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1 Introduction

A constraint is, broadly speaking, an a priori restriction placed on the set of configurations
or motions which are deemed possible for a mechanical system. For N particles with carte-
sian coordinates (X, y;, 1), a set of fixed holonomic constraints is specified by s equations
fi s yis zn) = 0, which are supposed to describe some (3N — s)-dimensional submanifold
A of R* . This assumption is not always made so explicit, but is frequently presented as
the request that, for each permissible configuration, the Jacobian of functions f; (x;, yn, Z)
has maximum rank, so that, in view of Dini’s Theorem, we may locally express the
coordinates (xj, yn, Z») through n = 3N — s free variables g; . Indeed, as explained in many
textbooks on Differential Geometry (see, e.g., [11]and [1]), this is equivalent to the
request that the set of points (x;, yu, z,) which satisfy f; (x;, ys, zs) = 0 describes a smooth
submanifold of R3¥ . There are good reasons for such an assumption; in particular, there is
an obvious need for
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avoiding constraints with a weaker mathematical structure, a topic I shall further comment
later on.

We are interested here in internal constraints in finite elasticity, such as incompressibility
or inextensibility in a given direction, which are just two among the many examples of
restrictions placed on the set of deformations which are widely used for modelling specific
elastic materials.

Many types of internal constraints have been discussed in the modern literature (see, e.g.,
[2, 4,5, 8]). In order to provide a general framework, Gurtin and Podio-Guidugli proposed
in [7] an axiomatic definition of what an internal constraint should be, at least for simple
materials. Their proposal, which was further discussed in [9], is based on the idea that an
internal constraint should be thought of as a smooth and connected submanifold .# of Lin™
(the open set of tensors with positive determinant) which, additionally, is required to include
the identity tensor I and be invariant under the action of the rotation group. Since each tensor
F € ./ represents the deformation gradient at a prescribed point, the requirement that I be-
longs to .# is the natural assumption that the chosen reference configuration is permissible
under the given constraint. Moreover, the condition that QF € .# for each F € .# and each
rotation Q makes the constraint compatible with the principle of frame indifference.

A delicate but important aspect of this definition is the quite natural requirement that
A be a differentiable manifold. Notice that the assumption that virtual velocities form a
linear space, an ingredient of any well constructed mechanical theory, is strictly related to
the manifold structure through the notion of tangent space. Such an assumption, however,
has deeper consequences than expected.

The problem of characterizing isotropic internal constraints was thoroughly discussed
by Podio-Guidugli and Vianello in [9]. The main and perhaps surprising conclusion is that,
beside rigidity and conformality, the only possible isotropic constraints have dimension 8
in Lin™. Thus, for example, one cannot have a seven-dimensional constraint manifold just
adding some other isotropic restriction to the request of incompressibility.

In a fairly recent and interesting contribution to the literature, however, Carroll [3] in-
troduced some isotropic constraints of dimension 7, suggesting that they might be possible
counterexamples to the results proved in [9] (more precisely, in ref. [3] see the paragraph
at the bottom of p. 1142, the top of p. 1143, Proposition 5, and the comments on p. 1147,
just before Sect. 5.1). The main goal of the present research is to show that at least one such
constraint is not described by a differentiable manifold and, moreover, to give reasonable
arguments to convince the reader that the same happens with all other proposed examples,
which, thus, do not qualify as “counterexamples”.

The conclusion I anticipate is that all of the constraints proposed in [3] do not have a
proper tangent space at I € .# . Is this important? Does it matter? This is not so obvious,
and could be the subject of an interesting discussion, but certainly the lack of a proper
manifold structure should be acknowledged and the related issues appropriately discussed.

For the sake of completeness in the final section of this research I propose an alternative
proof of the main result contained in [9], which, in my opinion, is thus confirmed.

