
The Mathematical Theory of Evidence 
and Measurement Uncertainty

Comparison of Measurement Results Expressed 
in Terms of Random-Fuzzy Variables

Simona Salicone

I n the previous papers [1], [2], it was shown how possibil-
ity distributions can be effectively employed to represent 
and propagate uncertainty in measurements. In particu-

lar, it was shown how the Random-Fuzzy variables (RFVs) can 
be effectively employed to represent a measurement result. 
The effects of the systematic and random contributions to un-
certainty can be well identified in the RFV, and all confidence 
intervals at all confidence levels are provided, so that complete 
information about the measurement result is given. Moreover, 
this distinction also allows one to model the propagation of 
the systematic and the random contributions in two different 
ways, according to their different nature and different behav-
ior when they combine.

In most practical applications, the final aim of a mea-
surement procedure is to take a decision on the basis of the 
comparison of the obtained measurement result with a given 
threshold. Moreover, the threshold could be either a fixed 
value or a measurement results itself, thus affected by mea-
surement uncertainty.

The aim of this paper is to show that also this final step can 
be done in terms of RFVs.

Why Do We Need a Comparison? 
In all industrial applications, products must be inspected at 
the different stages of the production process, in order to as-
sess whether they fulfill specific requirements or not. This 
operation is called conformity assessment, and is defined as an 
“activity to determine whether specified requirements relating to a 
product, process, system, person or body are fulfilled” [3]. 

To perform a conformity assessment of an item, it is first 
necessary to define:

1. The measurable property of the item that must be
controlled;

2. The interval of permissible values of the property, speci-
fied by one or two tolerance limits;

3. The decision rule, that is, the “documented rule that
describes how measurement uncertainty will be accounted for
with regard to accepting or rejecting an item, given a specified
requirement and the result of a measurement” [3]. 

These first steps strictly depend on the considered item and 
on the industrial strategy (business and policy decisions). It is 
necessary to decide which is the acceptable level of risk and 
which is the right trade-off between costs and risks: the costs 
of reducing measurement uncertainty against the risks of too 
much waste, due to false rejection. Once these important deci-
sions, which are hence not universal but depend on the specific 
item in a specific factory, are taken, it is possible to perform the 
conformity assessment.

The conformity assessment of the item is based on the fol-
lowing steps:

a) The measure of the property of interest of the item;
b) The comparison of the obtained measurement result with 

the tolerance limits;
c) The decision of acceptance/rejection of the item (accord-

ing with the decision rule).
The present Guide on conformity assessment [3] provides 

all indications to perform the comparison of the measurement 
result with the tolerance limits and accept (or reject) the item. 
Different solutions are also given, by introducing the accep-
tance limits and the guard bands [3], in order to reduce the 
risks of accepting a non-conforming item or rejecting a con-
firming item. It is not the aim of this paper to report here all 
indications, for which the interested readers are addressed di-
rectly to [3], but only to recall that the indications presume that 
the property of interest of the item

…has been measured, with the result of the measurement ex-
pressed in a manner compatible with the principles described 
in the GUM. In particular, it is assumed that corrections have 
been applied to account for all recognized significant system-
atic effects [3]. 

(NoA: GUM refers to the Standard Guide to the Expression of Un-
certainty in Measurement [4]). More explicitly, the measurement 
result must be 

…expressed in a manner consistent with the principles of 
the GUM, so that knowledge of the value of the property can 



be reasonably described by (a) a probability density function 
(PDF), (b) a distribution function, (c) numerical approxima-
tions to such functions, or (d) a best estimate, together with a 
coverage interval and an associated coverage probability [3]. 

The indications given in [3] are hence based on the proba-
bility theory, and the final decision of acceptance or rejection 
of the item is provided together with (in some particular situ-
ations) a probability of having made an incorrect conformance 
decision.

In this paper, it will be shown, without entering too much 
the mathematical details, for which the readers are addressed 
to [5], how a comparison can be performed and a decision 
can be taken when the measurement result is expressed by 
possibility distributions. In fact, if the theory of evidence is 
considered and the measurement results are expressed in 
terms of RFVs, with the advantages already shown in [1], [2], 
[6]–[9], then, the conformity assessment must be done in this 
mathematical context. This requires a review of the previous 
steps 3) and b), while leaving the others steps unchanged, as 
well as all theoretical considerations about the conformity 
assessment.

The Comparison of an RFV with a 
Tolerance Limit
As stated in [3], a tolerance limit is a value 

…that separates intervals of permissible values of the measur-
and from intervals of non-permissible values. 

Moreover: 

Intervals of permissible values, called tolerance intervals, are 
of two kinds: a one-sided tolerance interval with either an up-
per or a lower tolerance limit; a two-sided tolerance interval 
with both upper and lower tolerance limits. In either case, an 
item conforms to the specified requirement if the true value of 
the measurand lies within the tolerance interval and is non-
conforming otherwise. 

