm

ε� Xj .

We write Xi
ε↔ Xj . It is straightforward to prove that

ε↔ is an equivalence relation
among the data, so that we define ρε = {C(ε)

1 , . . . , C(ε)
m } as the quotient set of {1, . . . , n} by

ε↔. Here m := m(ε) ≤ k denotes the new number of clusters.
These definitions are based on the DBSCAN algorithm (Ester, Kriegel, and Xu 1996).

DBSCAN (density-based spatial clustering of applications with noise) is a well-known
algorithm in the data mining community; in brief, it clusters data at hand through a notion
of distance between items and two parameters, an integer N and a positive real ε. In this
work we consider only the case N = 1, since if N > 1, the relation

ε↔ induced by DBSCAN
among the data labels is not an equivalence.

By DBSCAN({f (·; θ1), . . . , f (·; θn)}, d, ε) we mean a deterministic function where the
input values are: (i) (θ1, . . . , θn), the latent variables in model (3) corresponding to the
data; (ii) a distance d between densities; and (iii) a threshold ε > 0. The input values
(θ1, . . . , θn) can be equivalently described as ({C1, . . . , Ck}, (φ1, . . . , φk)), while (ii) can be
substituted by a matrix of the distances between f (·; φi) and f (·; φj ), i, j = 1, . . . , k. The
output values are: a partition (C(ε)

1 , . . . , C(ε)
m ) of the index set {1, . . . , n}, obtained grouping

the subsets {C1, . . . , Ck} according to the equivalence relation
ε↔ given by Definitions

1 and 2, and the vectors (φ(ε)
1 , . . . ,φ(ε)

m ) (of the latent variables associated to each C
(ε)
j ,

j = 1, . . . , m) and (n(ε)
1 , . . . , n(ε)

m ) (size vectors of the sets among {C1, . . . , Ck} composing
C

(ε)
1 , . . . , C(ε)

m ). Specifically, we are applying the deterministic DBSCAN procedure to the
species sampling mixture model, obtaining a new model, called b-DBSCAN.

The new partition ρε = {C(ε)
1 , . . . , C(ε)

m } is such that, for each h = 1, . . . , m:

C
(ε)
h = Cl1(h) ∪ · · · ∪ Clkε

h
(h), {l1(h), . . . , lkε

h
(h)} ⊆ {1, . . . , k}. (4)

In brief, (4) states that every element C
(ε)
h of the partition ρε is a finite union of

some elements of the partition ρ, depending on ε and the index h. Let us con-
sider now, for each h = 1, . . . , m, the vector φ

(ε)
h := (φl1(h), . . . , φlkε

h
(h)) and the vec-

tor n(ε)
h := (#Cl1(h), . . . , #Clkε

h
(h)) = (nl1(h), . . . , nl

kh
ε

(h)), and define φ(ε) := (φ(ε)
1 , . . . ,φ(ε)

m ),

n(ε) := (n(ε)
1 , . . . , n(ε)

m ). Some calculations (see the Appendix in the supplementary materi-
als) show that the b-DBSCAN model can be expressed as

X1, . . . , Xn|C(ε)
1 , . . . , C(ε)

m ,φ(ε), n(ε) ∼
m∏

h=1

f̃
(

X
C

(ε)
h

; φ(ε)
h , n(ε)

h

)

(
C

(ε)
1 , . . . , C(ε)

m ,φ(ε), n(ε)
)

= DBSCAN({C1, . . . , Ck}, (φ1, . . . , φk), d, ε) (5)

φ1, . . . , φk|k iid∼ P0 ρ ∼ π (ρ) = p(#C1, . . . , #Ck),

where the density f̃ (·; φ(ε)
h , n(ε)

h ) is a finite mixture of densities in {f (·, θ ), θ ∈ �} and its ex-
pression has been given in the online Appendix (see (14)). Observe that we elicit the prior on
the parameter of interest (ρε,φ

(ε), n(ε)) := DBSCAN( {C1, . . . , Ck}, (φ1, . . . , φk), d, ε) as



the prior induced by a deterministic transformation of (ρ,φ). We refer to the three equations
(5) as b-DBSCAN model in the rest of the article.

