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An original variational formulation is developed for the inverse problem

of reconstructing full-field structural displacement and pressure distribution

of membrane wings subjected to steady loads from membrane strain dis-

tribution. A direct solution approach in co-simulation with fluid-dynamics

solvers is also presented. Moving Least Squares are used to smooth and

remap surface strain measurements, estimated from digital image correla-

tion, as needed by the inverse solution meshing. The same approach is used

to map the structural and fluid interface kinematics and loads during the

fluid-structure co-simulation. Both the direct and the inverse analyses are

validated by comparing the direct predictions and the reconstructed defor-

mations with experimental data for prestressed rectangular membranes sub-

jected to static and unsteady loads. The load distributions reconstructed

using the inverse analysis are compared with the corresponding loads ob-

tained using the direct analysis. The inverse analysis runs on standard

off-the-shelf PCs and can be implemented in real-time, providing load dis-

tribution estimates at a rate in the order of tens of datasets per second.
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Nomenclature

Symbols

AoA = Angle of attack ◦

D = Plane stress constitutive properties matrix MPa

ε = Green-Lagrange membrane strains

E = Tensile modulus MPa

h = Thickness mm

ν = Poisson’s modulus

PS = Initial prestrain %

ρ = Density kg/m3

σ = Membrane stress tensor MPa

T = Pretension’s matrix MPa

u = Displacement vector mm

V = Flow velocity m/s

wref = Reference transverse displacement mm

Superscripts

(DIC) = Digital Image Correlation
(fsi) = Fluid–Structure Interaction analysis
(ifem) = Inverse Finite Element Model analysis
(m) = Mapped by MLS

I. Introduction

The work presented within this paper seeks to obtain full-field estimations of the struc-

tural displacement and surface stress fields for a membrane wing for Micro Air Vehicle (MAV)

applications. The source of these estimations is the elastic wing deformation, experimentally

measured in a low-speed wind tunnel using a full-field, non-contact, digital image correlation

(DIC) technique, originally developed by researchers at the University of South Carolina [1].

In MAV designs, much like natural fliers, compliant membranes are used to passively

enhance flight characteristics [2]. Research on flight utilizing flexible wings within the MAV

scale dates back to the 19th and 20th century, but only over the last ten to fifteen years, com-

putational fluid dynamic (CFD) simulations and structural finite element models (FEM) have

become far more prevalent in this field; this is due to the advent of more powerful, readily

available computers. Various numeric fluid-structure interaction simulations were developed

for both fixed and flapping wings in order to take into account the coupled behavior of a

non-rigid wing and the fluid flow around it [3, 4, 5]. While coupled CFD and FEM models
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have proven to be accurate for solving fluid structure interaction problems [3], they are com-

putationally expensive and are not suitable for solving problems in real-time with today’s

computer technology. In addition to simulation, researchers have also sought to characterize

the unsteady flow around flapping (flexible and rigid) wings experimentally [6, 7, 8]. The un-

steady fluid structure interactions of membrane wings have been largely investigated, under

both steady and dynamic flow conditions [9, 10]. Wings studied were typically rectangular,

perimeter reinforced, covered with a thin rubber membrane and had an aspect ratio of two.

Membrane wings display unique aerodynamic characteristics due to their aeroelastic nature,

which can provide performance improvements over their rigid airfoil counterparts [11]. Ex-

tensive research has been conducted on the dynamics of flexible wings, but limited research

exists on practical, computationally predictive models dealing with the dynamic behavior of

these wings.

A flexible membrane (on a fixed wing) can be successfully treated as inextensible, using a

linear stress-stiffening model [12]. The linear stress-strain assumption holds, provided that

the strain accumulated due to the aerodynamic load is small in comparison with the prestrain

of the membrane.

Because of unsteadiness, flow separation, and turbulence, previous studies using panel

methods and simplified laminar solvers have failed to capture the exact effect of membrane

wings on performance. To evaluate the effect of aeroelastic cambering on flapping flight

performance of flexible wings (at low Reynolds number), an unsteady large-eddy simulation

(LES) flow solver was coupled with a linear elastic membrane model with different prestress

values [13]. The introduction of camber increases thrust and lift production significantly,

although the transverse displacement was up to 25% of the chord, which means a membrane

strain of more than 12%. This, in turn, may cause a substantial change of the membrane

stress, making the problem strongly nonlinear. In practice, the linearized structural model,

which assumes constant membrane prestress, is inadequate for straining of such magnitude.

Currently, the numerical validation of the flow field created by a MAV wing is largely

limited to a comparison of numerical aerodynamic coefficients with those garnered through

wind tunnel test analysis [14], or to a comparison with flow visualization, focusing on the

flow separation, transition, and reattachment locations over the wing [15].

Knowledge of the full-field differential pressure distribution over the wing surface can

provide a further level of comparison, indicating areas over the wing where the model may

be inadequate. An inverse method could take the deformed wing shapes and estimate the

resulting pressure distribution within flight regimes that are difficult, if not impossible to

simulate through either CFD or wind tunnel testing.

Aerodynamically, inverse problems have two main applications: they could be used for

inverse design problems for optimal airfoil geometries [16], or for structural health monitoring
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(an elastic wing is mounted with deformation sensors, typically strain gages or fiber-optics,

whose signals are used to reconstruct the displacement field [17], or the original wing load-

ing [18]).

