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1. Introduction

An extensive literature is available on applications of stochastic orders to finance and insur-
ance markets. The implications of stochastic orders for derivative pricing and risk management
have been used to provide bounds for option prices or related quantities in incomplete markets;
the literature focused on this subject is quite extensive and we just mention the papers by El
Karoui et al. [5], Bellamy and Jeanblanc [1], and Gushchin and Mordecki [9]. The increasing
dependence of European option prices on the riskiness of the underlying asset is a well-known
property for basic models such as the Black–Merton–Scholes model, in which riskiness is
expressed in terms of the logreturns distribution variance: the uncertainty is quantified there
through the dispersion around the expected value and the distribution functions can be ordered
according to their ‘peakedness’; the larger the dispersion, the higher the option prices. This very
elementary and intuitive observation for simple models becomes more involved when turning
attention to more complex models, where a more rigorous approach is necessary in order to
avoid wrong conclusions.

The Black–Merton–Scholes model is nowadays considered fairly inadequate to describe
the asset price dynamics; several empirical facts cannot be explained on the basis of this
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model: some statistical features exhibited by logreturns, such as fat tails, volatility clustering,
aggregational Gaussianity, and the so-called leverage effect, are completely outside of the pre-
vision properties of the Black–Merton–Scholes model. Moreover, a very relevant phenomenon
exhibited by option prices, the ‘volatility smile’ (and its term structure) cannot be explained on
the basis of this model. In order to provide a more satisfactory description, several different
models have been introduced. Some of these models introduce a stochastic dependence in
volatility and/or jumps in asset logreturn (and/or in volatility) dynamics both in continuous-
and discrete- time settings.

Among discrete-time models introduced in order to remove some of the drawbacks of
the Black–Merton–Scholes model, the class of autoregressive conditioned heteroschedastic
(ARCH) models introduced by Engle [6] and their general extension (GARCH models) pro-
posed by Bollerslev [4] have aroused considerable interest.

Several results related to stochastic orders are available for the continuous-time models class:
in [2], a systematic investigation on semimartingale models is performed; the models considered
there include the Heston, and the Barndorff-Nielsen and Shephard models. Møller [12] provided
some results on stochastic orders in a dynamic reinsurance market where the traded risk process
is driven by a compound Poisson process and the claim amount is unbounded.

The purpose of the present paper is to present a systematic investigation of stochastic order
propagation in a GARCH context.

Comparison with stochastic orders in incomplete market models can give rise to different
classes of problems: one in which the comparison of models under the same probability measure
but with different parametric specification is considered, and another in which the problem of
comparing the same model under different probability measures is examined; as a matter of
fact, when markets are incomplete, there are several probability measures equivalent to the
historical one, under which the dynamics of prices can be given. In this paper we shall focus on
the first class of mentioned problems: we shall provide a systematic comparison of logreturns
and then of prices when the model parameters change, but the dynamics are specified under
the same probability measure. In a GARCH context the parameters entering into play are three
parameters assuming a numerical value and the innovations, which are random independent
and identically distributed variables for which the density function is assigned.

We present a numerical experiment in order to motivate more strongly our investigation. Con-
sidering a standard GARCH(1, 1) model as in (3) Section 2, we simulate 1 000 000 trajectories
of length n = 50, and, for each trajectory, we compute the total logreturn S50 = ∑50

k=0Xk . The
chosen parameters are α0 = 1.3 × 10−6, α1 = 0.08, β1 = 0.8, 0.85, 0.9; the initial variance
σ0 is initialized in its unconditional value.

In the left-hand diagram of Figure 1 we compare the kernel-smoothed densities of the
logreturn sums S50 for the three values 0.8, 0.85, and 0.9 of the parameter β1; it is evident that
these densities are increasing in the convex order (whose definition is recalled in Section 2)
when the parameter β1 increases. It is then natural to ask if this simple remark can be made
rigorous, and if this conclusion can be cast into a more general framework that includes different
kinds of stochastic orders and enables a comparison between stochastic order propagation from
innovations to logreturns and from innovations to logreturn sums.