To make inference, we need to sample from the posterior distribution
L(ρε,φ

(ε), n(ε)| data) which, augmenting the state space, can be expressed as the marginal
distribution of

L
(
ρε,φ

(ε), n(ε), ρ,φ|data
)

= L
(
ρε,φ

(ε), n(ε)|ρ,φ, data
)
L(ρ,φ|data). (6)

Since (ρε,φ
(ε), n(ε)) is a deterministic function of (ρ,φ), the first factor on the right-hand

side of (6) is degenerate on DBSCAN({C1, . . . , Ck}, (φ1, . . . , φk), d, ε), while the second
is the posterior distribution of the parameter (ρ,φ) in models (1)–(2).

In the rest of the article we fix ε, without assuming it random. In fact, from the proof of (5)
(see (10) in the online Appendix), it is clear that, conditionally to (ρ,φ), the distribution of
data does not depend on ε. This also implies that, as far as density estimation is concerned,
models (3) and (5) are equivalent. As a consequence, posterior computation (for fixed ε)
is standard here by means of the augmentation step (6). However, to be “transparent,” the
MCMC scheme and the Bayesian estimate of the random partition ρε are briefly described
in the Appendix (see the online Appendix B, Computational Details).

4. CLUSTERING VALIDATION TOOLS

It is clear that one of the main issues in our approach is the choice of ε. As the application
sections will show, this hyperparameter strongly affects the posterior cluster estimate. Here
we propose to fix ε to optimize some suitable posterior functionals. Our approach is
the following: (a) fix a grid of values ε1, . . . , εr ; (b) evaluate the posterior expectation
E(H(ρεj

)|data) for a suitable function H for j = 1, . . . , r; (c) choose the optimal εj among
ε1, . . . , εr . As H, we use either standard tools as the silhouette coefficient (Rousseeuw
1987) and the adjusted Rand index (Hubert and Arabie 1985), or new indexes built from
the posterior predictive distribution under our model.

As far as the latter indexes are concerned, let Xnew be a new observation from (1)–
(2), and, for i = 1, . . . , n, let Y ε

new(Xi) = 1 if Xnew is in the same cluster as Xi , and
0 otherwise. Therefore, for each i, we consider L(Xnew|Y ε

new(Xi) = 1, data), that is the
posterior predictive law of a new observation conditionally to the event that this observation
share the same cluster with Xi . For a fixed ε, we compute conditional posterior predictive
residuals defined as

r
(ε)
i := ri = Xi − E

(
Xnew|Y ε

new(Xi) = 1, data
)

(
var

(
Xnew|Y ε

new(Xi) = 1, data
))1/2 . i = 1, . . . , n. (7)

When data are multivariate, the previous square root of the matrix stands for its Cholesky
decomposition matrix. For each data component j = 1, . . . , p, we compute

Ind(ε)
j := 1

n

n∑
i=1

r2
i,j , (8)

which represents a predictive goodness-of-fit index of the b-DBSCAN-mixture model on
the jth data component as a function of ε.



Moreover, we consider the following posterior predictive probabilities, for any fixed
ε > 0:

P
(
Y ε

new(Xi) = 1|Xnew = Xi, data
)
, i = 1, . . . , n. (9)

In words, for each i, (9) is the probability that a new observation is assigned to the same
cluster as Xi , conditionally to the event that Xnew and Xi assume exactly the same value.
However, for a fixed i, the value assumed by such an index cannot be interpreted “per
se,” but it must be compared to all the other values (j �= i). High values denote that Xi is
“nested” in its cluster, while small values suggest that Xi is a “frontier” point in the cluster it
has been assigned to. Hence, those probabilities have an interpretation as misclassification
indexes.

The online Appendix shows how to compute (7) and (9) by means of a posterior sample
of (ρ,φ).

5. SIMULATED DATA

In this section we illustrate the proposed model with application to a simulated dataset
of size n = 1000. In particular, we simulated iid observations from a mixture of bivariate
densities (see Figure 1); there are two main groups of observations, from the two components
of the mixture: one has a sharp round shape and it is located around the point (0, 0) (cluster
A), while the other lays on a semicircular region on the right of the previous group (cluster
B). The Bayesian cluster estimates here (and in the next section) are defined as the partition
minimizing posterior Binder’s loss function with equal misclassification costs; see the
online Appendix B in the supplementary materials for more details.