And: 

Seemingly one-sided tolerance intervals often have implied 
additional limits, for physical or theoretical reasons, that are 
not explicitly stated.

From the above statements, it follows that the Guide con-
siders limits that are crisp values, not affected by uncertainty. 
So, let us start by this simplified assumption. Let us consider 
Fig. 1: the red line represents the given tolerance limit (also 
called, in the following, threshold) for the property of interest 
of the considered item, while the blue line is the RFV repre-
senting the result of the measurement of that property. The 
RFV provides all information about the measurement result, 
giving all confidence intervals and associated levels of confi-
dence [2], [6]–[9]. All these pieces of information can be taken 

into account when comparing the measurement result with 
the threshold. In particular, the comparison is made by con-
sidering the external possibility distribution (PD) of the RFV, 
since the effects of both the random and systematic contribu-
tions to uncertainty, combined together, shall be considered 
in assessing whether the tolerance limit has been exceeded 
or not. 

Let us assume, as an example, that the considered prop-
erty of the item must not exceed the given tolerance limit. In 
the case of the upper plot in Fig. 1, the RFV has completely ex-
ceeded the tolerance limit, while in the lower figure the RFV 
is across the tolerance limit. In the first case, since the RFV has 
completely exceeded the tolerance limit, it is intuitive to state 
that the considered item must be rejected and that this decision 
is taken with full certainty, that can be quantified by a credibil-
ity factor equal to 1. The credibility factor is a numerical value, 
in the [0,1] range, quantifying how much one is sure about the 
taken decision. The credibility factor has a similar meaning of 
the probability of taking a right/wrong decision in the Guide 
approach [3]. Since the RFVs are represented by PDs, it is not 
mathematically correct, of course, to speak about probability 
and a different term is used.

In the case of the lower plot in Fig. 1, since the RFV is across 
the tolerance limit, it is not possible to take a decision with 
full certainty. It is intuitive, according to the figure, that most 
of the values that can be reasonably attributed to the mea-
surand do not exceed the threshold and this intuition can be 
quantified by a credibility factor. In particular, it is possible to 
define two factors: the first one is obtained by evaluating the 
area exceeding the threshold normalized to the total area sub-
tended by the RFV; the second one is obtained by evaluating 
the area not exceeding the threshold normalized to the total 
area subtended by the RFV. It can be readily perceived that 
the first obtained factor (CA>B) reflects the credibility that the 

Fig. 1. Comparison of a measurement result (blue line RFV) with a given 
fixed threshold (red line). In the upper figure, the RFV is completely above 
the threshold and the credibility coefficient that the RFV is greater than the 
threshold is 1. In the lower figure, the measurement result is decreased: in this 
case, the credibility coefficient that the RFV is greater than the threshold is 
0.07 while the credibility coefficient that the RFV is lower than the threshold 
is 0.93.



considered RFV (A) is greater than the threshold (B), while the 
second factor (CA<B) reflects the credibility that the considered 
RFV is lower than the threshold. In the considered example, it 
is: CA>B = 0.07 and CA<B = 0.93. The obtained values of CA>B and 
CA<B allow one to state that the considered item should be ac-
cepted, and the credibility associated to this decision is equal 
to 0.93.

In general, however, the decision-making process must 
obey to the decision rule defined on the basis of business and 
policy issues, which requires a compromise among costs, 
risks and benefits [3]. Depending on the considered item, the 
decision rule can be more or less cogent. These definitions, 
however, are out of the scope of this paper, being a matter of in-
dustrial policy and economy. What is important to underline 
here is that the above proposed credibility factors can be useful 
in the decision-making process.

The Comparison of an RFV with 
Another RFV
In the previous section, it has been shown how an RFV can 
be compared with a given threshold. Two credibility factors 
are defined, the credibility that the RFV is below the thresh-
old and the credibility that the RFV is above the threshold. The 
proposed method is very similar to the one based on probabili-
ties [3] and represents the alternative solution to the guidelines 
given in [3] when the measurement result is not expressed in 
terms of a probability distribution, but by an RFV, that is, by 
possibility distributions.

As also stated in the previous section, the definition given 
in [3] for the tolerance limit is that of a threshold that is crisp, 
not affected by uncertainty. It is possible, however, to general-
ize the definition of tolerance limits. In fact, a tolerance limit 
can be set on the basis of some theoretical considerations, thus 
leading to a crisp threshold, but can be also set on the basis of 
some previous measurements and, in this case, the tolerance 
limit is affected itself by measurement uncertainty. In this last, 
more general case, the tolerance limit is not a crisp value but 
a measurement result itself, and the problem of the compar-
ison of a measurement result with a threshold becomes the 
problem of comparing two measurement results. This more 
general case is not considered in [3], but it can be easily dealt 
with when the measurement results are represented by RFVs.