Let us consider the sequence of ‘stock prices’defined by Qk+1 = Q0 exp(Sk), k = 0, 1, . . ..
Assuming an initial value of the underlying Q0 = 10$ and a zero interest rate, we then compute
the Monte Carlo prices Ci of 21 call options with equally spaced strikes Ki ranging from 9$ to
11$, given by

Ci = Ê[max(Q51 − Ki, 0)] = Ê[max(Q0 exp(S50) − Ki, 0)],
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Figure 1: Comparison of the densities of the total logreturns in a GARCH(1, 1) model (left) and of the
corresponding call option prices (right) for different values of the parameter β1 in (3).

where the average Ê is computed for each value of the parameter β1 over the set of 1 000 000
simulated values of S50.

The results are reported in the right-hand side of Figure 1; it is evident that call option prices
are increasing in the parameter β1. This is actually a consequence of the convex ordering of
the total logreturns S50, since the payoff of the call option is a convex function of the total
logreturns S50. The same argument would apply to every financial derivative with increasing
and convex payoff; thus, convex ordering of total logreturns gives a sufficient condition for the
comparison of prices of increasing and convex payoff across different models.

The paper is structured as follows. In the following section we briefly present the GARCH
models and an auxiliary lemma. In Section 3 we present the univariate stochastic comparisons
for logreturns in a GARCH setting. In Section 4 we study several stochastic orders that
are naturally propagated from the innovations to the logreturns. In Section 5 we focus on
convex ordering of the logreturn sums, while their multivariate convex ordering is the subject
of Section 6. In the last section we focus on ordering with respect to the parameters in the
GARCH(1, 1) case.

The main results provided in this paper require the assumption of a symmetric probability
density for innovations. The extension of the stochastic order propagation analysis presented
here to the case of nonsymmetric innovation densities would be of great interest: both the
convex order propagation result and the comparison with respect to parameter variations will
be the subject of future investigation in this more general setting. Moreover, the identification
of some convex multivariate order which naturally propagate from innovations to logreturns is
another target on which our research interest will be focused. These will be the subject of our
future work.

2. General GARCH models

We consider GARCH models of two different very general forms; in both cases the innova-
tions εn are assumed to be independent and identically distributed (i.i.d.). The first model (M1)
is

Xn = σnεn, n = 0, 1, . . . ,

εn⊥σn, E[εn] = 0, σn+1 = f I (|εn|, σn)
(1)



with f I : R
2+ → R+ increasing and componentwise convex (iccx for brevity). Here, and

everywhere throughout the paper, the symbol ‘⊥’ denotes the usual stochastic independence
between random variables, while the term increasing (decreasing) should be read in the nonstrict
sense. Also, recall that a real function defined on R

n is said to be increasing whenever it is
componentwise increasing.

The second model (M2) is

Xn = σnεn, n = 0, 1, . . . , εn⊥σn, E[εn] = 0, σ 2
n+1 = f II (ε2

n, σ
2
n ) (2)

with f II : R
2+ → R+ iccx.

The difference between model M1 and model M2 is that in the first case the recursive
dynamics are defined in terms of the volatility σn, while in the second they are defined in terms
of the variance σ 2

n .
The usual GARCH(1, 1) model is a particular case of both M1 and M2, and is defined as

Xn = σnεn, n = 0, 1, . . . ,

εn ⊥ σn, E[εn] = 0, σ 2
n+1 = α0 + α1X

2
n + β1σ

2
n

(3)

with α0, α1, β1 > 0 and α1 + β1 < 1, in order to guarantee covariance stationarity. Both
models start with a possibly random σ0 > 0, by drawing a random ε0.

The recursive equations for σn+1 and σ 2
n+1 are examples of ‘stochastic recurrences’ in the

sense of Chapter 4 of [11]. Thus, the volatilities in (1) and the variances in (2) can be also
expressed as

σn+1 = f I (|εn|, σn)

= f I (|εn|, f I (|εn−1|, σn))

= f I (|εn|, f I (|εn−1|, f I (|εn−2|, σn−2)))

= . . .