5.1 b-DBSCAN CLUSTERING

As far as the b-DBSCAN mixture model (5) is concerned, we assume Gaussian ker-
nels for {f (·; θ )}, while the mixing measure is the Dirichlet process. In particular, we
complete the prior specification by assuming a prior α ∼ gamma(γ1, γ2), while P0(dθ ) =
N (dμ|m0, �/κ0) × Inv-Wishart(d�|ν1, �1), where θ = (μ,�). Here, E(α) = γ1/γ2 and
E(�) = �1/(ν1 − p − 1). At first, we fixed ε = 0, that is, when model (5) reduces to a
Dirichlet process mixture (DPM) model. As far as the hyperparameters are concerned, we
have performed a robustness analysis, choosing different values for γ1, γ2, m0, κ0, ν1, and
�1. The analyses, not reported here, show that, regardless of the values of the hyperpa-
rameters, the estimated number of clusters is larger than the true one (i.e., 2). This is an
expected result, since many Gaussian densities are needed to fit cluster B (see Figure 1(a)).

On the other hand, when ε is larger than 0, to make the b-DBSCAN model more flexible,
we recommend to fix hyperparameters so that the conditional variance of f (·; θ ) is small,
and the prior expected number of mixture components is large. In particular, we fixed
γ1 and γ2 such that E(α) = 11, var(α) = 4, m0 = (0, 0)T , κ0 = 0.001, ν1 = 10 and �1 =
diag(0.1). Of course, we also need to choose a distance d(·, ·) between the distributions.
Here we report estimates when d is the L2 distance and the Kullback–Leibler I-divergence
(it can be symmetrized to become a pseudodistance). Figures 1 and 2 show the estimates
for different values of ε under these distances. As we expected, the estimated number of
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Figure 1. Simulated dataset: posterior estimates of the random partition when d is the symmetrized Kullback–
Leibler I-divergence; (a): ε = 0, m̂ = 7, (b): log(1 + ε) = 2.5, m̂ = 5, (c): log(1 + ε) = 3, m̂ = 2. Each symbol
in the graph represents a cluster.

clusters m̂ reduces as ε increases: in fact, the model groups the DPM clusters into new
bigger clusters.

The choice of the distance can greatly affect the posterior cluster estimate: for the
Kullback–Leibler I-divergence, as well as for the Hellinger distance case (not reported
here), as ε increases, groups with similar mean parameters are merged, and we find good
posterior estimates (Figure 1(c)). In contrast, under the L2 distance, as ε increases, groups
with similar covariance matrices are merged, and in this case the clusters follow a different
grouping path, leading to unsatisfactory estimated partitions (Figure 2(c)). This is clear
since, for fixed variances, the L2 distance is sensitive to differences between the means,
while the Kullback–Leibler I-divergence, for fixed means, is sensitive to differences between
the variance matrices. Mathematical details are given in the online Appendix D.
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Figure 2. Simulated dataset: posterior estimates of the random partition when d is the L2 distance; (a): ε = 0,
m̂ = 7, (b): ε = 1.925, m̂ = 5, (c): ε = 2.2, m̂ = 3. Each symbol in the graph represents a cluster.

To choose a value for ε, for instance when d is the symmetrized Kullback–
Leibler I-divergence, we fixed a grid of values of ε, that is, log(1 + ε) ∈ {0.5, 1.5, 2,

2.5, 2.75, 3, 3.5, 4}. For each j = 1, . . . , 8 we computed E(H(ρεj
)|data) through the

MCMC method, whereH is the silhouette coefficient or the adjusted Rand index. Figure 3(a)
shows the two posterior functionals, as ε varies. Both lines lead to the same conclusion:
log(1 + ε) = 3 is the optimal choice. Figure 1(c) shows that, under this choice, our estimate
is very close to the true partition.