By extending the considerations given in the previous sec-
tion, the comparison of two RFVs is made by considering the 
external PDs of the RFVs themselves. Let us consider Fig. 2. Fig. 
2 is the generalization of Fig. 1, where the tolerance limit (red 
line) is not a crisp value any longer, but an RFV. In this case, it 
is possible to define three credibility factors: the credibility fac-
tor CA>B that RFV A is greater than RFV B;  the credibility factor 
CA<B that RFV A is lower than RFV B; and the credibility factor 
CA=B that RFV A is compatible with  RFV B (in measurement sci-
ence, because of the presence of the measurement uncertainty, 
equality does not exist, in a strict mathematical sense, so that 
we refer to compatible measurement results when there is no 
sufficient evidence to state that two measurement results iden-
tify two different measurands [10]). 

These credibility factors can be evaluated thanks to the use 
of some well-known and widely employed fuzzy operators: 
the fuzzy intersection, the fuzzy union, the Hamming dis-
tance, the fuzzy-max [7]. Not to enter the mathematical details, 
Figs. 3–6 show graphically the meanings of these operators. In 
these figures, the considered RFVs and their relative position 
is taken in order to have the more general possible situation (as 
will be shown later in Fig. 7).

Let us consider the two RFVs A (magenta line) and B (black 
line). Fig. 3 shows the standard fuzzy intersection Int(A, B), 
numerically represented by the green area. Fig. 4 shows the 
standard fuzzy union Un(A, B), represented by the green area. 
Fig. 5 shows the Hamming distance d(A, B), represented by the 
green area. Fig. 6 shows the fuzzy-max operator MAX(A, B), 
represented by the dashed green line; the fuzzy-max operator 
provides a new fuzzy variable.

Once defined the above fuzzy operators, it is possible to de-
fine the three credibility factors CA>B, CA<B, CA=B as:

(1)

(2)

(3)

from which CA>B + CA<B + CA=B = 1 follows. d(B, MAX(A, B)) and 
d(A, MAX(A, B)) are the Hamming distances between RFVs B, 
and A, respectively, and RFV MAX(A, B) (Fig. 6). The graphical 
interpretation of these distances is given in Fig. 7. In this fig-
ure, the two RFVs have been chosen in order to show the more 

Fig. 2. Comparison of a measurement result (blue line RFV) with a given 
threshold (red line RFV). In the upper figure, the RFV is completely above 
the threshold and the credibility coefficient that the RFV is greater than the 
threshold is 1. In the lower figure, the measurement result is decreased: in this 
case, the credibility coefficient that the RFV is greater than the threshold is 
0.02; the credibility coefficient that the RFV is lower than the threshold is 0.86; 
the credibility coefficient that the RFV is equal to the threshold is 0.12.



general situation where two areas determine d(B, MAX(A, B)) 
(yellow areas) and two areas determine d(A, MAX(A, B)) (blue 
areas). As far as the yellow areas are concerned, let us consider 
the right and the left ones: the numerical value of the area on 
the right quantifies how much A is on the right of B, while the 
numerical value of the area on the left quantifies how much 
B is on the left of A. Hence, these two areas together contrib-
ute to define factor CA>B. Similarly, as far as the blue areas are 
concerned, let us consider the right and the left ones: the nu-
merical value of the area on the right quantifies how much B is 
on the right of A, while the numerical value of the area on the 
left quantifies how much  A is on the left of B. Hence, these two 
areas together contribute to define factor CA<B.

In the case of the upper plot in Fig. 2, it is: CA>B = 1; CA<B = 
0; CA=B = 0, so RFV A is considered greater than B with full cer-
tainty. In the case of the lower plot in Fig. 2, it is: CA>B = 0.02; 
CA<B = 0.12; CA=B = 0.86, so the available evidence shows that 
the two measurement results can be considered compatible 
with a credibility of 0.86. On the basis of the values of these 
three factors and on the defined decision rule [3], it is hence 
always possible to take a decision of conformity or non-con-
formity [7]. 

Fig. 8 shows an example of comparison between the same 
two RFVs in Fig. 7, but with different relative position. In the 
case of the upper plot, it can be also intuitively stated that the 
two RFVs are compatible. In fact, it follows : CA>B = 0.10, CA=B = 
0.58, CA<B = 0.32, that is, the greatest credibility factor is indeed 
represented by CA=B. In the case of the lower plot, it can be also 
intuitively stated that two RFV A is lower than B. In fact, it fol-
lows: CA>B = 0, CA=B = 0.01, CA<B = 0.99.