2 Constraint Manifolds

We use small and capital boldface letters for vectors and second-order tensors of the Eu-
clidean three-dimensional space. Moreover, Lin denotes the space of such tensors, and
Lin™ C Lin denotes the open subset of all T € Lin such that det T > 0. Symmetric tensors,
for which S = ST (a superscript T denotes the transpose), are the elements of Sym C Lin; the



open set of all positive definite S € Sym is Sym* C Lin*. The first, second and third invari-
ant of a symmetric tensor S shall be written as 7;(S), I,(S), I53(S) (the explicit dependence
on S can be omitted when no confusion arises). Of course,

I;,(S) =trS (trace),
L(S) = [tr(S)2 — tr(Sz)] /2 (quadratic invariant),

I;(S) =detS (determinant).

The subspaces of spherical (isotropic) and deviatoric (traceless) symmetric tensors are de-
noted by

Sph:={S € Sym: S =1}, Dev := {SeSym: tr(S)=O}.

Finally, Orth and Rot C Orth are, respectively, the group of orthogonal tensors and the group
of rotations.

An internal constraint at a given material point of an elastic body can be defined, loosely
speaking, as a restriction placed on the set of permissible deformation gradients F, such as,
for example,

(M) detF=1,  (#r) w(FF)=3,  (#;) Fe-Fe=1, (1)

(where e is a fixed unit vector). The first condition corresponds to the requirement of incom-
pressibility, the second is known as “Bell’s constraint”, and the third one enforces inextensi-
bility in the e direction. Of course, one can freely construct many other examples of internal
constraints but, in general, we should remember that they are meant to describe material
properties of interest and of some physical significance.

It seems useful to lay down an appropriate list of requirements that all internal constraints
should fulfill, in order to be treated from a unified perspective. The approach chosen in [7]
and [9] is to call a subset .# of Lin™ a constraint manifold if it has the following properties:

(P)) M is a connected submanifold of Lin™;
() le M;
(P3) QA = A, for all Q € Rot.

Condition (£?)) implies that a tangent space is defined at each F € ., so that the set
of virtual velocities from a given configuration is a proper linear space, as is common in
Mechanics. Condition (£7,) is simply the requirement that the reference configuration itself
is permitted, while (£?3) means that for each admissible deformation gradient F the whole
orbit QF is also admissible (this is the request needed to make the constraint compatible
with material frame-indifference).

It is important to comment on why the word “submanifold” has been written in italics in
the statement of property (Z?;). There are subtly different concepts which might go under
this name, which is often preceded or followed by appropriate specifications.

A subset . of a Euclidean space & is a submanifold if, in the relative topology induced
on . by &, there is on % a (unique) C* differentiable structure such that the inclusion
map i of % into & is a C*™ immersion. For a discussion of such definition and some related
concepts, we refer to the detailed explanations provided in [11, Chap. 1]. Thus, at each point
p € &, a submanifold has a tangent space %, which can be identified with a subspace
of ¥, the translation space of &, and, moreover, can be seen as the set of all derivatives
x(0) for smooth curves x(¢) € . such that x(0) = p. It seems clear enough that this is



the same approach taken in [7] and [9], even if, there, such definitions were not stated so
explicitly.

Notice that a subset . contained in an open set % C & is a submanifold of & if and
only if it is a submanifold of %/ . Thus, it will make no difference to declare a set contained
in Lin™ to be a submanifold of Lin™ or Lin, and, analogously, for Sym* and Sym.

In order to avoid possible misunderstandings, we recall that an algebraic variety is, es-
sentially, the set of solutions of a system of polynomial equations, for which the existence
of a tangent space at each point is not guaranteed. Some (but not all) algebraic varieties are
submanifolds and, in this case, they take the name of algebraic manifolds.

Our key request, thus, is that an internal constraint be a differentiable manifold which,
by definition, is endowed with a tangent space of a constant dimension at each point.

One might ask the reason for such a choice and an interesting discussion could profitably
be developed about this. Our motivation comes from Classical Mechanics, where virtual
displacements from a given configuration are required to form a linear space. Difficulties
which might otherwise arise are made clear with the help of a simple example.

