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ABSTRACT

Modern data centers are being transformed to meet the increased processing needs of specialized
workloads with an advantageous total cost of ownership. To this end, the modular design of current
microservers allows the inclusion of heterogeneous computing platforms and accelerators to enhance
the performance of specific workloads, while improving the power consumption and maintenance
costs of the whole system. One of the fundamental application domains for datacenters is repre-
sented by bulk data encryption and decryption, as it has to be performed on the data being stored as
well as on data being transmitted or received. In this paper we investigate the OpenCL programming
practices to realize high-performance FPGA accelerators, thus providing a viable and more versatile
alternative to the use of ad-hoc cryptographic accelerators, which are currently available in high-end
server CPUs only. We validate our analysis employing AES-128 as our case study, and report energy
efficiency improvements of 22.78× with respect to pure software implementations of ISO standard
block ciphers.

1 Introduction

For decades, CPU based servers have been the general-purpose workhorses of the datacentre due to the their versatil-
ity in running operations for organizations of every shape and size. Microservers are a relatively recent category of
systems designed to outperform traditional (high-performance) general purpose CPU architectures in terms of energy
efficiency, when carrying out specific and well-defined computing workloads. The increasing adoption of microserver
based data centers has in part been supported by the growth of the web and online services, due to the predictability of
the computational and I/O loads required to deliver web page elements. The quantifiable nature of the computation of
the aforementioned workloads allows the hardware and software resources employed by the microserver architecture to
be tailored to what is needed to execute specific tasks. The modular design of a microserver architecture allows the ef-
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fective inclusion of reconfigurable and massively parallel hardware accelerators via low latency communication buses.
The integration of different computing platforms allows to provide a tight match for the customers’ needs. The comput-
ing platforms which may reside on a datacentre computation module range from high-performance CPUs, low-power
embedded/mobile processors, low-power x86 processors, multiprocessor system-on-chips (MPSoC)s, graphics pro-
cessing units (GPUs), and field-programmable gate array (FPGAs). From a data center perspective, it is of paramount
importance to design and/or integrate the proper mix of heterogeneous computational modules to optimize the global
efficiency of the system.

In this context, an effective development technology is represented by the Open Computing Language (OpenCL)
framework [1]. OpenCL is designed to be a superset of the C99/C++11 language, allowing to target heterogeneous
computing platforms, with a focus on data parallel execution. The ultimate goal of the OpenCL design is to provide
seamless functional portability of an implementation of a given application across multiple computing platforms, while
preserving as much as possible the high performance level attained when the application was first implemented for a
given platform.

To this end, investigating the effective functional and performance portability of a given application set across sub-
stantially different computing platforms is an interesting topic for investigation, especially in the light of the recent
availability of OpenCL runtimes relying on High Level Synthesis (HLS) tools to deploy OpenCL programs on FPGA
based accelerators.

One of the fundamental application domains for a datacenter is represented by bulk data encryption and decryption, as
it has to be performed on the data being stored (i.e., data-at-rest), as well as to ensure communication confidentiality.
Such bulk data encryption and decryption is performed employing symmetric block ciphers with modes of operation
providing a high degree of data-parallelism, in order to profit from the presence of dedicated accelerators. Currently,
cryptographic accelerators are commonly provided in high-end server CPUs, and not in typical microserver platforms.
However, microservers are usually endowed with programmable and/or reconfigurable accelerators, which support the
OpenCL programming model. Parallel block cipher computation is a good fit for OpenCL realization as witnessed by
the significant amount of literature on the topic [2, 3, 4, 5, 6, 7, 8, 9]. This translates to a net advantage for an OpenCL
based realization in the microserver context, as it is possible to flexibly reallocate the execution of a block cipher from
one accelerator to another, allowing the same platform more agility in fitting different loads. Nevertheless, we are
not aware of any attempt, in the literature, to design OpenCL kernels for block ciphers targeting FPGAs (and thus
leveraging HLS). Regarding the cryptographic domain, a related work is [10], which however focuses on the design
of an OpenCL kernel for the SHA-1 hash algorithm.
Contributions. We investigate the programming practices to achieve high throughput OpenCL implementations of
block ciphers targeting FPGA platforms and employing the currently available HLS tools. We analyze the OpenCL
programming practices and the optimization behavior of the HLS toolchain provided by Intel/Altera, highlighting
the differences from the common GPU-targeted best practices. We validate our analysis employing the AES-128
block cipher as our case study, and perform an extensive performance and energy efficiency validation on all the
ISO standard block ciphers. We attain throughput improvements of one to three orders of magnitude with respect to
software implementations of the same block ciphers and a 22.78× average gain in energy efficiency.