Inverse FEM analysis has been proposed also to identify the mechanical properties of

membranes, e.g., when unconventional methods are needed for characterizing the behavior

of materials and the associated boundary problems are complex [19, 20]. These methods are

applied for example in the identification of the mechanical properties of biological tissues [21].

II. Methodology

A membrane structural model is developed for both direct and inverse dynamics. The

direct dynamics analysis is used to predict the deformed shape under specified loads. A mem-

brane finite element, implemented in a multibody formulation [22], is used in co-simulation

with a fluid dynamics solver to predict the configuration of the system under static and

unsteady loads [23, 24]. The inverse kinematics analysis is used to reconstruct the mem-

brane shape from the membrane strain field. The inverse problem of full-field structural

displacement reconstruction is addressed through the application of a variational formula-

tion, leading to a versatile, robust and computationally efficient inverse membrane nonlinear

finite element analysis [25], which was inspired by analogous, although linear, approaches

developed in the past for shell-like structures [18, 17]. In the current case, nonlinear elasticity

is mandatory to capture the essence of the transverse load carrying capability of membranes,

whereas in the previously mentioned prior formulations the problem was restricted to linear

elasticity: when subjected to a finite amount of transverse displacement, the assumption of

constant membrane prestress used in linearized membrane models is no longer acceptable.

The complete set of membrane strain measures, consistent with non-linear membrane theory,

needs to be used.

Exploiting the functionalities provided by the free software project FEniCSa [26] (a col-

lection of libraries specifically designed for the automated and efficient solution of PDEs),

a three-node inverse membrane element was developed [27]: three displacement degrees of

freedom are used for each node, namely two displacement components in the plane of the

membrane and one along the transverse direction. The error function is the difference be-

tween the membrane strain measures expressed as functions of the displacements and the

corresponding membrane strain measures obtained by re-sampling the experimental strains.

A penalty-parameter controlled regularization term mitigates the ill-posedness of the prob-

lem, which is associated with the non-uniqueness of the solution in terms of transverse

displacement for given membrane stresses and with the high-order nonlinearity of the mem-

ahttp://fenicsproject.org/
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brane strains with respect to transverse displacement. In fact, in addition to the usual level

of ill-posedness of linear inverse problems (they do not necessarily satisfy conditions of ex-

istence, uniqueness, and stability [28, 18]), the present one is also characterized by the fact

that for null membrane prestress the elastic problem is exactly singular in configurations

that present no transverse displacement of the membrane.

The reconstructed shape of the membrane is used to estimate the surface loads. The

actual loads that cause the deformations are unknown; however, their influence is represented

in the measured strains. The procedure is verified and validated by correlation with the

surface load values predicted by the coupled fluid-structure analysis.

The present work uses an experimental setup that can accurately obtain the full-field

three-dimensional displacement and membrane strain over a moderate size wing in wind

tunnel testing conditions. Experimental data is based on DIC in conjunction with a load

cell and tensile test frame to measure stress and strains: DIC measurements were taken to

generate virtual strain sensors on the surface of the membrane [29]. Measurements were

further manipulated using moving least-squares (MLS), as illustrated in Ref. [30], to remap

the measured displacements and strains on the same grid that is used for the inverse analysis.

This form of remapping also produces some amount of spatial filtering.

The proposed methodology enables accurate reconstruction of the three-dimensional dis-

placement field. It may be effectively employed to develop real-time processing of the sensed

information. This “inverse” technique (as opposed to conventional “direct” analysis, namely

estimating the displacement field from a measured pressure distribution) represents a viable

alternative to conventional pressure measurement techniques in low Reynolds number envi-

ronments. In fact, the thin elastic membrane wing skins used to decrease the vehicle weight

and obtain a certain amount of passive shape adaptation [4] are particularly susceptible to

intrusive measurements.

Analytical and numerical results, along with experimental measurements of actual mem-

brane wing artifacts subjected to a variety of steady and unsteady flow conditions, are used

to validate the proposed formulation.

III. Membrane Inverse Analysis

A membrane is a thin structural element, i.e., an element whose size in one direction

(the thickness, z or 3 in the following) is extremely small compared with the other two (x

and y or 1 and 2 in the following), see Fig. 1. The transverse gradients of strain and stress

components along the reference surface of the membrane are negligible. As a consequence,

a membrane cannot withstand transverse loads unless some in-plane prestress is present.
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Figure 1. Membrane model.

A. Kinematics

Assuming that in-plane strains are uniform throughout the thickness of the membrane, strain

measurements on just one side of the membrane would be sufficient to characterize the in-

plane strain field (on the contrary, in the case of a shell, the average of the measurements

on both surfaces would be needed to eliminate the effect of bending).

The membrane strains, i.e., the in-plane components of the Green-Lagrange strain tensor,

defined as:

εx = u/x +
1

2

(

u2
/x + v2/x + w2

/x

)

(1a)

εy = v/y +
1

2

(

u2
/y + v2/y + w2

/y

)

(1b)

γxy = u/y + v/x + u/xu/y + v/xv/y + w/xw/y, (1c)

can be collected in a vector ε:

ε =















εx

εy

γxy















=















ε11

ε22

2ε12















(2)

or

εij =
1

2

(

ui/j + uj/i + uT
/iu/j

)

(3)

where (♣)/(♠) indicates the derivative of (♣) with respect to (♠), vector u = {u; v;w} =

{u1; u2; u3} collects the displacement components u = u1 and v = u2 in the plane of the

membrane and w = u3 along the transverse direction.
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B. Cost Function