The plane algebraic curve known as Bernoulli’s Lemniscate, given by

%::{(x,y)e]Rzzx4—x2+y2=0}, 2)

is “eight-shaped”, similar to the symbol “oco”. The set of virtual velocities (or displacements)
for a point in the plane constrained to move on ¥ does not form a linear space at the
origin, where the double point is located. The assumption that the set of configurations for a
constrained system should be described through a differentiable manifold is manifestly due
to the need of avoiding such troublesome situations (indeed, € is an algebraic curve but not
a submanifold of the plane) and is implicitly or explicitly made in all Classical Mechanics.

It is perhaps open to discussion if such considerations should be extended to internal
constraints in Continuum Mechanics but, in my opinion, a cautious approach should retain
the restriction that a constraint be a submanifold and not just an algebraic variety.

The main goal of the present article is to show that some internal constraints which might
appear to be counterexamples to the results contained in [9] are indeed algebraic varieties
but not manifolds. Since the proofs given in [9] are clearly based on the requirement that
an internal constraint be a manifold, the contradiction between the “counterexamples” and
the results found in [9] is shown to be mainly due to some misunderstanding about the
terminology.

As a preliminary and reassuring observation, notice that the definition of an internal
constraint given through properties (£7), (£7,) and (&7;) is satisfied by examples (1).

Connectivity of each .#; described in (1) can be deduced from the polar decomposition
theorem and some known properties of the spectral decomposition of positive definite sym-
metric tensors. Here, we skip such details, and just verify the less trivial property (£?;) for
each ;.

For each of the smooth functions defined on Lin™

V1 (F) =detF, v»(F) =(FF"), v3(F)=Fe-Fe,
we compute the differential at F in the direction H € Lin as
D, (F)[H] = (detF) tr(HF '),
Dy, (F)[H] = 2tr(F'H),
D y3(F)[H] = 2Fe - He.



Constraints listed in (1) can be written, respectively, as
(A) y(F)=1, (A) Yo (F) =3, (A\) Y3(F)=1
and, since for all F which belong to .#;
Dy (F) #0,

we can apply the implicit function theorem in the context of differential geometry (see, e.g.,
[1, Chap. 1] or, more precisely, [11, Thm. 1.38]), and conclude that each .#;, as defined in
(1), is indeed a submanifold of Lin™ with codimension one.

3 Isotropic Internal Constraints

A constraint is isotropic if
Fe#, QeRot = FQe.Z 3)

and only such constraints can be used to restrict the set of deformations of an isotropic
material.

For B = FFT the left Cauchy-Green strain tensor and in view of the polar decomposition
theorem constraints .#; and .#, in (1) can be written as

LB)=1, Ii(B)=3,

and their isotropicity is thus guaranteed by the well-known properties of the invariants. No-
tice, however, that while .# and .#, satisfy requirement (3), .#5 (inextensibility in a
prescribed direction) does not, in agreement with physical intuition.

One might think that isotropic constraints could be easily generated as level sets of one
or more polynomials in the invariants of the left Cauchy-Green strain tensor B

S :={BeSym": gi(I;, L, ;) =g(3,3,1) i=12...,n} 4)

(the choice for the right-hand side is a guarantee that I € .%).

The are two problems, however. A first issue was discussed by Carroll in [3]: the set of
tensors B satisfying conditions (4) should not be empty. Through a careful analysis, Carroll
[3] was able to provide conditions that restrictions (4) should obey in order to be satisfied
by some non empty set of strain tensors B.

A second and very delicate issue, which does not seem to have been much discussed
elsewhere, is the need to check that a constraint defined by (4) is not just an algebraic variety,
but a differentiable manifold.

Since a polynomial function of the invariants I, is polynomial in the components of B,
the set . defined in (4) is an algebraic variety in Sym™. The constraint .# is then

M ={FeLin*: FF' € &/}, ®)

and this should be a submanifold of Lin™.
A result proved in [9, Theorem 5.1] can be re-stated as follows:

Proposition 1 There is no isotropic constraint manifold .# C Lin" of dimension 5, 6 or 7.