= f I (|εn|, f I (|εn−1|, f I (. . . , f I (|ε0|, σ0))))

:= gI
n+1(σ0, ε0, . . . , εn), (4)

and, similarly,
σ 2

n+1 := gII
n+1(σ

2
0 , ε2

0, . . . , ε2
n), (5)

for suitable functions gI
n+1 and gII

n+1. Observing that compositions of iccx functions are still
iccx (see [10] for this and further properties of iccx functions), as in [11], the following property
holds.

Lemma 1. Let gI
n+1, gII

n+1 : R
n+2+ → R+ be defined as in (4) and (5). If f I and f II are iccx,

then gI
n+1 and gII

n+1 are also iccx.

3. Univariate comparisons of logreturns

The aim of this section is to establish comparison results for Xn when the distributions
of the innovations are changed from εk to ε̃k for k ≤ n. In order to establish these results,
the assumption that the innovations are identically distributed is not necessary (while the
independency assumption is essential). In the following theorems only the distribution of a
single innovation εk will be changed, and the impact of this change on Xn will be investigated.

We recall the definitions of the basic stochastic orderings.



Definition 1. The random variable X is said to be smaller than Y in the usual stochastic order
(convex order, increasing convex order), denoted by X ≤st Y [X ≤cx Y, X ≤icx Y ], if
E[φ(X)] ≤ E[φ(Y )] for all increasing (convex, increasing convex) functions φ : R → R for
which the expectations exist.

We will see that in the general context of models M1 and M2 the orderings that are naturally
propagated from the innovations εk to Xn are the ‘≤st’ and the ‘≤icx’ordering between absolute
values or squared variables. This clearly completely modifies their interpretation; in particular,
in the next section we will see that the ‘≤st’ ordering between absolute values or squares can
be interpreted as a variability ordering, while the ‘≤icx’ ordering between absolute values or
squares can be interpreted as a kurtosis ordering.

In order to establish these results, we proceed in two steps: first we consider the volatilities
σn and then the variables Xn. In the following, the variables with a tilde denote the variables
obtained by substituting the innovations εk with ε̃k . The first step is an immediate consequence
of Lemma 1.

Theorem 1. (Comparisons of σn and σ 2
n .)

(a) Let σn+1 be as in (1) and |εk| ≤st |̃εk|. It follows that σn+1 ≤st σ̃n+1.

(b) Let σn+1 be as in (1) and |εk| ≤icx |̃εk|. It follows that σn+1 ≤icx σ̃n+1.

(c) Let σ 2
n+1 be as in (2) and ε2

k ≤st ε̃2
k . It follows that σ 2

n+1 ≤st σ̃ 2
n+1.

(d) Let σ 2
n+1 be as in (2) and ε2

k ≤icx ε̃2
k . It follows that σ 2

n+1 ≤icx σ̃ 2
n+1.

Proof. Since, from Lemma 1 for model M1, it holds that σn+1 = gI
n+1(σ0, |ε0|, . . . , |εn|)

with gI
n+1 iccx, (a) and (b) respectively follow from Theorem 1.A.3 of [14] and Theorem 4.A.15

of [14]. Similarly, since from Lemma 1 for model M2, it holds that σ 2
n+1 = gII

n+1(σ
2
0 , ε2

0, . . . , ε2
n)

with gII
n+1 iccx, from the same theorems we obtain (c) and (d).

The comparison results for σn and σ 2
n lead to the following comparisons of the variables Xn.

Theorem 2. (Comparisons of Xn.)

(a) Let Xn be as in (1) and |εk| ≤st |̃εk|. It follows that |Xn| ≤st |X̃n|.
(b) Let Xn be as in (1) and |εk| ≤icx |̃εk|. It follows that |Xn| ≤icx |X̃n|.
(c) Let Xn be as in (2) and ε2

k ≤st ε̃2
k . It follows that X2

n ≤st X̃2
n.

(d) Let Xn be as in (2) and ε2
k ≤icx ε̃2

k . It follows that X2
n ≤icx X̃2

n.