The inverse kinematics problem can be formulated by defining an appropriate cost function of

the error e between the measured and the configuration-dependent strains. For this purpose,

consider a set of strain measurements ε
(m)
x , ε

(m)
y , and γ

(m)
xy , obtained for example from DIC,

namely:

ε
(m) =















ε
(m)
x

ε
(m)
y

γ
(m)
xy















, (4)

that correspond to the configuration-dependent strains defined earlier. The error e is

e = ε(Grad(u))− ε
(m), (5)

with Grad(♣) = {(♣)/x; (♣)/y}. The following cost function is considered:

Φ(u) = Φe(u) + kΦu (6)

where:

• Φe(u) is a quadratic function of the error e,

Φe(Grad(u)) =
1

2

∫

A

eTDe dA (7)

with D an arbitrary symmetric, positive definite weighting matrix; e.g., but not nec-

essarily, the plane stress constitutive properties matrix, which for isotropic materials

is

D =
E

1− ν2









1 ν 0

ν 1 0

0 0 (1− ν)/2









(8)

• Φu is a regularization contribution in the derivatives of w,

Φu(u) =
1

2

∫

A

(Grad(w)−Grad(wref))
TT(Grad(w)−Grad(wref)) dA (9)

with wref a reference transverse displacement, defined in the following, and the weight-
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ing matrix

T =





Tx Txy

Txy Ty



 (10)

defined in analogy with the strain energy contribution associated with pre-tension:

Tx > 0, Ty > 0, and
√

TxTy > |Txy| ≥ 0 such that T > 0 (positive definite);

• k is a parameter that restores dimensional consistency and weighs the regularization

contribution.

C. Regularization

The regularization contribution is defined in such a manner that it naturally vanishes at

convergence by properly crafting the reference displacement, wref. Such correction is needed

to add a positive definite quadratic contribution to the cost function, and thus make it

convex on the entire domain. In fact, the minimization of Φe(u) with respect to the actual

displacement field u requires its partial derivatives with respect to each of the components u,

v, and w to vanish. Clearly, as a consequence of the strain definitions of Eq. 1, Φe(Grad(u))

is not a convex function of w when Grad(w) ≡ 0, i.e., when the membrane is parallel to the

reference plane, and the problem is ill-posed in the vicinity of such condition. This approach

resembles the so-called damped least squares, also known as the Levenberg-Marquardt algo-

rithm [31, 32].

The inverse formulation does not need elastic or inertial material properties. The ref-

erence transverse displacement wref 6= 0 is needed to deflect the solution towards a specific

direction, since the same membrane strain pattern is obtained with ±w. One should choose a

tentative initial value for wref: a convenient choice can be the one corresponding to a uniform

pressure difference applied on the membrane, or in any case a prescribed displacement that

qualitatively resembles the expected solution [27]. Subsequently, the reference solution is up-

dated by interpolating between the current value w
(i)
ref and the solution at the current step i,

i.e., w(i)+∆w(i), such that at convergence, when ∆w(i) ∼= 0, then (Grad(w)−Grad(wref)) ∼= 0.

Thus, w
(i+1)
ref = (1 − α)w

(i)
ref + α(w(i) + ∆w(i)), where 0 < α ≤ 1 is a relaxation parameter

(α = 1 implies no relaxation).
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D. Pressure Field Reconstruction

The estimated displacement field u = {u; v;w} = {u1; u2; u3} can be used to estimate the

distributed force field p acting on the membrane [33]:

∫

A

δε : σ dA =

∫

A

p · δv dA (11)

where σ = σ(ε) is the known stress tensor, expressed as a function of the reconstructed

strain tensor ε = ε(u), and δv is an appropriate vector test function, which is required

to vanish on the boundary ∂A of A. Thus, the reconstructed distributed force field p is

expected not to be accurate along the boundary of the membrane domain due to the choice

of the boundary conditions.

E. Verification

Consider a direct (forward) problem of an edge-clamped square membrane (without pre-

strain) bent under the action of the distributed transverse loading (hydrostatic pressure).

The strains, computed from the direct problem, are re-sampled to provide the membrane

strain values at the points required by the inverse analysis [27, 25]. The re-sampled trans-

verse displacements are used to verify the quality of the inverse analysis. The numerical

solution, obtained using a fine mesh (20×20 pairs of elements), has been re-sampled using

a much coarser mesh (10×10). A third, intermediate mesh (12×12) has been used for the

IFEM procedure.

(a) Deformed shape (b) Transverse displacement error

Figure 2. Deformed shape and deformation error of a square membrane subjected to uniform
pressure (surface: reference FEM solution; wireframe: IFEM).

Figure 2(a) compares the deformed shape obtained by finite element analysis, with the

corresponding deformed shape obtained using the proposed IFEM procedure. Figure 2(b)

shows the transverse displacement error, computed as werr = |w(fem) − w|/max |w(fem)|,
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where w(fem) is the transverse displacement obtained by the reference finite element analysis,

whereas w is the transverse displacement reconstructed via IFEM.

The estimated displacement field is subsequently used to estimate the pressure acting

on the membrane; Table 1 compares the resultant (normal) force error obtained by using

the FEM pressure distribution (which is calculated from the displacements of the reference

FEM analysis) and the one obtained by using the pressure distribution computed from the

displacements estimated via IFEM analysis, with respect to the resultant (normal) force ob-

tained considering the ideal uniform pressure distribution, i.e., pressure times the membrane

surface area. To compute the resultant forces, the near-boundary region was omitted from

calculation, for the motivation mentioned above.