Before discussing this result and the counterxamples which have been suggested, we
introduce an alternative view of internal constraints. This is necessary, because some contri-
butions to this subject take a slightly different approach. Indeed, it is reasonable to define an
isotropic constraint to be a submanifold of Sym™, and thus a restriction for the values of the
left Cauchy-Green strain tensor B = FFT, rather than a submanifold of Lin™, a restriction
for the values of the deformation gradient F.

According to this point of view, a subset . C Sym™ is an isotropic constraint manifold
if:

(%) . is a connected submanifold of Sym™;
(%) 1€ 7
(%) Q.7QT = ., for all Q € Rot.

Proposition 1 has an analogue in the following statement.

Proposition 2 There is no isotropic constraint manifold . C Sym™ of dimension 2, 3
or 4.

One may wonder if, by means of the map described by (5), an isotropic constraint man-
ifold .# in Lin" always corresponds to an isotropic constraint manifold . in Sym™. The
answer is positive, according to Lemma 5.2 of [9], and this makes Propositions 1 and 2
equivalent.

We shall make no appeal to such result, however, and, for simplicity, we confine our
discussion to isotropic constraints .’ seen as subsets of Sym.

We show that an example proposed in [3] and first discussed by Saccomandi in [10] is
not a manifold, in the sense that the algebraic variety defined by such constraint does not
have a tangent space at the identity. The situation is thus quite similar to what is suggested
by curve € of (2), where the role of the origin is now played by the identity tensor L.

More explicitly, we consider the constraint

& :={BeSym": I;(B) — L(B) =0, 5(B) =1}, (6)

and prove that it is not a submanifold. Indeed, if . were a submanifold of Sym, then
it would be a counterexample to Proposition 2: an isotropic constraint of dimension d =
4(6—-2).

It should be noted that Saccomandi in [10] writes that “this result [as stated here in Propo-
sition 1] is true for constraints describing manifolds [...]; otherwise, a counterexample to
this assertion is given by I} — I, =0, I; = 17.!

Saccomandi’s comment was not noticed by Carroll who, apparently, in [3] did not con-
sider important to assess whether the algebraic variety (6) were a manifold or not.

On top of p. 1143 of [3] Carroll writes: “Saccomandi’s counterexample is not the only
one. Indeed, it is easy to construct an infinity of sets of constraints that imply one-parameter
principal stretch states, such as uniaxial stretch (A, 1, 1), equibiaxial stretch (A, A, 1) and
symmetric isochoric stretch (A, A, I/AZ), all of which correspond to 7-dimensional con-
straint manifolds.”

I entirely agree with this sentence, since it clearly states that the proposed example might lack the property
of being a submanifold. Indeed, before writing his note, Saccomandi asked for my opinion, and I anticipated
to him what the problem might be with the example he had in mind.



Of course, one might discuss in detail other hypothetical counterexamples proposed in
[3], but this would be tedious and perhaps not very useful. My opinion is that all such exam-
ples have a common property: they are isotropic algebraic varieties but not submanifolds,
since all of them lack a tangent space at the identity. I shall provide further motivations and
clues which should convince the reader but I shall not go into detailed discussions on a case
by case basis.

In order to make this presentation complete we conclude this work with a proof of the
result stated in Proposition 2, as an alternative to what can be found in [9].

Thus, the main results of this research can be summarized as follows:

1. Constraints
I] —12:0 and 1321

define two isotropic manifolds.
2. Constraint

L —1,=0
L=1
is shown not to be a manifold.
3. A new proof of Proposition 2 is given.

It is perhaps useful to anticipate the crucial detail which makes impossible for the pro-
posed constraint to be a manifold. We shall prove that the set of curves lying in the constraint
and which go through the identity I have, at that point, a set of tangent vectors which span a
space with a higher dimension than the constraint itself. Thus, since the tangent spaces to a
manifold must have the same dimension everywhere, equal to the dimension of the manifold
itself, this observation will suffice to reach the desired conclusion.