We computed the misclassification error under the optimal estimated partition. We
found that 337 points in cluster A, and 644 in cluster B, were correctly classified; the overall
misclassification rate is 1.9%. Moreover we computed the misclassification probability
index (9) for each data points. To compare all these individual values, we first computed
q0.25 and q0.75, the first and the third sample quartile of the values of the index. We
classified as boundary points all data such that the probability index was smaller than
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Figure 3. Simulated dataset: posterior expectation of the adjusted Rand and silhouette indexes as a function of
ε (panel (a)) and misclassification graph under the optimal estimated partition (panel (b)).

q0.25 − 1.5(q0.75 − q0.25). A summary of the results is depicted in Figure 3(b), where the
boundary points are represented by (red) triangles, while misclassified data are represented
by (blue) crosses. Observe as misclassified data lie in the middle of the two main groups,
where there is uncertainty between the two clusters membership.

5.2 COMPARISON WITH OTHER METHODS

As we mentioned in the Introduction, there are many model-based and heuristic clus-
tering techniques that can be compared with the Bayesian cluster estimate under the b-
DBSCAN mixture model. Among the latter, our main “competitors” are the heuristic
DBSCAN algorithm, since ours is its Bayesian nonparametric mixture counterpart, and the
hierarchical and k-means algorithms (widely known even outside the statistical commu-
nity). On the other hand, we showed in (5) that our model can be interpreted as a mixture
of mixtures; hence, as a (Bayesian) model-based alternative, we have considered the nested
Dirichlet process (NDP) mixture model (Rodriguez, Dunson, and Gelfand 2008), that has
a similar mixture interpretation.

To apply the heuristic DBSCAN procedure to the simulated data, we considered the
Euclidean distance among points in R2 to build clusters and fixed the minimum number
N of points to define a group to be a cluster equal to 1 and 6. In Figure 4(a) and (b) we
report clustering results for two different values of (N, ε), choosing these two pairs among
those better reflecting the true partition. When N = 1, noise elements are not allowed,
and the algorithm identifies many “singleton” clusters (panel (a)), in addition to two main
ones. In contrast, when N = 6, less clusters are found, but many points are classified as
“noise” by the algorithm; see the diamonds in Figure 4(b). In the same plot, the three full
squares seem to form a cluster on their own, despite that N = 6 is the minimum number of
points to define a cluster. The inconsistency is a consequence of the nonuniqueness of the
DBSCAN-partition when N > 1.
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Figure 4. Simulated dataset: heuristic DBSCAN clustering results of the simulated dataset when N = 1, ε =
0.075 (a) and N = 6, ε = 0.1 (b), NDP mixture model estimate (c). The empty and crossed circles in (c) belong
to the same cluster, but to different subclusters of the NDP mixture model.

On the other hand, we considered the following NDP mixture model:

Xi |Gi

ind∼
∫

f (·; θ )Gi(dθ ) Gi |Q iid∼ Q i = 1, . . . , n,

where Q
a.s.=

∑∞
1

ωlδτl
, {ωl} are Dirichlet process stick breaking weights with parameter

α > 0 and the location points τl’s are iid from a Dirichlet process with parameters β > 0 and
probability measure P0. Here f (·; θ ) is the Gaussian kernel and the mean mixing distri-
bution P0 is assigned as under the b-DBSCAN model. Under this model, the prior cluster



Table 1. Adjusted Rand index for the cluster estimates under different techniques

Fixed m

2 3 4

k-means 0.005 0.474 0.364 DBSCAN (N = 1, ε = 0.075) 0.789 (m̂ = 2)
Hierarchical - Single −0.001 0.001 0.006 DBSCAN (N = 6, ε = 0.1) 0.826 (m̂ = 3)
Hierarchical - Complete 0.278 0.136 0.329 NDP mixture 0.625 (m̂ = 3)
Hierarchical - Average 0.057 0.549 0.545 b-DBSCAN 0.925 (m̂ = 2)

assignment consists of two levels of hierarchy: one assigning data to random mixing dis-
tributions (and forming subclusters), and the other grouping the mixing distributions them-
selves, building clusters. However, even if this model yields clustering on both observations
and distributions, here we are interested only in grouping the distributions {G1, . . . ,Gn},
which should represent clusters of subclusters. We completed the prior specification fixing
α so that the prior number of clusters of distributions is 2 and the parameter β is a priori
gamma-distributed; we did some robustness analysis on hyperparameters, and we report
the best cluster estimate in Figure 4(c). It is clear that the model is not able to allocate data
points which belong to cluster B in one single cluster.