Proof. Since |Xn| = σn|εn| and X2
n = σ 2

n ε2
n, with σn independent from εn, (a) and (c) follow

from Theorem 1.A.3(b) of [14]. Similarly, (b) and (d) follow from Theorem 4.A.15 of [14].

A natural question that arises at this point is if the convex order is also propagated, that is,
if εk ≤cx ε̃k implies that Xn ≤cx X̃n. We prove that this is indeed the case for model M1. We
start with a simple preliminary result.

Lemma 2. Let σ and σ̃ be nonnegative, with σ ≤st σ̃ . Let ε be independent from σ and σ̃ ,
with E[ε] = 0. Then σε ≤cx σ̃ ε.

Proof. Let 0 ≤ α1 < α2. It is a well-known fact that, for ε such that E[ε] = 0, it holds
that α1ε ≤cx α2ε (see, e.g. Theorem 1.5.18 of [11]). Now let ϕ be any convex function, and
consider the function h(α) := E[ϕ(αε)]. By α1ε ≤cx α2ε and the definition of the convex



order, it immediately follows that h(α1) := E[ϕ(α1ε)] ≤ E[ϕ(α2ε)] = h(α2), i.e. the function
h(α) is increasing in α ≥ 0. Thus, by the inequality σ ≤st σ̃ , it holds that E[ϕ(σε)] =
E[E[ϕ(σε) | σ ]] = E[h(σ)] ≤ E[h(σ̃ )] = E[E[ϕ(σ̃ ε) | σ̃ ]] = E[ϕ(σ̃ ε)] and the thesis
follows.

Theorem 3. (Propagation of the convex order.) Let Xn be as in (1) and εk ≤cx ε̃k; it follows
that Xn ≤cx X̃n.

Proof. We first note that, since εk ≤cx ε̃k , it follows that |εk| ≤icx |̃εk|. Indeed, for each
φ increasing and convex, the composition φ(| · |) is convex; this implies that E[φ(|εk|)] ≤
E[φ(|̃εk|)], that is, |εk| ≤icx |̃εk|. From Proposition 1(b), it then follows that σn+1 ≤icx σ̃n+1.
From Theorem 4.A.6 of [14], there exists a random variable σn+1 such that σn+1 ≤st σn+1 ≤cx
σ̃n+1. By Lemma 2, σn+1 ≤st σn+1 implies that σn+1εn+1 ≤cx σn+1εn+1; on the other hand,
σn+1 ≤cx σ̃n+1 implies that σn+1εn+1 ≤cx σ̃n+1εn+1. By transitivity we obtain σn+1εn+1 ≤cx
σ̃n+1εn+1.

4. The relevant orderings

In the preceding section the orderings defined by |X| ≤st |Y |, X2 ≤st Y 2, |X| ≤icx |Y |, and
X2 ≤icx Y 2 have arisen naturally. In order to better understand their meaning, in the following
lemmas we identify some necessary and sufficient conditions in the symmetric case. Before
stating our result, we need to define the number of sign changes of a function defined on the
real line and the notion of the sign sequence.

Definition 2. Given a function f defined on the real line R, the number of sign changes S−(f )

of f in R is equal to n, S−(f ) = n, if and only if there exists a partition P of R into n + 1
subintervals Ik, k = 1, . . . , n + 1 < ∞, such that

• f has constant sign in each subinterval,

• f does not vanish in any subinterval,

• f changes sign from each interval Ik to the next.

Definition 3. The sign sequence is the alternating sequence of signs of f on the partition
P = (I1, I2, . . . , In+1) defined above.

We have the following statement.

Lemma 3. Let X and Y be symmetric with distributions F and G, respectively. The following
conditions are equivalent.

(a) X2 ≤st Y 2.

(b) |X| ≤st |Y |.
(c) X ≤peak Y , where ‘≤peak’ is the peakedness ordering (see [3]).

(d) S−(G−F) = 1 with sign sequence +, −, where S−(G−F) is the number of intersections
between G and F as defined above.

Proof. The equivalence of (a) and (b) is an immediate consequence of Theorem 1.A.3 of
[14]. The equivalence of (b) and (c) is the definition of the peakedness ordering, while the
equivalence of (c) and (d) follows from Theorem 3.D.1 in [14].