Table 1. Resultant normal force error (not considering the near-boundary region), comparison
of FEM and IFEM analysis with respect to the nominal value.

Reference FEM solution 1.64 %

Inverse FEM analysis 5.25 %

The results, in terms of transverse displacement, are satisfactory. Furthermore, the IFEM

and the FEM pressure distributions are quite similar on the entire domain, although both

of them are not significantly flat [33]. This is expected, due to the choice of the boundary

conditions. Nevertheless, the average values of the pressure distributions calculated using

the reconstructed displacements and those from the FEM analysis do seem to be accurate,

as shown by the resultant force errors (Tab. 1).

A typical inverse solution like the ones presented above, e.g., with a 12× 12 mesh and a

residual norm tolerance of 10−5, requires 5 to 8 iterations for each load step. Each iteration

requires about 27.5 ms on an off-the-shelf PC (in the present case, an Intel Core i7-2620M

with CPU at 2.70 GHz). The property of computational efficiency is of utmost importance

since the long term objective is the real-time implementation of the procedure.

F. Problem Well-Posedness

As we shall see, the membrane inverse problem may be ill-posed, and can have multiple

solutions. The geometry of a two-dimensional surface is characterized by two symmetric

tensors, called the first and second fundamental forms of a surface [34].

Let x(ξα), with α = {1, 2}, be the parametric equations of the surface. Let also gα = x,α =
∂x
∂ξα

and gα be the covariant and contravariant surface base vectors, respectively, defined in

such a way that gα · gβ = δβα, the Kronecker delta, with α, β = {1, 2}.

The first fundamental form a of the surface is nothing but its metric tensor, defined in

such a way that x,α = a · gα. It can be computed as a = gα ⊗ gα · gβ ⊗ gβ. The second

fundamental form b of the surface describes the rate of change of the surface normal n,

10 of 29

submitted



namely n,α = −b · gα.

The fundamental theorem of the theory of surfaces states that the first and second funda-

mental forms of a surface determine its shape up to its position in space [35]. In particular,

the fundamental theorem of surface theory asserts that, if a field of positive definite sym-

metric matrices of order two and a field of symmetric matrices of order two together satisfy

the Gauss and Codazzi-Mainardi equations (12) in a connected and simply connected open

subset of R2, then there exists a surface in R
3 with these fields as its first and second fun-

damental forms (global existence theorem) and this surface is unique up to isometries in R
3

(rigidity theorem). Thus, this theorem guarantees that, by knowing both the first and the

second fundamental form, the inverse problem of reconstructing the surface is well-posed.

The ill-posedness of the inverse problem comes from the fact that by measuring only the

membranal strain tensor ε one actually accounts only for the first fundamental form, and

not for the second. As a matter of fact, the membrane strain tensor ε, Eq. (2), is nothing

but the difference between the metric tensor a′ in the deformed configuration x′ = x + u,

computed with respect to the reference configuration, and the metric tensor in the reference

configuration a, i.e. ε = 1
2
(a′ − a). The difference between the second fundamental form in

deformed and reference configuration, i.e., k = b′ − b, is, instead, a suitable measure of the

flexure strain of a thin shell. This means that the inverse problem would be well-posed for

a shell model, provided both the membrane and flexure strain are measured.

Figure 3. Two possible solutions for a cylindrical bending inverse problem.

As an example of an inverse problem that is not solvable, consider a rectangular mem-

brane made of isotropic material, with Poisson coefficient ν = 0, and subjected to a cylin-

drical bending with a constant deformation ε11 = const and all the other deformation com-

ponents equal to zero, i.e. ε22 = ε12 = 0. It is trivial to verify that this problem has not

a unique solution. For example, both the deformed configurations of Fig. 3 are among the

possible solutions of this problem.

At this point it could be asked whether the inverse procedure described in this report leads

to meaningful results, if any. And, indeed, the procedure fails, as it should, when applied to

the ill-posed cylindrical bending problem described above. Nonetheless, it appears to work
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reasonably well for the test cases that were defined for this activity.

An insight into this apparent paradox comes from the fact that the covariant base vectors

gα can be used to compute the surface normal as n = g1×g2

||g1×g2||
. Then, since gα,βγ = gα,γβ,

there must be some compatibility equations between the first and the second fundamental

forms. These equations, known as Codazzi-Gauss equations, can be written in many ways.

One of them, reported below, is

b11|2 − b12|1 = 0 (12a)

b21|2 − b22|1 = 0 (12b)

b11b22 − (b12)
2 = Ka (12c)

where K is the Gaussian curvature of the surface and a = det(a). Thus, what makes

some problems solvable is the fact that the deformed configuration has a non-null Gaussian

curvature, K 6= 0, so that a link can be implicitly established between the first and the

second fundamental form of the surface.

From a physical point of view, what is really important is that the deformed configuration

should not allow an additional bending deformation of the surface that does not involve an

additional membrane deformation as well. In other words, the problem should be membrane-

dominated [36].

IV. Direct Analysis

The direct analysis is performed using a tightly coupled fluid-structure co-simulation in

which the structural problem is solved using the free general-purpose multibody dynamics

solver MBDynb [37], developed at Politecnico di Milano, and the fluid problem is solved using

a dedicated solver based on FEniCS [23, 24], where systems of Partial Differential Equations

(PDE) and corresponding discretization and iteration strategies can be defined in terms of a

few high-level Python statements which inherit the mathematical structure of the problem,

and from which low level code is automatically generated. The fluid dynamics code is based

on a stabilized finite element approximation of the unsteady Navier-Stokes equations (often

referred to in the literature as G2 method [38]).