Moreover, it is important to notice that away from the identity the constraint is indeed a
manifold. Thus, it appears that a crucial role is played by the request that I be an admissible
strain tensor for any given constraint. Could we do without this assumption? Perhaps, and
this could be discussed. This article is less ambitious, however, and its goal is limited to
pointing out where some difficulties might lie.

Finally, we point out that if

M :={F eLin®: I,(FF") — L,(FF") =0, I;(FF") =1} (7

were a submanifold of Lin, then it would be a counterexample to Proposition 1: an isotropic
constraint of dimension d =7 (9 — 2).

One can prove, however, that .# is not a submanifold of Lin. Such proof is here omitted,
for the sake of brevity, but this result is mentioned as a further confirmation that, as .,
defined in (6), is not a counterexample to Proposition 2, so .#, defined in (7), is not a
counterexample to Proposition 1.

4 A Constraint Which Is not a Manifold

As a useful preliminary we list the differential of the invariants with respect to the tensor
variable B € Sym™*:

DIi(B)H]=trH=I-H, 3)



D I,(B)[H] = (trB)(tr H) — tr(BH) = [(tr B)I — B] - H, 9)
D I;(B)[H] = (detB)B~! . H=cof B - H. (10)
The set . defined by (6) can be seen as the intersection of
1 :={BeSym": I;(B) = L(B)} (11)
and

S :={BeSym": L(B)=1}. (12)

Theorem 1 The sets ., and .%», defined in (11) and (12), are 5-dimensional isotropic
submanifolds of Sym.

Proof 1t is easy to verify that .%| and .%, are isotropic and we concentrate on the proof that
each one is a submanifold. We begin our analysis from .%; and compute at each B € .%

D(l, — L)(B) =1— (r B)I + B.
Thus, condition D(/; — I,)(B) = 0 is equivalent with
(1—-uB)I=-B, (13)
which in turn, after taking the trace of both sides, implies
31—tuB)=—trB
and

trB =3/2. (14)

Upon substitution of (14) in (13) we conclude that the differential D(/; — I,) is zero only
for B =1/2. However, since

1,(I/2) =3/2, hL(1/2) =3/4,

we conclude that I/2 does not belong to .. Thus, the differential of I; — I, is not zero at
each point B of the set defined by I; — I, = 0. In view of a standard theorem of differential
geometry (see, e.g., [11, Theorem 1.38]) we conclude that each connected component of .}
is a submanifold of Sym* C Sym of dimension 5 =6 — 1.

‘We now turn our attention to .%. Since

D I;(B) = (detB)B~!,
it is easy to conclude that at each B € .% (for which detB = 1) we have
DL (B) #0.

Again, this suffices to show that .% is a submanifold of Sym™ C Sym of dimension 5 =
6 — 1, exactly as for .7. O

Our first conclusion, thus, is that both ., and .%; are isotropic submanifolds of Sym.



We now turn our attention to . = % )| %2, with the aim of showing that they are not
submanifolds of Sym and Lin, respectively.

The fact that .7 is not empty can be deduced from the observation that any tensor B
which, with respect to some orthonormal basis, has components

A 0 0 1 0 0 A0 0
0 1/x of, |o 1/x of, |01 0], =0 (15)
0 0 1 0 0 & 0 0 1/x

satisfies all conditions which define both . and .% and thus belongs to . = . (| .
Indeed, it is useful to prove that only tensors described (with respect to some orthonormal
basis) by one of the matrices listed in (15) belong to ..

Theorem 2 For each tensor B € . C Sym™ there is at least one orthonormal basis e; and
a real number ). > 0 such that the matrix of the components takes one of the forms listed in
(15).

Proof For I3 =1 and I} = I, the characteristic polynomial for B € .%
¥V’ 4+ L —yL+L=0

takes the form
-V’ +y i —yL+1=0

and is factorized as

=D+ 0 -1y +1]=0.