Lemma 4. Let X and Y be symmetric with distributions F and G. The following conditions
are equivalent.

(a) X2 ≤icx Y 2.

(b)
∫ +∞
x

uF (u) du ≤ ∫ +∞
x

uG(u) du for each x ≥ 0, where F(u) = 1 − F(u) and G(u) =
1 − G(u).

(c) E[(X2 − k)+] ≤ E[(Y 2 − k)+] for each k ≥ 0.

Proof. Under our hypothesis, FX2(t) = 2F(
√

t) − 1 and FX2(t) = 2 − 2F(
√

t) for t ≥ 0.
The equivalence of (a) and (b) then follows from Theorem 4.A.2 of [14] with a simple change
of variable. The equivalence of (a) and (c) is also a consequence of Theorem 1.5.7 of [11].

The first lemma shows that, for symmetric variables, the orderings |X| ≤st |Y | and X2 ≤st Y 2

are variability comparisons equivalent to the peakedness ordering, which in this case boils down
to (d), that is, the validity of a single crossing condition between the distribution functions. In
the typical econometric applications these orderings are however not very relevant since the
innovations satisfy E[ε2

k ] = 1, and, hence, ε2
k ≤st ε̃2

k would imply that ε2
k =st ε̃2

k .
In the normalized case the ordering X2 ≤icx Y 2 becomes equivalent to X2 ≤cx Y 2; we prove

a sufficient and a necessary condition for this.

Lemma 5. Let X and Y be symmetric with absolutely continuous distributions F and G and
densities f and g, respectively, with E[X2] = E[Y 2] = 1.

(a) If the densities f and g cross four times, with the density f being lower in the tails and
in the center, and higher in the intermediate region, then X2 ≤icx Y 2.

(b) If X2 ≤icx Y 2 and X and Y have finite fourth moments, then β2(X) < β2(Y ), where β2
is Pearson’s kurtosis coefficient.

Proof. (a) Under our hypothesis, fX2(t) = f (
√

t)/
√

t for t > 0. Since X and Y are
symmetric, the four intersection points between the densities f and g are symmetrical with
respect to the origin. Hence, the densities of X2 and Y 2 cross in two points and, since E[X2] =
E[Y 2] from Theorem 3.A.44 of [14] we have X2 ≤cx Y 2.

(b) In our case β2(X) = E[X4] and, hence, the thesis follows from the definition of the
convex order.

This lemma shows that the comparison X2 ≤icx Y 2 can be interpreted as a classical kurtosis
ordering; the crossing condition is usually referred to in the kurtosis ordering literature as a
Dyson–Finucan condition (see, for example, [8]).

5. Convex comparisons for total logreturns

In financial applications the variables Xn typically represent logreturns, which are additive
quantities. The over-the-period total logreturn is given by Sn = ∑n

k=0 Xk . It is therefore natural
to ask if some of the comparison results of Section 2 extend to the variables Sn. In this section
we consider the case of the convex order, that is, whether, for k ≤ n, εk ≤cx ε̃k implies that
Sn ≤cx S̃n, where S̃n is the sum of logreturns when the innovations εk are substituted by ε̃k.

The problem is not trivial since Sn cannot be expressed as a sum of independent variables,
so standard results about convex ordering of sums cannot be applied; we are able to prove a
positive result in the case of model M1 and for symmetric innovations. We start with a basic
lemma.



Lemma 6. Let φ ∈ C2(R) be convex, and let gi ∈ C2(R), i = 1, . . . , m, be convex and
nonnegative. Let a, b ∈ R and �m := {−1, 1}m = {p = (p1, . . . , pm), pi ∈ {−1, 1}, i =
1, . . . , m}. It follows that

h(u) =
∑

p∈�m

φ

(
a + bu +

m∑
i=1

pigi(u)

)

is convex.