The multibody solver is coupled with the external fluid dynamics code by means of a

general-purpose, meshless boundary interfacing approach based on Moving Least Squares

with Radial Basis Function [30]. This technique allows to compute a sufficiently regular

and accurate approximation of the field of the structural displacements and velocities at the

aerodynamic interface nodes, based on a set of structural nodes that is in general irregularly

bhttp://www.mbdyn.org/.
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distributed in the neighborhood of the interface. A “fish-bone” structure is obtained by

defining two points rigidly offset from each structural node along the normal to the membrane

reference plane in opposite directions, to obtain a symmetric layout. This guarantees that

node rotations related to bending are correctly transmitted to the aerodynamic wet surface

(i.e., the interface matrix is computed using displacements only, without directly involving

rotations).

The membrane element implemented in MBDyn is formulated as a four-node isoparamet-

ric element based on second Piola-Kirchhoff type membranal resultants [22]. The classical

Enhanced Assumed Strains (EAS) method [39] is exploited to improve the response of the

element: seven additional variables for each membrane element are added to the strain

vector [40].

The stress tensor, reorganized in the form of a vector, can be expressed as a function of the

strain tensor, reorganized in the same manner, using the constitutive law of the membrane

element given in Eq. (8):















σ11

σ22

σ12















= D















ε11

ε22

ε12















. (13)

In case of homogeneous constitutive properties, the forces per unit span are readily obtained

by multiplying the stresses by the thickness h of the membrane; otherwise, thickness-wise in-

tegration is required. Generically anisotropic constitutive properties can be defined, provided

matrix D is symmetric and positive definite but otherwise arbitrarily set by the user.

V. Results

Since the methods described above are being evaluated for their capability of estimating

an actual pressure distribution, it is first necessary to know what the applied pressure is, in

order to have a basis for comparison. For this reason, two experiments were conducted in

this work to provide different loading scenarios, in order to compare the direct prediction

and the reconstructed deformed shape with experimental data for prestressed rectangular

membrane wings subjected to hydrostatic pressure loads (Section B) and in steady level

flight (Section C).

Correlation is sought with respect to experimental results obtained in test campaigns

performed at Oregon State University, where elastic deformations and strains were measured

using DIC [29].

Figure 4 summarizes the verification procedure: the strain measurements are first re-
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sampled onto the numerical grid that is subsequently used for IFEM analysis by means of

a MLS procedure using radial basis functions, discussed in Section A, and initially devel-

oped for field interpolation at the interface between fluid and structure [30]. The re-sampled

measurements are used as inputs for the IFEM analysis. The re-sampled (transverse) dis-

placements are used to evaluate the quality of the reconstructed displacements via IFEM

and those predicted using the tightly coupled fluid-structure co-simulation.

Figure 4. Scheme of the verification procedure.

Furthermore, total force measurements are used to evaluate the total force reconstructed

by direct analysis and IFEM, and pressure distributions determined by direct analysis are

used to evaluate the pressure distribution reconstructed by IFEM.

A. Experimental Data Re-Sampling

Measurements provided by DIC [29] include the reference location in space of an arbitrary

set of points on the surface, arbitrarily chosen by the DIC algorithm when the measurement

system is activated, the displacements of the corresponding points in the current sample,

and an estimate of the surface strains. Data preparation, for both the measured strains

used as inputs and the measured displacements used for correlation, requires re-sampling

of unstructured measured fields onto the grid that is subsequently used for IFEM analysis.

This is done to reduce the size of the IFEM problem, to avoid distortions in the mesh of

the IFEM model, and to obtain an initial spatial filtering of the measurements. For this

purpose, a meshless mapping procedure originally developed for fluid-structure coupling is

used [30]. The mapping produces a linear interpolation operator, H, from the measurement

domain, (·)m, to the virtual sensing domain, (·)v, namely xv = H · xm.

Operator H is computed based on the initial positions of the points of both domains;

from that point on, it is used to map an arbitrary configuration of the measure domain

onto the virtual sensing domain. The participation of each component of a measure point’s

position to the mapping of the corresponding component of a virtual point is the same, i.e.,

the mapping is isotropic. As a consequence, any scalar field, as well as each component of

any vector field, can be mapped separately using a subset of matrix H, obtained for example

by extracting every one out of three columns and rows of matrix H, H = H(1:3:end, 1:3:end).

The component-by-component re-sampled strain measurements, εiv = Hεim , i = 11, 22, 12,
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Figure 5. Shape and fill-in of mapping operator H.
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are used as inputs for the IFEM procedure, whereas the re-sampled displacements, uv =

Hum, are used to evaluate the quality of the reconstructed displacements.

When a sufficiently large number of measurement points is required to interpolate the

position of a virtual sensing point, as occurs in the present case, the procedure also produces

a smoothing of the input data, acting as a spatial filter.

Thanks to the compact support used for the interpolation [30], the mapping matrix H is

usually quite sparse: Fig. 5 shows the shape and fill-in (of the order of 0.05 % of non-zeroes)

for the 4 × 8 (45 nodes), 8 × 16 (153 nodes) and 16 × 32 (561 nodes) membrane meshes

mapped from 6416 DIC points. Since matrix H is essentially involved only in matrix-vector

multiplications, it can be (and is, indeed) stored and handled exploiting such sparsity, thus

drastically reducing the computational cost associated with field mapping [27].