2 Preliminaries

In this section, we provide a basic introduction to the OpenCL programming and memory models, and to FPGAs.

2.1 The OpenCL Framework

OpenCL [1] is a programming framework designed to address heterogeneous architectures. The main target of the
OpenCL project is to provide a set of application programming interfaces (APIs) to write functionally portable code
among architecturally different devices. For instance, the same OpenCL code can be compiled and run on CPUs,
GPUs and FPGAs. Each OpenCL compliant device provides an OpenCL runtime library, which is in charge of
deploying the code on it, as well as acting as a device driver at runtime. One of the most interesting features of the

2



OPENCL DESIGN FPGA ACCELERATORS - JULY 25, 2019

OpenCL Runtime Library

In Order
Queue

Out of Order
Queue

Device Command Queues

Global &
Local

Memories

v_add binary
code CPU

v_add binary
code GPU

v_add FPGA
bitstream

v_add OpenCL
source code

OpenCL Program

v_add

arg #1

arg #2

Kernel

Figure 1: Logic diagram of the components of an OpenCL framework running a program with a kernel named v_add.
Dark gray components reside on the accelerator device, light gray components run in the host main memory, the white
component is the Executable and Linkable Format (ELF) fat binary, stored on the host. It contains the OpenCL kernel
both in its source form and as pre-compiled binaries for multiple targets, and the required machine code to be run on
the host and interact with the OpenCL runtime library

OpenCL runtime library lies in its ability to choose at runtime the device to run the target application on. Indeed, the
OpenCL runtime must allow to run the machine code of a specific device as well as it has to embody a just-in-time
(JIT) compiler to translate a source code implementation if the machine code is not already available. An OpenCL
application is split into one or more kernel functions and some host code to be deployed, respectively, on one or more
target accelerators and on the general purpose computational platform to which the accelerator(s) is(are) connected.
The kernel functions contain the highly data parallel portion of the application, while the host code includes the
boilerplate operations to run the kernels, transfer the data to/from the accelerator, and the code ill-fit to parallelization.
Figure 1 depicts the components of the OpenCL framework involved in the execution of an OpenCL application.
The OpenCL runtime library provides the functional support required to run the OpenCL program on the desired
accelerator. To this end, the code of the OpenCL kernels can be provided either as a portion of source code, which is
compiled for the target device at hand on the fly by the runtime, or as ready-made binary code for the said device. The
OpenCL runtime library also provides data structures and accessors to communicate with the accelerator. In OpenCL,
such data structures take the form of command queues, which are used by the host code to issue execution commands
to the accelerator. Finally, the OpenCL runtime library provides feedback to the code running on the host concerning
the correct termination of a command issued on the accelerator, and provides data transfer between the host memory,
and the device memory.

OpenCL Programming Model. The OpenCL programming model relies on a Single Instruction Multiple Data
(SIMD) paradigm, as it was designed to exploit SIMD hardware platforms (e.g., GPUs). In the OpenCL jargon, the
data-parallel computation is split into basic units known as work-items. A kernel is thus constituted by a number of
work-items known as its global_size. The work-items of a kernel are partitioned onto equally sized sets known as
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work-groups. Such a partitioning aims at providing information on the spatial locality of the memory access patterns
to the compiler: work-items in a work-group should work on spatially close memory locations. The number of items
in a work-group is known as the local_size of the group.

OpenCL provides the developer with an abstract memory hierarchy to allow efficient code generation, fitting the target
device memory hierarchy. The OpenCL memory hierarchy is made of four different memory classes: global, local,
private, and constant. Global memory is accessible by all work-items, localmemory is shared by all work-items
in the same work-group, while private memory is visible only to a single work-item. These memories may be
mapped onto different physical resources on the target device. The global memory is usually the largest and slowest
one, while the private memory is usually the fastest and smallest one (e.g., a register file). The constant memory
is a read-only portion of memory visible to all work-items in a kernel, and which may be mapped to a dedicated,
replicated, physical volatile storage closer to the execution units, or simply in a portion of the global memory.