To finish up and summarize the comparison, Table 1 displays the adjusted Rand index
between the true clustering and the estimates under different clustering techniques or
models. For k-means and hierarchical algorithms, where the number m of clusters must be
fixed in advance, we choose m = 2, 3, 4, while for the other methods the table displays
(in parenthesis) the estimated number of clusters. Table 1 points out that k-means and
hierarchical algorithms are not able to recover cluster B; this conclusion is also supported
by the plots of cluster estimates, not included here. The heuristic DBSCAN performs pretty
well, however finding many singleton or noise clusters (see Figure 4(a) and (b)). On the
other hand, the b-DBSCAN performs outstandingly well for this dataset.

In conclusion, we recommend Bayesian nonparametric clustering models, first because
they seem to be more effective (as shown by Table 1), and second because inference is
“richer,” that is, not limited to point estimation. Moreover, not only we are able to assign
a data point to a cluster, but we also quantify the uncertainty among cluster assignments
through posterior predictive probabilities (9).

6. YEAST CELL CYCLE DATA

We fitted our model to a dataset, very popular in the literature on clustering of gene
expression profiles, usually called yeast cell cycle data (see Cho et al. 1998). A gene
expression dataset from a microarray experiment can be represented by a real-valued
matrix [Xij , 1 ≤ i ≤ n, 1 ≤ j ≤ p], where the rows (X1, . . . , Xn) contain the expres-
sion patterns of genes and are our data points. Each cell Xij is the measured expression
level of gene i in sample (or at time) j. The yeast cell cycle data contain n = 389 gene
expression profiles, observed at 17 different time values, one every 10 min from time



zero. We chose only some components of the whole expressions, representing the sec-
ond cell cycle (j = 9, . . . , 17). The final dataset (n = 389, p = 9) has been obtained by
standardizing each row of the gene expression matrix to have zero mean and unit vari-
ance. By visual inspection, Cho et al. (1998) grouped the data according the peak times
of expression levels; see Figure 5. They detected five peaking points, corresponding to
five phases of the cell cycle. As in the previous example, we assume the Gaussian ker-
nel as f (·; θ ) and the Dirichlet process as mixing measure. The latent variable here is
θ = (μ, σ 2), where μ is the mean and σ 2Ip is the covariance matrix of the Gaussian distri-
bution. Moreover, conditionally on the total mass parameter α, P ∼ Dirichlet(α, P0), with
α ∼ gamma(γ1, γ2), and P0(dμ, dσ 2) = N (dμ|m0, σ

2/κ0Ip) × inv-gamma(dσ |a, b). Ob-
serve that the Gaussian kernel densities have diagonal covariance matrices, which greatly
simplifies computation, since only diagonal matrices must be inverted in the MCMC
algorithm. On the other hand, this implies that data are modeled from a mixture of
Gaussian kernels with spherical contour lines, a very strong assumption when ε = 0,
but not in case ε > 0, when the clusters are modeled as finite unions of round shaped
groups.

As far as the choice of the hyperparameters is concerned, to make the model more
flexible, we fixed them so that the prior number of mixture components is large. In particular,
we fixed (m0, κ0, a, b) so that the prior variance for μ is large (10Ip), but the prior mean
and variance of σ 2 are small (both equal to 0.1). Furthermore, we set (γ1, γ2) = (2, 0.01),
to obtain a vague prior for the total mass parameter α.

In our experiments we considered d as the Kullback–Leibler I-divergence (the Hellinger
distance provided very similar results). We applied the ε-strategy described in Section 4:
we fixed a grid of values of ε and computed Ind(ε)

j in (8) for each j ∈ {10, 11, 12, 14, 16},
that is, when data have peaks according to Cho et al. (1998). We found that, except for
the late G1 phase (Figure 5(b), j = 11), all the index trajectories have a minimum around
ε = 2.8; furthermore, the sum of the indexes has a minimum exactly at ε = 2.8. Figure 6
shows our cluster estimate for such a value of ε. Observe that we found eight clusters,
instead of five detected by the reference partition in Figure 5. Our clusterization takes into
account not only the different peaks, but also the entire trajectories of the gene expressions.
As a final remark, note that a positive feature of our procedure is the ability to classify
nonstandard data: see the “outlier” trajectories grouped into clusters 7 and 8 (Figure 6,
panels (g) and (h)). We have also checked robustness of these results to different choices
of hyperparameters; for brevity, this analysis is not reported here.