B. Hydrostatic Pressure Test

The first scenario was a hydrostatic pressure case, where a pre-tensioned membrane was

subjected to a constant, known pressure on one side. DIC measurements of strain and

deformation were taken of the deformed membrane.

The experiments [29] refer to a rectangular edge-clamped membrane wing, whose dimen-

sions are 140 × 75 × 0.14 mm. The wing was constructed of a pre-tensioned rubber latex

membrane. The material properties are reported in Table 2. The membrane, prestrained by

a 9% isotropic membrane strain (εx0 = εy0 = 0.09, γxy0 = 0), was subjected to hydrostatic

pressure differences between the lower and the upper surface ranging from 100 Pa to 500 Pa

in steps of 100 Pa.

Table 2. Membrane material properties.

Tensile modulus E Poisson’s modulus ν Density ρ

latex rubber 1.6 MPa 0.4 1350. kg/m3

steel frame 210 GPa 0.3 7800. kg/m3

1. Direct Survey

Figures 6(a) and 6(b) compare the numerical results for the problem with 300 Pa and 500 Pa

of pressure difference, with the experimental ones re-sampled on the numerical mesh using

the previously discussed moving least squares (MLS) procedure. The same domain mapping

algorithm is used to exchange motion and loads at the nodes between MBDyn and the fluid

solver implemented in FEniCS during the coupled fluid-structure solution when the interface

nodes of the structure and fluid domains do not match. The structural grid, implemented

within the multibody simulation environment provided by MBDyn, consists of 8×16 four-

node membrane elements, involving 153 structural nodes (and 153 rigid body elements when

16 of 29

submitted



x (mm)

−20
0

20
40

60
80

100

y
(m
m
)

0
20
40
60
80
100
120
140

z
(m

m
)

−6

−4

−2

0

2

4

6

MBDyn

mapped DIC

(a) 300 Pa.

x (mm)

−20
0

20
40

60
80

100

y
(m
m
)

0
20
40
60
80
100
120
140

z
(m

m
)

−6

−4

−2

0

2

4

6

MBDyn

mapped DIC

(b) 500 Pa.

Figure 6. Numerical/experimental correlation of hydrostatic pressure problem.

a dynamic model needs to be used). Although not involved in the presented test cases,

the mass lumped in each node is computed from the latex rubber sheet portion associated

with the node, which is uniformly distributed (see Table 2). The simulation volume was

sized to be five times larger than the chord in the x-direction, two chord lengths above and

below the wing (z-direction) and one to the side of the wing (y-direction). The volume was

discretized into approximately 1 million tetrahedral volume cells, and 181k nodes. In this

case, 20445 points were used to compute the fluid-structure interface matrix.

A comparison of the direct solution for smaller and larger values of the prestrain is

performed to study how much the problem is dependent on the value of the prestrain [27, 33].

The membrane prestrain was introduced as accurately as possible at the nominal level, but

could not be checked afterwards [29]. The fact that the numerical solutions with nominal

prestrain present a very good correlation with the experiments, and that the solution is very

sensitive to the amount of prestrain, suggest that the actual prestrain in the experiments

was in accordance with the expected value. The inverse solution, instead, is insensitive to

the amount of prestrain (matrix T of Eq. (10)) that is used to stabilize the solution process.

2. Inverse Survey

The deformed configuration of the previously investigated rectangular edge-clamped mem-

brane is determined herein using the strain measurements derived from DIC, re-sampled

(and smoothed) onto the numerical mesh using the previously discussed MLS procedure.

The membrane dimensions, loading, boundary conditions, and material properties are the

same as in the direct analysis case discussed above. A triangular mesh consisting of 8×16
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elements has been used for the IFEM procedure.
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Figure 7. IFEM/DIC correlation of hydrostatic pressure problem.

In Figs. 7(a) and 7(b) the deformation shape corresponding to the inverse FEM analysis

for the problems with 300 Pa and 500 Pa of pressure difference are presented, along with the

experimental data re-sampled on the numerical mesh, to validate the deformations predicted

by the IFEM analysis.

The problem with 500 Pa of pressure difference appears to be essentially at convergence

even with a mesh consisting of 8×16 elements [27], and the experimental displacements and

those reconstructed using IFEM are in good agreement on the entire domain, including the

maximum values.
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Figure 8. Membrane stress distribution (MPa) of a rectangular membrane subjected to 500 Pa
of pressure difference.
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The internal stresses for one particular hydrostatic pressure test at 500 Pa are shown in

Fig. 8. The stress components σxx and σyy grow from the initial value, about 0.238 MPa, to

a maximum value of the order of 0.289 MPa for σxx and 0.276 MPa for σyy, respectively, in

the central portion of the membrane, where the extension is maximal. The cross term σxy

remains negligible. Such a change, of the order of 20%, clearly shows that the approximation

of constant membrane stress, which is at the roots of the linearized membrane model, is not

applicable to problems of this type.