2.2 Preliminaries on FPGAs

FPGAs are digital devices allowing to implement a digital logic circuit by means of a set of programmable logic
elements. The programmable logic elements are typically driven by Static RAM (SRAM) cells, and thus it is possible
to reprogram an FPGA easily, allowing quick and effective prototyping of digital designs. The configuration process is
driven by a small dedicated on-die circuit taking as input a binary sequence containing both programming commands
and the contents of the SRAM elements to be configured. Such a binary sequence is known as bitstream. An
FPGA is organized as a two-dimensional matrix of configurable elements. Such configurable elements are of three
classes: 1) logic blocks, which allow to implement Boolean functions and sequential components; 2) routing blocks,
which provide connections between logic blocks; 3) I/O blocks, placed at the edges of the FPGA, which provide the
means to exchange data with external devices. A logic block contains a Look-Up Table (LUT), storing the truth table
of a n-to-m Boolean function and one or more flip-flops, as well as the multiplexers to bypass them. The physical
structure of routing blocks consists of a set of switches that route signals among different logic blocks. Besides the
matrix of blocks, FPGAs are equipped with small (≈ 16 kiB) SRAM banks, referred to as Block RAMs (BRAMs),
and may also be endowed with a DRAM memory controller connected to an off-die set of DRAM banks.

OpenCL Accelerators Based on FPGAs. When targeting an FPGA device, the OpenCL kernel needs to be trans-
lated into a logical circuit, and encoded into a bitstream. The first step is performed via a High Level Synthesis (HLS)
toolchain, which translates the OpenCL source code into an equivalent description expressed by means of a Hard-
ware Description Language (HDL). The second step is performed via an FPGA synthesis toolchain, translating the
HDL description of the circuit on a set of Boolean gates and flip flops, mapping the said circuits onto the available
FPGA resources, routing the wires for the design, and finally encoding the obtained circuit into the bitstream for
the target device. The aforementioned translation process is quite computationally demanding: it is thus typical for
OpenCL programs targeting FPGA accelerators to include the OpenCL kernels in their bitstream form, instead of the
corresponding source code. The OpenCL translation toolchain targeting FPGA-based accelerators provides effective
functional portability of the OpenCL code, allowing a semantically equivalent execution on the FPGA. To this end,
the HLS pass maps the global memory of OpenCL onto the off-die DRAM, which is usually available on FPGA-based
accelerator cards, while it attempts to fit the local memory of OpenCL onto the FPGA BRAMs, eventually storing
a small overflowing amount onto the sequential components of the logic blocks, and finally mapping the remainder
onto the off-die DRAM. The private memory of OpenCL is mapped, to the best of the available resources, onto the
sequential elements of the logic blocks. Despite providing functional portability, and trying to match the OpenCL
expected memory latencies, the HLS synthesis tools require an appropriate coding style, which differs from the one
employed for GPU targets.
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Table 1: Comparison between the recommendations to apply the OpenCL best practices when considering a GPU and
an FPGA device

Programming Programming GPU FPGA
Aspect Practice Recommendations Recommendations

Loop Optimizations
Work size tuning

Large number of
work-groups,work-items

Single work-item, single
work-group

Loop unrolling
Moderate tuning of
unrolling factor

Accurate tuning of
unrolling factor

Store data in local
memory

Fill local memory to the
utmost

Fill BRAMs (i.e., local
memory) to the utmost

Management of
Addressable Caches

Store data in private
memory

Fill private memory
(registers) with restraint

Exploit FFs embedded in
logic blocks (i.e., private
memory)

Variable/Register
renaming

Automated
Manual renaming and
duplication

Data Allocation
Memory coalescing

Devise coalescing friendly
memory layout

Devise coalescing friendly
memory layout

Interleaved allocation No automated support
Compiler-automated array
interleaving in global
memory

I/O latency hiding
I/O and computation
interleaving

Multiple buffering
Multiple buffering,
task-parallel-workers

Synchronization Synchronization barrier-based device-side cl_event-based host-side

3 OpenCL on FPGA Best Practices

In this section, we start from the programming practices delineated in the Intel technical references [11, 12, 13],
to present a detailed discussion about the design strategies useful to exploit the computational power provided by
FPGAs writing OpenCL kernels. Table 1 summarizes the areas and the existing practices for GPU-oriented OpenCL
programming.