One eigenvalue is thus equal to 1 and the product of the remaining pair is also 1.

The conclusion is that the diagonalized form of the matrix of components of B € .% C
Sym™ is necessarily one among the three which appear in (15) (condition A > 0 is forced by
B € Sym™). O

We now show that, even if both . and .% are submanifolds of Sym™, their intersection
y:yl myz is not.
First of all we show that away from I the set . is a 4-dimensional submanifold.

Theorem 3 For each B € ¥ C Sym which is different from 1 there is neighborhood such
that the restriction of . to that neighborhood is a 4-dimensional submanifold.

Proof For two submanifolds, defined as zero sets of functions g; and g,, a sufficient condi-
tion for their intersection to be itself a submanifold is that there the gradients (or differen-
tials) D g, and D g, are linearly independent. Since, in our context,

g1(B) =1(B) — L(B), & B) =L(B), (16)
we need to verify if and where, for some o,

D, - L)B)=aDhB), forBe. 7.



This condition is
(1 —trB)I+B=a(detB)B™', (17

which, since det B = 1, after multiplication of both sides by B is equivalent with
(1—uB)B+B*=ol. (18)

In view of Theorem 2 we assume that, with respect to some orthonormal basis, the matrix
of B € . has the form

1 0 0

0O x O

0 0 1/x

(the other matrices listed in (15) would give the same results, as can be readily checked).
Thus, equation (18) becomes

1 1 0 O 1 0 0 1 0 0
(—A——)OA 0 |+]0 A 0 [=a|0 1 0
1o o 1 0 0 1/32 00 1
which leads to the system
—A—1/A+1=a,
A2 —1+1=q,
—1 =1/ +1/3=aq.
The second and third equation give o = —1 while, with such a value, the first equation
becomes
A+ ! =2
A‘ - 9

which in turn yields A = 1. This analysis keeps its validity for all other forms of the compo-
nent matrices which appear in (15) and, in any case, we deduce that « = —1, A = 1.

The conclusion is that (17) is satisfied on . only for B = I. Thus, at all points which lie
on &, except for B =1, the differentials in (16) are linearly independent and this suffices to
prove that, away from point B =1, .% is a submanifold of dimension 4. o

What happens at B = I? Since the condition used is in Theorem 3 is sufficient but not
necessary we cannot yet draw any conclusion about the geometric structure of % at 1.
The differentials of I, — I, and I5 at B =1 are, respectively,

Dl — L)X = -1, DM =1,

and, because of this, the tangent spaces to .} and .% at I (and only there) coincide with
Dev, the space of symmetric tensors which are orthogonal to the identity or, equivalently,
traceless. We conclude that .%} and ., have a common tangent space at I, and this is the
precise reason for which at that point the sufficient condition for their intersection to be a
submanifold cannot be applied.

In the ordinary three-dimensional Euclidean space it is possible to provide examples
of pairs of surfaces with an intersection which is a manifold, as it is possible to provide
examples of pairs of surfaces with an intersection which is not a manifold, near a point



Fig. 1 The graph of Viviani’s Z
curve

=

where they share a common tangent plane. Thus, we need a more explicit analysis of the
behavior of .% at I in order to understand in which situation we are.

As an help to the reader’s intuition we describe a classical algebraic curve which, as
we shall see, has a behavior quite similar to what can be deduced for .. We consider
in R3 the intersection between the unit sphere x> + y? + z?> = 1 and the circular cylinder
y2 — y + z> = 0, which has radius 1/2 and is parallel to the x axis, with a basis centered
at (0, 1/2,0). The intersection of such smooth surfaces, which have the set y = 1 as their
common tangent plane at (0, 1, 0), is the celebrated Viviani’s curve, whose graph is shown
in Fig. 1. Notice that at (x, y, z) = (0, 1, 0) the curve does not have a tangent space but,
rather, a tangent cone given by the union of two lines. As a consequence, this curve is an
algebraic variety but not a submanifold of R?. Notice that Viviani’s curve is defined through
the intersection of two smooth submanifolds, a sphere and a cylinder, exactly as it happens
for the constraint .. As we shall see, there is a close similarity between the structure of .%
and what can be seen in the graph of Viviani’s curve.