Consider for example a linearized model of a rectangular membrane, with x ∈ [0, a],

y ∈ [0, b], prestressed by σ0
x = σ0

y = σ0, τ 0xy = 0, simply supported at all sides, which is

governed by the partial differential equation

hσ0
(

w/xx + w/yy

)

= ∆p (14)

Approximating the transverse displacement with

w(x, y) =
∑

i,j

sin
(

iπ
x

a

)

sin
(

jπ
y

b

)

qij (15)

which complies with the boundary conditions, the solution is

qij =
1

(

π
2

)4
ij
(

i2 b
a
+ j2 a

b

)

ab

hσ0
∆p (16)

For ∆p = 500 Pa, the approximate solution (15) quickly converges (e.g., for i = j = 5) to

a maximum displacement value, 9.34 mm, which is about 27% larger than the solution of

the corresponding nonlinear problem, 7.35 mm, as shown in Fig. 9. Fig. 9 represents the
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Figure 9. Hydrostatic pressure test: maximum transverse displacement as a function of hy-
drostatic pressure.
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maximum mapped (labeled “EXP”) and predicted (labeled “IFEM” and “FSI”, respectively)

camber, as a function of the applied hydrostatic pressure, together with the maximum dis-

placement value obtained computing the solution with a linearized model (labeled “LIN”),

as discussed above. As we can easily see, a linearized structural model is inadequate for the

problem at hand.

The pressure distribution for one particular hydrostatic pressure test at 300 Pa is shown

in Fig. 10, in order to compare a known input data, in this case a static pressure, with the

estimated load. In fact, with a known input to the system, the output from the loads estima-

tion procedure could be directly evaluated for its accuracy. The Figure on the left shows the

ideal hydrostatic pressure applied to the membrane. The center Figure shows the pressure

distribution calculated directly from DIC displacement measurements remapped onto the

numerical mesh grid as required by the IFEM procedure. The Figure on the right shows

the estimated pressure distribution from the displacements reconstructed by IFEM analy-

sis. The results from the hydrostatic pressure test show favorable results [41]: the average

Figure 10. Pressure distribution (MPa) of a rectangular membrane subjected to 300 Pa of
pressure difference (left: ideal pressure distribution; center: re-mapped DIC pressure distri-
bution; right: IFEM pressure distribution).

hydrostatic pressure estimates are reasonably close to the actual applied hydrostatic load,

and the error between the resultant (normal) force from the estimated pressure distributions

and the one from the ideal hydrostatic pressure distribution is relatively small, as shown in

Table 3.

Table 3. Resultant normal force error (not considering the near-boundary region) with respect
to the nominal value.

Re-mapped DIC displacements 0.42 %

Inverse FEM analysis displacements 8.1 %
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C. Wind Tunnel Tests

In the second scenario, a membrane wing was placed in a low speed wind tunnel, and wind

speed and angle of attack were varied. Aerodynamic loads generated by the wing were

measured, and DIC measurements of the membrane deformation were taken.

The experiments conducted at OSU also involved wind tunnel tests of various 2:1 aspect

ratio, rectangular, perimeter reinforced membrane wings. The membrane dimensions and

the material properties are same as in Section B, see Table 2. The wing was constructed of a

steel frame, sandwiching a pre-tensioned rubber latex membrane. The overall geometry was

140 mm × 75 mm, with a frame width and thickness of 5 mm and 1 mm respectively. All

(a) Overall. (b) Zoom.

Figure 11. Wind Tunnel Apparatus.

experiments were conducted in a low-speed wind tunnel located at Oregon State University,

Corvallis (OR). It is shown in Figs. 11(a) and 11(b). The wind tunnel had a closed loop,

closed test section, capable of speeds from 1 to 18 meters per second (m/s) and with a

1.3 × 1.5 m test section.

Wind tunnel tests were performed for three flight speeds (12, 15 and 18 m/s) that are

typical for MAV operation, at three pre-stall angles of attack (3, 6 and 9 deg), with three

prestrain values (2, 3.5 and 5%). The maximum Reynolds number is 67000. At each flight

condition, the aerodynamic loads are measured with a six component sting balance. At

the same time, the undeformed wing shape and the strain field are measured using DIC.

To evaluate the validity of the purposed approach, experimental wind tunnel loads and

DIC displacements are compared to those obtained with the purposed model under varying

conditions of flow velocity, AoA and initial prestrain.

1. Direct Survey

Figures 13(a) and 13(b) compare the numerical results, with the experimental ones re-

sampled on the numerical mesh grid using the MLS procedure. The same domain mapping

21 of 29

submitted



algorithm is adopted to exchange motion and loads at the nodes between MBDyn and the

fluid solver implemented in FEniCS during the coupled fluid-structure solution.

(a) Half span CFD simulation domain. (b) Meshed membrane wing.

Figure 12. CFD domain.

The structural grid is identical to the one used for the hydrostatic pressure tests (see Sec-

tion B). It consists of 8×16 four-node membrane elements, involving 153 structural nodes,

and thus 153 rigid body elements. Moreover, to model the steel frame surrounding the

membrane wing, 24 “three-nodes” beams were added to the structural model (their aero-

dynamic contribution was neglected). Thus, in the current case, the mass lumped in each

node is computed from the latex rubber sheet portion associated with the node, which is

uniformly distributed, and, for the boundary nodes, from the portion of the steel frame as-

sociated with the node (see Table 2). A symmetric boundary condition was applied at the

centerline of the wing in order to reduce computational time. The half span simulation vol-

ume consists of approximately 324k nodes and 2 millions tetrahedrons. The computational

domain corresponds to half of the dimensions of the wind tunnel test camera used for the

experiments (see Fig. 11(a)). In the current case, 49729 points were used to compute the

fluid-structure interface matrix. The simulation volume is shown in Figs. 12(a) and 12(b).