Loop Optimizations. Optimizing the shape of the loop nests explicitly present in the OpenCL kernel and the ones
implicitly represented by its work-group and work-item subdivision, plays a crucial role in efficient OpenCL pro-
gramming. Concerning the implicit loop nest, the recommendation for GPU and CPU programming is to design the
OpenCL kernel with a large amount (i.e., tens to hundreds) of work-groups, each one composed by tens of work-items.
Such a design allows the OpenCL compiler to exploit the massive parallelism exposed by the design, either directly
mapping it onto the vast amount of simple computation units present in a GPU, or serializing sizable amounts of
work-items to reduce thread creation costs on a CPU. In this regard the recommendation reported in the Intel guide for
developing OpenCL applications on FPGA [13] is in stark contrast, and points to the design of a single work-group,
single item kernel. The reason of this contrast relies in the data parallel nature of OpenCL, opposed to the so-called
pipeline-level parallelism usually leveraged by implementations targeting FPGAs. Indeed, the Intel/Altera OpenCL
compiler leverages the flexibility of the FPGA target to build heterogeneous small computation units that take care of
the computation of a single work-item with a pipelined architecture. Such an architecture results in a hardware design
which provides a high throughput exploiting the parallelism arising from the processing in the computation pipeline of
different chunks of data that have no mutual read-after-write, write-after-write, and/or write-after-read dependencies.
It is important to notice that designing an OpenCL kernel for a GPU will likely yield extremely poor performances if
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targeting an FPGA, as it is limiting the amount of resources the HLS compiler has to realize the pipeline, given that
multiple instances of it should fit on the same device.

Concerning the explicit loop nests in a OpenCL kernel, to exploit a pipeline-level parallelism a sufficiently long
computation pipeline should be present. To this extent, performing loop unrolling (i.e., reducing the amount of
iterations of a loop body of a factor n via replication of the sequence of instructions in it n times) allows the HLS
compiler to build more efficient pipelines. Loop unrolling, either manual or compiler automated, yields measurable
but moderate speedups on GPUs [7] as it simply saves the cost of the jump instructions, and is, as such, recommended
as a programming technique. We note that, when targeting FPGA devices, properly tuned loop unrolling is crucial to
attain a satisfactory performance level, as it directly impacts the amount of pipelining performed by the HLS compiler.
In particular, the possibility of building a deep pipeline, allows to minimize memory transfers, as the inner buffers of
the pipeline will be used to hold the intermediate results of the computation, which would instead be stored back to
global memory on a GPU platform.

Management of Addressable Caches. Managing addressable caches, as exposed by the OpenCL global, local
and private memories is paramount to decrease latencies. Indeed, the works on efficient GPU programming [7]
stress the importance of moving the most accessed data onto the local and private memories to improve access
latencies. While local memory management on GPU aims at filling the available one at the utmost, the private
memory (that is a large register file; ≈ 1024 registers) is entirely managed by the GPU compiler. To this end, the GPU
programmer is advised to avoid excessive register pressure through storing in the private memory only a reduced
amount of values.
In the case of FPGA programming, the tenant of employing to the utmost the local memory is still valid, as such a
level of the memory hierarchy is mapped onto the available BRAMs and provides area-efficient addressing circuits
with respect to storing large variables in the flip flops contained in the programmable elements. The choice of
using of private memory when targeting FPGA accelerators differs substantially from a GPU target, as there is no
pre-defined register file onto which the contents of the private memory are mapped. Indeed, private memory is
mapped onto the flip flops of the FPGA fabric locating it as close as possible to the corresponding computing logic.
However, private memory is less abundant in FPGA targets, which calls for a more careful choice of the variables
to be allocated into it.
In the context of managing the private memory, and the variables stored thereof, it is important to notice that
the register renaming performed by GPU targeting compilers may be absent in HLS tools targeting FPGAs (and
indeed is absent in the Intel/Altera toolchain). Such a fact may cause a significant performance loss in case the
result of an expression involving a given variable residing in private memory is stored in the variable itself. While
this programming pattern is quite natural, and expected to yield an efficient translation onto a GPU target, the HLS
compiler may not be able to lower such a pattern onto an efficient circuit. Indeed, such a pattern may force the HLS
tool to insert a synchronous element between the computation and the writeback onto the original variable, which
may have been mapped simply onto a set of combinatorial signals. The computed result is then mapped back onto the
variable signals, in alternating clock cycles. To prevent such a fact from happening, inserting manually a temporary
value onto which the result is saved will suggest to the HLS compiler the optimal translation strategy where the
temporary value will act as a pipeline buffer.