Proof. We can compute

h′(u) =
∑

p∈�m

φ′
(

a + bu +
m∑

i=1

pigi(u)

)(
b +

m∑
i=1

pig
′
i (u)

)
,

h′′(u) =
∑

p∈�m

φ′′
(

a + bu +
m∑

i=1

pigi(u)

)(
b +

m∑
i=1

pig
′
i (u)

)2

+
∑

p∈�m

φ′
(

a + bu +
m∑

i=1

pigi(u)

)( m∑
i=1

pig
′′
i (u)

)
.

The first term is positive; the second is given by

Am =
∑

p∈�m

φ′
(

a + bu +
m∑

i=1

pigi(u)

)( m∑
i=1

pig
′′
i (u)

)
.

Let us denote by P = (P1, P2, . . . , Pm) a random vector with a discrete uniform distribution
on �m; clearly, E[P ] = 0, the components of P are independent, and

Am = 2m
E[φ′(a + bu + g(u) · P)(g′′(u) · P)],

where g(u) = (g1(u), . . . , gm(u)) and g′′(u) = (g′′
1 (u), . . . , g′′

m(u)). Since the functions
φ′(a + bu + g(u) · p) and g′′(u) · p are increasing in p ∈ �m, from the covariance inequality,
it follows that

Am = 2m
E[φ′(a + bu + g(u) · P)(g′′(u) · P)]

≥ 2m
E[φ′(a + bu + g(u) · P)]E[(g′′(u) · P)]

= 0.

This completes the proof.

Remark 1. As is well known, a random vector whose components are independent is associ-
ated, in the sense of Esary et al. [7]. We recall that the random vector X = (X1, X2, . . . , Xn)

is said to be associated if

cov(h1(X1, X2, . . . , Xn), h2(X1, X2, . . . , Xn)) ≥ 0

for all increasing functions h1 and h2 for which the above covariance is defined. We want to
emphasize the role played by this property in the proof of Lemma 6, and later in the proofs of
Lemma 8 and Theorem 6.



We also note that in the previous lemma the smoothness requirements on φ and on the gi can
be dropped; we preferred this formulation in order to simplify the proof. Since in this section
we consider only model M1, we define

gn(σ0, ε0, . . . , εn−1) := gI
n(σ0, |ε0|, . . . , |εn−1|);

from Lemma 1, it is clear that gn is even and ccx. We have

Sn = X0 + X1 + · · · + Xn

= σ0ε0 + σ1ε1 + · · · + σnεn

= σ0ε0 + g1(σ0, ε0)ε1 + · · · + gn(σ0, ε0, . . . , εn−1)εn

= Sn(σ0, ε0, . . . , εn). (6)

The main problem in proving the propagation of convexity to the sums is that Sn is not a convex
function of the innovations εk; indeed, each gk in (6) is multiplied by a possibly negative
innovation εk . This prevents the application of standard results and requires the development
of a specific technique based on Lemma 6. The basic idea is that in the case of symmetric
innovations it is possible to restore the convexity by averaging over all the possible sign changes,
as in Lemma 6. This will be done in a recursive way, using the following preliminary statement,
where Eεk+1,...,εn denotes the expectation with respect to the random variables εk+1, . . . , εn,
i.e. for every function f for which the following integral exists:

Eεk+1,...,εn [f (Sn(σ0, ε0, . . . , εn))]
=

∫
Rn−k

f (Sn(σ0, ε0, . . . , εk, xk+1, . . . , xn))Fεk+1,...,εn(dxk+1, . . . , dxn).

Here Fuk+1,...,un denotes the joint distribution function of the random variables uk+1, . . . , un.

Lemma 7. Let Xn and Sn be as in (1) and (6). Let φ be convex, and let the innovations εi be
symmetric. Then the function

h(σ0, ε0, . . . , εk) := Eεk+1,...,εn [φ(Sn(σ0, ε0, . . . , εn))] (7)

is convex in εk for each fixed value of σ0, ε0, . . . , εk−1.