Let .’ be the set of all tangent vectors to curves in . as they go through the point I (of
course we should rather say “tangent tensors” but it is perhaps more convenient to abuse our
terminology).

We now prove that the span of .%” is Dev, and this result is sufficient to deduce that .&
itself is not a submanifold. Indeed, if . were a manifold the set .’ would coincide with the
tangent space, and at B = I the tangent space to .% would then be Dev, which has dimen-
sion 5. However, away from I the dimension of .% is just 4 = 6 — 2, a clear contradiction,
since the dimension of the tangent space to a manifold is constant at each point.

Theorem 4 The set . C Sym is not a submanifold in any neighborhood of 1.

Proof With respect to its eigenbasis a symmetric traceless tensor Ay has diagonal form

a 0 0
0 B 0
0 0 —a-—8
Let
ME)=at+1, M(@)=pt+1,
for which

MO =20)=1, ,LO)=a, i) =4
The functions

rMm@ 0 0 1 0 0
A(t)= 0 1 0 s A)=10 A 0 s
0 0 1/M@) 0 0  1/m0)



for ¢ close to zero define curves on .’ which go through I for r = 0 and

) a 0 0 ] 0 0 O
AO=|0 0 0 [, A0)=|0 B O
0 0 —« 0 0 -8
Thus, while both A (0) and A, (0) belong to %, their sum is
) ) a 0 0 0 0 O a 0 0
A0)+A0)=(0 0 O |+]0 B 0 |=|0 B 0 =A,.
0 0 —« 0 0 -8 0 0 —a—g8

This shows that the span of .%’ (set of tangent vectors at I to curves in .%’) is Dev,
the (5-dimensional) space of traceless symmetric tensors. As stated before this shows that
% cannot be a submanifold of Sym™. (A straightforward conjecture is that %, = {H €
Dev: detH = 0} is the tangent cone to . at I, but we shall not expand on this.) g

It is interesting to show the existence of a strong clue suggesting that any intersection of
a pair of isotropic constraint manifolds in Sym™' might not be a manifold near the identity.
Let g, (11, I, I3) (h =1, 2) be polynomial functions of the invariants ;(B) and, for

enB) =g (1, I, Iy),

assume that each one of the constraints g, (B) = g;(I) defines a submanifold of Sym™.
Notice that such constraints can be written as

gith, I, I3) =2:(3,3, 1),
éz(llv 127 13) = §2(37 33 ])‘

From (8), (9) and (10) we have

DL(MH =twH=1I-H, (19)
D L(D[H] = (wD(trH) — wr(IH) = [(rDI - 1] - H=21-H, (20)
D I(D[H] = (detDI"' - H=cofI-H=1-H. 1)

The differential of g, with respect to B, in view of (19), (20), (21), yields

08n gn 98
Dg(DH] = —=>+2——+— |)I-H,
gn(D[H] (811+ 812+8I3

which shows that the tangent space to the level sets of g; and g, at I is Dev, the space of
traceless symmetric tensors.

Thus, even if g;(B) = g;(I) and g,(B) = g, (I) define two submanifolds of dimension 5
which go through I, the condition of linear independence of the differentials of g; and g, at
I, which is sufficient for the intersection to be locally a submanifold of dimension 4, is not
satisfied. Of course, this is not really a proof that such an intersection is not a manifold but
it is a strong clue about what the problem might be.
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Appendix

We give a new proof of Proposition 2, which can be stated as follows: any (proper) isotropic
constraint manifold .%” C Sym has either dimension 1 or dimension 5.

Let 4 C Dev be the tangent space to . at the identity I. If B(O) € S is the derivative
of a curve B(¢) in . which goes through I for ¢ = 0 it follows that, for any rotation Q, the
curve

B(t):=QB1)Q" .
satisfies B(0) = QB(0)QT =1 and

d - .
77 BOl=0 = QB(0)Q' € .