Data Allocation. Allocating data in global memory with a layout allowing for burst transfers, also known as mem-
ory access coalescing should be performed in OpenCL programming as the access to global memory is typically
performed with very wide (256-bit or more) buses. When targeting GPUs, memory access coalescing has a significant
impact on performances, due to their computation paradigm, which can be thought of as a very large width vector
processor. Indeed, accessing in a coalesced fashion to a portion of an array containing the input data on a GPU re-
duces the amount of memory transfers by a factor depending on the number of elements of the array which are loaded
at once. While an FPGA-based accelerator may not leverage directly the data parallelism stemming from coalesced
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memory accesses, translating it into a parallel processing of multiple data loaded in a single communication with the
memory is still beneficial to the computation efficiency.

A data layout strategy which is beneficial for improving the performances of a circuit deployed on an FPGA-based
accelerator is the so called Interleaved Allocation. Such a strategy is usually available as an automated code
transformation in HLS compilers for OpenCL. The transformation interleaves the storage of the components of two
arrays to optimize the transfer on-die of the values of both the operands of an expression, which should be computed
element-wise on large arrays. This, in turn, allows the constant feeding of the computation pipeline implementing
the OpenCL single work-item/work-group in a fashion that better fits the parallelism offered by the pipeline-level
processing, enabling a visible performance improvement. On a GPU the interleaved data layout matches the same
performance of vectorized transfers from/to coalesced stored values, and then it does not have the same relevance as
programming practice.

I/O latency hiding. Given the fact that OpenCL accelerators are connected to the host via a high throughput,
moderate latency bus (e.g., PCI-express), hiding the data transfer latencies and achieving efficient synchronization
has a significant impact on performances. I/O latency hiding is commonly performed when developing towards
GPU targets with a technique exploiting multiple buffers (typically two or three) stored in the global memory, to
allow device-based computation on one of them and concurrent I/O transfers on the other(s). While double- and
triple-buffering are usually sufficient to hide completely the I/O transfer latencies on a GPU target, the significant
increase in computation throughput provided by an FPGA may leave the I/O as the bottleneck of the system.
We suggest to exploit multiple command queues and host-based workers (e.g., implemented as threads) to execute
multiple kernels on the same FPGA, whenever the computational load imposed by one of the kernels is not sufficient
to keep the accelerator busy during the memory transfers.

Synchronization. The OpenCL programming model allows only for intra-work-group synchronization of the compu-
tation at hand. While this synchronization is realized in a rather efficient fashion on GPU targets, (e.g., AMD GPUs
have a dedicated hardware support for the OpenCL barrier primitive), its cost on an FPGA platform turns out to be
extremely high, to the point of being highlighted as one of the prime points to be removed in optimizing the code by
the Intel/Altera profiler. A way to achieve intra-work group synchronization when targeting FPGA accelerators is thus
to move the synchronization point to the host-side queue management and exploit cl_events as signaling elements
for single-work-group kernel completions.

4 Experimental Evaluation on AES

In this section we report the experimental validation of the described programming practices employing the Advanced
Encryption Standard (AES) cipher as a case study [14] to gauge the effectiveness of each practice. Subsequently, we
report the effects of applying all the practices to the entire set of ISO standard block ciphers [15, 16], which includes
9 widely employed block ciphers.

4.1 Advanced Encryption Standard

The Advanced Encryption Standard (AES) is a block cipher standardized by the U.S. National Institute of Standards
and Technology (NIST) [14]. AES takes as input a 128 bits plaintext and outputs a 128 bits ciphertext. The plaintext
is processed through a sequence of operations, called round, which involves a set of xor-linear combinations of the
bits of the received input with themselves, a non-linear function being computed on them (implemented as a look-up
table for the sake of efficiency) and a xor combination of the intermediate values in a round with a portion of the
secret key. The number of rounds depends on the key length: we chose a key length of 128-bit among the standard
ones (i.e., AES-128), which implies that 10 rounds are computed. Employing the other two key sizes (192b and
256b) increases by 2 and 4 the number of rounds. Since a block cipher acts on a small quantity of data, a strategy,
known as mode of operation must be chosen to split a large input in chunks and encrypt them. We chose among
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Figure 2: Depiction of the timeline of the execution of a two host threads implementation of the AES-128 ECB
encyrption kernel. Each host thread is assigned to the management of a command queue, into which it issues cyclically
a data transfer to the accelerator global memory (input, in red), a kernel computation command (kernel, in blue) and
a data transfer from the accelerator global memory back to the host (output, green). The topmost two timelines
depict which task is in execution at any given time instant in the two OpenCL command queues, while the bottom two
timelines provide a synthetic view of the juxtaposition of the I/O actions alone (third timeline from the top) and the
kernel computation ones (bottom timeline)

the existing modes of operation, the ones which have data dependencies allowing SIMD parallelization, namely the
Electronic Codebook (ECB), the Counter Mode (CTR) and the xor-encryption-xor (XEX) tweaked-codebook mode
with ciphertext stealing (XTS). All the experiments reported in this section consider the ECB mode, which basically
encrypts each block with AES and then simply concatenates them. Results obtained with the CTR and the XTS mode
of operations show performance results similar to the ones reported for the ECB, and consequentially do not offer
further insights.