2. Inverse Survey

The deformed configuration of the previously investigated rectangular membrane is deter-

mined herein using the strain measurements derived from DIC, re-sampled onto the numerical

mesh using the previously discussed MLS procedure. The membrane dimensions, loading,

boundary conditions, and material properties are the same as in the direct analysis case

discussed above, see Table 2. A triangular mesh consisting of 8×16 elements has been used

for the IFEM procedure: the strain measurements from DIC are re-mapped (and smoothed

out) onto this virtual strain measurement grid, and used as inputs for the IFEM analysis.
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Figure 13. DIC/MBDyn correlation of wind tunnel tests.

Figures 14(a) and 14(b) compare the deformation shape corresponding to the inverse FEM

analysis with the experimental data re-sampled on the numerical mesh.
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Figure 14. IFEM/DIC correlation of wind tunnel tests.

3. Static Model

Utilizing DIC data, the prediction of max camber, z(α)
c
, where c is the chord, can be evaluated

for its accuracy and overall physical behavior.

Figures 15(a) and 15(b) represent the average max (mapped) measured (labeled “EXP”)
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Figure 15. Measured max displacement from DIC data and predicted max displacement.

and predicted (labeled “FSI” and “IFEM”) static camber for two different values of prestrain,

2% and 5%, respectively, and for a flow velocity of V = 12 and 18 m/s. As expected, the

measured and predicted displacement are primarily characterized by an adaptive inflation,

which increases the local camber.
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Figure 16. Static lift model and wind tunnel data.

Figures 16(a) and 16(b) show the lift coefficient measured by the load cell attached to

the wing (labeled “EXP”). They show the lift coefficient calculated by the coupled fluid-

structure simulation (labeled “FSI”), and also the estimated lift coefficients found by inte-

grating the estimated pressure distributions (calculated from the remapped full-field DIC

measurements, labeled “mapDIC”, and from the estimated displacements via inverse anal-
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ysis, labeled “IFEM”, respectively) to find the normal load, converting it into lift via the

AoA, and finally calculating the lift coefficient.

It is worth noticing that those curves are nearly invariant with respect to changes in

flow velocity within the range of this study (Re = 45k–67k). The error bars in the previous

figures represent the standard deviations, σCexp
L

, which are presented for reference in Table 4.

VI. Conclusions

This work presents the direct and inverse analysis of membrane elements for fluid-

structure interaction problems. A membrane inverse analysis based on a three-node mem-

brane element was developed based on a least squares smoothing functional that employs

the complete set of strain measures. A four-node membrane element was implemented in a

multibody-based co-simulation analysis for the direct simulation of coupled fluid-structure

problems. The inverse analysis has been verified by reconstructing the deformed solution

obtained with the analogous direct formulation applied on a different mesh and subsequently

re-sampled; both the direct and the inverse analyses have been validated by comparing the

direct prediction and the reconstructed deformation with experimental data for prestressed

rectangular membranes subjected to hydrostatic pressure loads. Finally, an approach to

estimating aerodynamic load present on a flexible membrane wing from elastic strain sensor

was developed. The proposed analysis enables accurate and computationally efficient high-

fidelity deformation reconstruction solutions. It is therefore applicable to both static and

dynamic problems. Hydrostatic pressure tests were considered in order to compare a known

input load to the estimated load. Results were favorable: the average hydrostatic pressure

estimate was reasonably close to the actual applied hydrostatic pressure. In addition, the

error introduced in the estimated pressure distribution can be seen in the irregularity of the

estimated pressure distribution compared to the ideal pressure distribution. The proposed

procedure for the reconstruction of shape and distributed loads is able to operate at sample

rates of the order of 30 Hz, thus meeting the initial real-time operation requirement.
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Table 4. Wind tunnel test results.

V(m/s) AoA(deg) PS (%) C
(exp)
L σ

C
(exp)
L

C
(fsi)
L CLp(m) CLp(ifem) w(m) (mm) w(fsi) (mm) Errw(fsi) (%) w(ifem) (mm) Errw(ifem) (%)

12 3 2 0.688 0.066 0.600 0.740 0.691 4.19 3.81 9.07 3.92 6.44

12 6 2 0.949 0.067 0.910 0.960 0.896 4.96 4.98 0.40 4.82 2.82

12 9 2 1.136 0.062 1.099 1.123 0.995 5.47 5.34 2.38 5.26 3.84

15 3 2 0.688 0.066 0.666 0.718 0.721 6.57 6.63 0.91 6.58 0.15

15 6 2 0.949 0.067 0.985 1.008 0.978 7.32 7.18 1.91 7.17 2.05

15 9 2 1.136 0.062 1.111 1.163 1.121 7.69 7.52 2.21 7.53 2.08

15 3 5 0.591 0.069 0.500 0.554 0.594 4.15 3.77 9.16 3.97 4.34

15 6 5 0.863 0.076 0.820 0.816 0.801 5.16 5.07 1.74 4.95 4.07

15 9 5 1.071 0.060 0.990 0.928 0.967 5.84 5.77 1.20 5.80 0.68

18 3 5 0.591 0.069 0.540 0.628 0.631 6.74 6.35 5.79 6.46 4.15

18 6 5 0.863 0.076 0.810 0.886 0.781 7.84 7.81 0.38 7.46 4.85

18 9 5 1.071 0.060 0.996 0.991 0.918 8.45 8.12 3.91 8.31 1.66
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