It can be proven [7] that the simpler case of a comparison 
of an RFV with a crisp threshold represents a particular case 
of this general one, so that equations (1) – (3) can be used in 
all possible situations. Of course, when the threshold is a crisp 
value, it is always: CA=B = 0 and CA>B + CA<B = 1.

The readers can perform comparisons between RFVs by 
opening this web page (optimized for view in Internet Ex-
plorer): http://131.175.120.11:8000/RFVcalculator.html. The 

Fig. 3. The standard fuzzy intersection between the two RFVs (magenta and 
black lines) is represented by the green area.

Fig. 4. The standard fuzzy union between the two RFVs (magenta and black 
lines) is represented by the green area.
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Fig. 5. The Hamming distance between the two RFVs (magenta and black 
lines) is represented by the green area.

Fig. 6. The fuzzy-max operator between the two RFVs (magenta and black 
lines) is represented by the dashed green line.

Fig. 7. The more general case of the comparison of two measurement 
results: the magenta line is RFV A and the black line is RFV B. The yellow 
area represents d(B, MAX(A, B)), the numerator of CA>B, that is, the Hamming 
distance between B and MAX(A, B) (shown in Fig. 6). The blue area represents 
d(A, MAX(A, B)), the numerator of CA<B, that is, the Hamming distance between 
A and MAX(A, B). The white area represents Int(A, B), the numerator of CA=B, as 
also shown in Fig. 3. 



front panel of a remotely controlled application is shown, 
which allows the readers to create two RFVs, combine and 
compare them.

Conclusions
This paper has shown how measurement results can be com-
pared when they are represented by RFVs. This allows one to 
perform conformity assessments of items and take acceptance 
or rejection decisions according to the credibility factors pro-
vided by the proposed method and to the decision rule defined 
by the industrial policy. 

The advantages of this approach can be synthesized as fol-
lows. Since measurement results are represented by RFVs, 
conformity assessment can be performed also when both ran-
dom and systematic contributions to uncertainty affect the 
measurement results themselves, and it is not limited to the 
case of only random contributions, as required by [3]. Since the 
RFV provides all confidence intervals associated to the mea-
surand, conformity assessment can be always performed by 
taking into account all information about the measurand, and 
not only partial information, as happens, for instance, when 
only “a best estimate, together with a coverage interval and an asso-
ciated coverage probability” is known [3]. The availability of the 
three credibility factors CA>B, CA<B, CA=B can help the decision-
making process, once the decision rule has been set.

There is another important advantage in the proposed 
method. Until now, the comparison of two RFVs has been jus-
tified as the main step of conformity assessment. However, 
the comparisons of measurement results or the comparison 
of a measurement result with a threshold may not represent 
the final step of a measurement procedure, when it is used in 
a decision-making process. It may happen that the measure-
ment result is obtained as the output value of a measurement 
algorithm and that this algorithm contains if…then…else… 
structures. In such a case, comparisons must be performed 
throughout the measurement procedure and not only in the 

final step. As an example, in [11], where the problem of mea-
suring a specific power quality index is considered, it has been 
shown how the proposed method can provide a significant 
measurement result expressed in terms of an RFV, also when 
the measurement algorithm is complex and contains multiple 
if…then…else… structures.

Final Discussion about the Series
This paper concludes the series of three papers published in 
I&M Magazine since August 2014. A quick survey has been 
given on how possibility distributions can be used to repre-
sent, propagate and compare measurement results. Even if 
the presentation has been purposely done in an intuitive way, 
without entering too much the mathematical details, I hope I 
achieved the main goal to show the advantages and potentials 
of this new approach. 

I want to underline, once again, that this approach repre-
sents a generalization of the present approach to uncertainty, 
based on statistics and probability, and is perfectly compliant 
with the concepts on which the GUM is grounded. It allows 
one to consider uncertainty contributions of both random 
and systematic nature, and to propagate them taking into ac-
count their different nature and physical behavior. Moreover, 
despite the quite complex mathematics used to define it, the 
practical implementation of this method requires to simply 
compute algebraic operations. Therefore, the entire RFV of the 
final measurement result is obtained in a relatively simple way, 
if compared to the time-consuming Monte Carlo simulations 
that would be required in most cases to obtain the distribution 
of the values that could be reasonably attributed to the mea-
surand [12].

As one of the authors that contributed to the development 
of this approach, I’m glad to see that several scientists around 
the world have already considered and applied it in their mea-
surement applications in different fields [13]–[17].
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Fig. 8. The more general case of the comparison of two measurement results: 
the magenta line represents RFV A and the black line represents RFV B. In the 
case of the upper plot, it follows: CA>B = 0.10, CA=B = 0.58, CA<B = 0.32, In the 
case of the lower plot, it follows: CA>B = 0, CA=B = 0.01,CA<B = 0.99.