4.2 Programming practices evaluation

Our testbed is constituted by a dual Intel Xeon E5-2620v4 host with 128GiB DDR4 running Gentoo Linux 17.0. The
FPGA based OpenCL accelerator is an Attila board by Reflex (RXCA10X115PF40-IDK00A) [17], based on the Altera
Arria 10 GX (model endowed with 1150k programmable elements). We used the Quartus HLS/synthesis toolchain
version 16.1.0 Build 196. We performed our tests with a set of increasing input sizes, finding out that the maximum
throughput is achieved with ≈ 80MiB inputs, although around 10 MiB inputs are sufficient to reach more than 90% of
it. We considered the sustained encryption throughput as our figure of performance, while we considered the occupied
area as the number of programmable blocks over the 427k available ones on the Arria 10 GX. We report, together
with the throughput figures, the area-time product as a measure of the efficiency of the solution, and the maximum
frequency of the design as an additional datum hinting at the size of the longest pipeline stage. We computed the
area-time product multiplying the reciprocal of the throughput by the number of occupied programmable blocks.
Table 2 reports the results of the application of the programming practices described in the previous section, starting
from a baseline AES-128 implementation employing a single T-table [14]. Such an implementation proved to be
more efficient than one among the one endowed with 4 T-tables (i.e., the high performance software one included in
OpenSSL) as the 4 tables are equivalent up to a bytewise rotation of their elements. The baseline implementation of
AES achieves a significantly low overall throughput (≈ 3.6 MB/s), despite the fact that the working frequency of the
design is high 207.25 Mhz. We observed that such a behavior was due to the artificial insertion of additional FFs by
the HLS compiler, which in turn yielded a significantly high number of clock cycles to compute a single AES. We
thus tackled this issue, as described in Section 3, by manual duplication of the variables, attaining a 74× gain in the
throughput.

Building on this implementation, we evaluated the effect of unrolling the loop computing the AES rounds both fully
(as it is implemented in OpenSSL), and by a factor of two only. The full unrolling of the round loop has a detrimental
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Table 2: Experimental evaluation of the effectiveness of the proposed programming practices. Results reported are
obtained on a dual Xeon 2620 v4, with 128GiB DDR4-1600. We also report the maximum attained throughput with a
strawman kernel which only performs a copy between input and output