Thus,
B(0)e %, = QB0)Q"eA,

and from this it follows that the tangent space ., C Sym is invariant under the group of
rotations, in the sense that

QAQ" = A, (22)

for all rotations Q.

The problem now is: which subspaces of Sym satisfy condition (22)? Only two: Sph and
Dev.

The proof will be given later. For the moment just notice that, since the dimension of the
submanifold . is equal to the dimension of the tangent space .}, the only possibilities are

dim . =dimSph =1, dim . = dimDev =5,

and this is equivalent with the statement of Proposition 2.

One should notice that the crucial steps are: (1) . is a submanifold and, thus, has a
tangent space at each point; (2) the identity tensor belongs to .. Only if we neglect such
requirements it is possible to construct examples of isotropic constraints (as algebraic vari-
eties) which seemingly violate the results proved in [9].

Finally, how can we prove that Sph and Dev are the only proper subspaces of Sym which
satisfy property (22) for all rotations?

The barehanded proof given in [9, Lemma 5.3] is perhaps a bit cuambersome and not very
elegant. Indeed, the whole topic could be investigated within the framework of the theory
of group actions on polynomials, for which one might refer to the (application-oriented)
introduction given in [6, Chaps. XII and XIII]. Of course, this approach to the proof of
Proposition 2 would not be self-contained with the additional disadvantage of requiring
references to mathematical tools not so widely known in this context.

Here, however, I propose a new proof which, in my opinion, has the advantage of being
reasonably simple and self-contained. Additionally, this approach is based on techniques
which are commonly used in the literature about finite elasticity.

A preliminary technical lemma is useful.

Lemma 1 Let B and A ¢ Sph be a pair of symmetric tensors such that, for all rotations Q,

B-QAQT =0. (23)



Then B € Sph.

Proof We show that condition B ¢ Sph would lead to a contradiction, and this will suffice
to prove the lemma.

Under the assumptions, and in view of the spectral decomposition theorem for symmetric
tensors, we know that A has (at least) one characteristic space of dimension precisely 1. Let
a be an eigenvector spanning such space. Since B is also assumed to be not spherical we
can easily find at least one rotation Q such that a := Qa is not among its eigenvectors.
Let A := QAQT so that a spans a one-dimensional characteristic space . % for A. We now
notice that A and B can not commute since, otherwise, B would map % into itself, and, in
particular, this would imply that Ba = pa, for some p, forcing a to be an eigenvector of B.
Thus,

BA — AB #0.
Next, define a curve on Rot as
Q1) =exp(tW)Q,
where W is an arbitrary skew-symmetric tensor, so that
QN=Q  QO=WwWQ. 24)
The function

o(t):=B-QHAQ®)"

and its derivative are forced by (23) to be identic_ally equal to zero. However, in view of (24),
the symmetry of A and B and the definition of A,

5(0) =B - [Q(0)AQ"(0) + Q(0)AQ"(0)] =B - [WQAQ" + QAQ"W']
=B-[WQAQ" — QAQ"W] =B -[WA — AW] =[BA — AB] - W.

Now, let W := BA — AB, which is skew-symmetric and not zero. With this choice, we have
6(0) = [BA — AB] - [BA — AB] > 0,
a clear contradiction. ]
Now we can easily prove our main and final result.

Theorem 5 Let . be a proper subspace of Sym which satisfies condition (22) for all
rotations Q. Then, either /) = Sph or % = Dev.

Proof If # # Sph there is a tensor A in .%} such that A ¢ Sph. In view of property (22) any
tensor B in the orthogonal complement yol would satisfy (23), for all rotations Q. Then,
Lemma 1 implies that B € Sph, so that and .%;- C Sph. Since .%} is supposed to be proper,
we conclude that .5~ = Sph, forcing .% to be Dev, the orthogonal complement of Sph. [J
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