Finally, we made a comparison with some heuristic methods (k-means and hierarchical).
As criterion that applies under both heuristic and model-based techniques, we evaluated
the silhouette coefficient of the estimated clustering. We found that, for the same number
m of clusters (estimated or fixed), when m = 2, . . . , 11, the silhouette coefficient prefers
our model. In particular, the silhouette coefficient of our “best” cluster estimate (ε = 2.8,
m̂ = 8) is 0.282, while it is at most 0.187 for the heuristic models with m = 8. On the other
hand, if m = 5 the best silhouette coefficient of the heuristic algorithms is 0.259, while
its value for the b-DBSCAN estimates when ε = 3.15 (m̂ = 5) is 0.372. The silhouette
coefficient of the reference partition is 0.129.
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Figure 5. Yeast cell cycle dataset: reference partition by Cho et al. (1998).
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Figure 6. Yeast cell cycle dataset: optimal posterior cluster estimate.



7. DISCUSSION

We have presented a Bayesian nonparametric framework for model-based clustering.
Data have been initially modeled through a species sampling mixture model. The core of
our work lies in defining the data partition parameter in a new way: two observations are in
the same cluster if the distance between densities corresponding to their latent parameters
is smaller than a threshold ε. This definition is made mathematically coherent introducing
the reachability property in Definitions 1 and 2. We call the proposed model b-DBSCAN
mixture. This model can be interpreted as a mixture whose components are themselves
mixtures of parametric densities (for instance, Gaussian kernels). Crucial ingredients are
the (pseudo-)distance d between densities and the hyperparameter ε.

We have discussed implementation and applications of the b-DBSCAN mixture model
to two datasets. Our model works very well; however, it must be mentioned that, as with
all Bayesian nonparametric models, it has a high computational cost, compared to heuristic
clustering techniques. As far as the elicitation of ε is concerned, we have suggested a
strategy to fix it, as the optimal value of the posterior expectation of a function of the
random partition.

An interesting property of our model is that it is not directly affected by “curse of dimen-
sionality.” Even when data are high dimensional, as long as the underlying species sampling
mixture model is able to detect the subclusters which are candidate to be grouped, our model
works well. The computational burden due to high dimensionality of the probability distri-
butions remains unchanged from the underlying species sampling mixture models. In fact,
under the b-DBSCAN model, reclustering of data is achieved through distances among
densities {f (·, θ )}, which are scalar objects, whatever is the dimension of data (p) or of the
parameter θ (s).

In the two applications here, we have always assumed a DPM model. Interested readers
should refer to Cremaschi (2012) for an application with a proper NGG-mixture model.
Besides, in this work, we have focused on Gaussian kernels, but of course other parametric
families could be fixed as well. The choice of the Gaussian distribution is essentially due to
nice theoretical properties (mixtures of Gaussians are dense in the space of densities on an
Euclidean space), low computational effort (conjugacy), and closed form of some distances
(L2, Kullback–Leibler and Hellinger).

Finally, extensions to the current approach include further work on the elicitation of
ε and categorical formulations of this clustering model. These and other topics are the
subject of current research.

SUPPLEMENTARY MATERIALS

Data and codes: Data, R, and C codes to perform posterior inference under b-DBSCAN
model for the two applications in Sections 5 and 6. Please read file README contained
in the tar.gz file for more details. (DataCodes-bDBSCAN.tar.gz)

Appendix: The supplementary files include the Appendix, which gives the derivation of
(5) (Appendix A), computational details on the MCMC algorithm to compute poste-
rior inference under the b-DBSCAN model (Appendix B), computation of (7) and (9)



(Appendix C), mathematical details about derivation of the KL, and L2 distances be-
tween Gaussian densities (Appendix D). (FourAppendices.pdf)
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