Programming Throughput Frequency Area-Time
Practice (MB/s) (MHz) Product

Baseline 3.60 207.25 29, 189

Duplicated state variable 269.38 238.6 326

Full rounds loop unroll 38.37 115.67 9, 219

Partial rounds loop unroll 430.40 224.16 290

key in private memory 961.25 267.52 110

2 Host threads 1, 458.67 249.25 87

Double buffering 1, 496.53 254.84 69

No Encryption (copy only) 1, 491.90 – –

effect on the performances, reducing the throughput by a factor of 7×. Such a performance loss is to be ascribed to the
significant increase in the amount of resources used on the FPGA, in order to implement the longer pipeline allowed
by the complete loop unrolling. While this in principle should result in a better exploitation of the pipeline-level paral-
lelism, the advantages of such a deep pipeline are counteracted by an increase in the routing congestion on the FPGA,
as witnessed by a sharp reduction (around 2×) in the maximum working frequency. By contrast, performing a manual
unrolling of only two iterations of the round loop of AES-128 results in a 1.59× increase in the overall throughput, as
the benefits of the loop unrolling are properly reaped.
Tackling the management of the addressable caches, we evaluate the effects of storing the secret key values in the
private memory, instead of the local memory where it was stored in the previous designs. We note that storing the
secret key in globalmemory makes no practical sense due to the extremely high amount of accesses to it that must be
done. Moving the key into private memory provides a significant throughput increase 2.23× as a result of the key
being stored into the programmable elements FFs instead of into a BRAM. Indeed, such a storage solution improves
significantly the width of the access interface to the key value: a BRAM is indeed endowed with only 2 read ports,
forcing the accesses to the key values to be serialized through them. Storing the key into the programmable elements
FFs instead provides serialization-free access to all the portions of the computing circuit. We note that such an effect is
peculiar of the OpenCL programming for an FPGA accelerator: indeed, the access latency to local memory in GPU
is comparable to the one of the register file holding the private memory.
Moving onto the optimization of the input data allocation to allow coalesced memory access, we note that the encryp-
tion computation we are performing has a linear access pattern striding along a single input array (the one containing
the plaintext), which is thus already in its most efficiently accessible layout. To this end, no further data allocation
optimizations can be performed.
The last sets of programming practices to be evaluated include the interleaving of computation and I/O communications
between host and device, and managing the synchronizations. Concerning the I/O latency hiding, we implemented
both an approach relying on a straightforward double buffering technique, and one relying on task-parallel workers
with two separate command queues where we alternated the kernel execution commands employing two host-side
threads. Both approaches proved their effectiveness, showing a gain in throughput of around 1.5× with respect to the
previously achieved one, attaining ≈ 1.45 GB/s of encryption throughput. Between the two solutions, the one relying
on a single host-side queue and thread, issuing the computation commands on a buffer, while performing I/O on the
other shows a slight advantage over the other. We ascribe such an advantage to the smaller host-side overhead of the
implementation with respect to the two-thread approach.
As the final step of the evaluation of the effectiveness of the presented programming practices, we investigated how far
the multiple buffering approach can be taken before the computation time bottleneck prevents further improvements.
First of all, we determined, by benchmarking the throughput attained by a strawman OpenCL kernel which performs
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Table 3: Performance evaluation of OpenCL implementations of all the ISO standard block ciphers [15, 16] on a
dual Xeon 2620 v4, with 128GiB DDR4-1600. The reported area-time product is obtained considering the amount of
programmable elements in the target FPGA

ISO Block Cipher Frequency Throughput A×T
Std. Cipher Structure (MHz) (MB/s) Prod.

[15]

MISTY1 Feistel 258.1 1, 503.7 40

HIGHT Feistel 189.0 1, 360.6 45

DES Feistel 231.8 1, 480.6 58

CAST5 Feistel 268.6 1, 496.7 62

AES SPN 254.8 1, 496.5 69

SEED Feistel 201.2 1, 493.1 163

Camellia Feistel 200.9 1, 477.7 204

[16]
Present SPN 247.2 1, 444.6 50

CLEFIA Feistel 177.5 1, 499.4 203

a simple copy between input and output, without any further computation, that a double buffering approach is bot-
tlenecked by the transfer capability of our setup. The throughput of the strawman kernel is substantially identical to
the one of the double buffering pointing strongly to the I/O bound nature of the implementation when running on our
setup (see last row in Table 2). Due to limitations of the current driver provided by Intel for our dual Xeon 2620 v4
board, (which allows only a half-duplex data transfer between the accelerator board and the host device) applying a
triple buffering strategy yields performances substantially identical to double buffering ones, due to the serialization
of the data transfer phases to/from the FPGA accelerator. Given this technical hindrance to a direct measurement of
the effectiveness of a triple buffering approach in our setup, we quantified the amount of latency which can be still
reduced starting from the double buffering approach. Figure 2 reports an execution timeline of the two host threads im-
plementation of the AES-128 (first two timelines from top), highlighting which phase of the execution among copying
to the device (input, red in figure), executing the kernel (kernel, blue in figure) and copying back the results to the host
(output, green in figure) is being executed by the thread. The last two timelines report the juxtaposition of the input
and output operations and the kernel computations of both OpenCL queues. As it can be seen, the kernel execution
takes substantially the same amount of time of a single data transfer (either to or from the accelerator). It can thus
be deduced that, given a driver exploiting the full duplex communication capabilities of the PCI-Express bus, a 2×
improvement in the overall throughput of the implementation can be achieved employing a triple buffering strategy.

4.3 Performance and Energy Efficiency Evaluation on ISO Standard Block Ciphers

We now evaluate the effectiveness of the described programming practices applying all of them to the implementation
of the entire set of ISO-Standard block ciphers [15, 16]. The aim of such an evaluation is to test whether the said
programming practices are still valid across a variety of symmetric encryption algorithms. In particular, the nine
ISO standard block ciphers can be partitioned according to their structure: either a Substitution-Permutation Network
(SPN), or a Feistel network are employed to define the cipher round itself. In a SPN design, the cipher performs
a computation of the same complexity on the entire cipher state, while a Feistel network cipher applies a complex
function only to a half of the state, and combines via bitwise xor the result with the other half. As a result, Feistel
network based ciphers tend to have a higher number of rounds with respect to SPNs, in turn impacting the effectiveness
in pipelining and the wire routing complexity. Table 3 reports the results of our experimental campaign on the same
dual Xeon 2620 v4 machine which was employed to perform the programming practice validation.

The results reported in Table 3 show that all block cipher implementations but HIGHT attain the maximum possible
throughput given the capabilities of the PCI-Express bus and the Intel driver. We ascribe the reduced throughput of
HIGHT to the abundant use of integer addition operations which result in longer critical paths (as indicated by the
lower frequency) and the relatively high number of rounds (32). A similar effect is present in CLEFIA, which also
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Table 4: Comparison of the energy efficiency of the OpenCL implementations for FPGA accelerator of the nine ISO
standard block ciphers, on a Intel Xeon E5-1505M v6 CPU based host with DDR4-2133 DRAM. The CPU AES
implementation employs the dedicated AES-NI instructions

Block Platform Throughput Power Energy Efficiency
Cipher (MB/s) (W) (MB/J)

AES
FPGA 1020.8 15.02 67.96

AES-NI 1678.4 25.79 65.09

HIGHT
FPGA 824.0 21.87 37.68

CPU 20.0 26.01 0.77

DES
FPGA 764.8 12.62 60.61

CPU 85.0 22.24 3.82

CAST5
FPGA 814.2 13.63 59.75

CPU 132.0 23.14 5.70

SEED
FPGA 930.8 14.49 64.23

CPU 102.3 22.46 4.54

Camellia
FPGA 957.6 15.06 63.59

CPU 198.0 22.68 8.73

MISTY1
FPGA 1006.0 25.59 39.31

CPU 22.0 26.07 0.84

CLEFIA
FPGA 1202.0 22.60 53.19

CPU 3.0 26.38 0.11

Present
FPGA 979.0 25.57 38.29

CPU 11.2 23.87 0.46

employs integer additions, although the more compact nature of the cipher does not push the FPGA resources to the
point where the total throughput changes noticeably.

Having validated the proposed implementations in terms of performances, we also investigate whether employing an
OpenCL HLS toolchain is able to produce accelerated implementations reaping the energy efficiency benefits of run-
ning on an FPGA. To this extent, we employ a different host, which is equipped with a dedicated power consumption
monitor, on the motherboard. In particular, the host is equipped with a power-efficient Intel Xeon E5-1505M v6 CPUs
and 32 GB of DDR4-2133 RAM and runs CentOS Linux 7 x86_64. Table 4 reports the results of the evaluation of the
power efficiency on all the nine ISO standard block ciphers obtained with a kernel designed to be lasting long enough
for an accurate power consumption measurement to be collected. The reported results show that our OpenCL imple-
mentations are able to achieve speedups between 10× and 1000× over a software implementation of the same block
cipher. In particular, we report that, whenever available, the production grade implementations of the block ciphers
present in OpenSSL were employed as the reference ones running on the CPU. It is also noteworthy the fact that our
FPGA based implementation achieves a throughput comparable with the one of the dedicated ISA extension AES-NI
of the Intel Xeon, which computes an AES encryption in 10 (multi-cycle) instructions. Indeed, given the potential
advantages of a full-duplex PCI-Express driver, our implementation should outperform AES-NI.
From an energy efficiency standpoint, we evaluate the amount of GB per Joule encrypted by both FPGA-accelerated
implementations and their software alternative (see last column in Table 4). We note that our implementation out-
performs all the alternative solutions, including AES-NI in terms of energy efficiency. In particular we achieve a
geometric mean gain of 22.78× over all the block ciphers which have no dedicated instructions (the arithmetic mean
gain is 79×), effectively proving the energy efficiency advantage of our solution.
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5 Conclusion

We analyzed the programming practices to exploit the available HLS toolchains to deploy OpenCL programs onto
FPGA based accelerators. We delineated the differences from the common GPU oriented programming practices and
highlighted the impact of tailoring the code for execution on FPGA. We experimentally validated the effectiveness
of such programming practices employing the AES block cipher as our case study, showing that we were able to
achieve throughputs bound only by the I/O capabilities of the bus connecting the accelerator to the host. We also
report energy efficiency results on the implementation of the nine ISO standard block ciphers showing a geometric
mean improvement of 22.78× in the amount of encrypted data per Joule spent.
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