Proof. To avoid cumbersome notation, we drop the arguments of the functions gi . Since
the innovations are symmetric and gi is even, we can write

Eεk+1,...,εn [φ(Sn(σ0, ε0, . . . , εn))]
= Eεk+1,...,εn [φ(σ0ε0 + · · · + gnεn)]
= Eεk+1,...,εn

[ ∑
p∈�n−k

φ(σ0ε0 + · · · + p1gk+1εk+1 + · · · + pn−kgnεn) 1{εk+1≥0,...,εn≥0}
]
.

Defining

h(σ0, ε0, . . . , εk, . . . , εn) =
∑

p∈�n−k

φ(σ0ε0+g1ε1+· · ·+gkεk+p1gk+1εk+1+· · ·+pn−kgnεn),

it follows that

h(σ0, ε0, . . . , εk−1, εk) = Eεk+1,...,εn [1{εk+1≥0,...,εn≥0} h(σ0, ε0, . . . , εk, . . . , εn)]



and h is convex in εk from Lemma 6. It also follows that h(σ0, ε0, . . . , εk−1, εk) is convex in
εk for each value of σ0, ε0, . . . , εk−1.

We can finally state the main result on the propagation of the convex order to Sn.

Theorem 4. Let Xn and Sn be as in (1) and (6 ). Let the innovations εi be symmetric. If ε̃k is
also symmetric and ε̃k ≥cx εk , then S̃n := Sn(σ0, ε0, . . . , ε̃k, . . . , εn) ≥cx Sn(σ0, ε0, . . . , εk,

. . . , εn) = Sn.

Proof. Let φ be convex. From the independence of the εi we can write

E[φ(S̃n)] = Eε0,...,εk−1 [Eε̃k
[Eεk+1,...,εn [φ(Sn(σ0, ε0, . . . , εk−1, ε̃k, εk+1, . . . , εn))]]]

= Eε0,...,εk−1 [Eε̃k
[h(σ0, ε0, . . . , εk−1, ε̃k)]],

where, as in (7),

h(σ0, ε0, . . . , εk−1, ε̃k) := Eεk+1,...,εn [φ(Sn(σ0, ε0, . . . , εk−1, ε̃k, εk+1, . . . , εn))],
which is a convex function of ε̃k for each value of σ0, ε0, . . . , εk−1 from Lemma 7.

It follows that

Eε̃k
[h(σ0, ε0, . . . , εk−1, ε̃k)] ≥ Eεk

[h(σ0, ε0, . . . , εk−1, εk)],
which gives

E[φ(S̃n)] = Eε0,...,εk−1 [Eε̃k
[h(σ0, ε0, . . . , εk−1, ε̃k)]]

≥ Eε0,...,εk−1 [Eεk
[h(σ0, ε0, . . . , εk−1, εk)]]

= E[φ(Sn)],
that is, S̃n ≥cx Sn.

Remark 2. We note that, since the price of the underlying asset Q at maturity t = n + 1 is
given by

Qn+1 = Q0 exp(Sn),

which is an increasing and convex function of the total logreturn Sn, from a well-known lemma
(see, for example, [14, Theorem 4.A.15]), it follows that the convex ordering of Sn implies
increasing convex ordering of Qn; thus, as a corollary, the price of any increasing convex
payoff is higher with innovations ε̃k .

6. Multivariate comparisons of logreturns

In the literature there are several multivariate generalizations of the convex order (see, for
example, [11], [14], and the references therein). Until now we have proved only univariate
comparison results for the scalar variables Xn and Sn; in this section we wonder whether the
more general multivariate comparisons for the vector (X1, . . . , Xn) also hold. Before stating
a positive result, we recall two basic definitions.

Definition 4. A function ϕ : R
n → R is directionally convex if, for any x1, . . . , x4 ∈ R

n such
that x1 ≤ x2, x3 ≤ x4, and x1 + x4 = x2 + x3, it holds that

ϕ(x2) + ϕ(x3) ≤ ϕ(x1) + ϕ(x4).



Definition 5. A function ϕ : R
n → R is supermodular if, for any x, y ∈ R

n, it holds that

ϕ(x) + ϕ(y) ≤ ϕ(x ∧ y) + ϕ(x ∨ y),

where the operators ‘∧’and ‘∨’respectively denote the coordinatewise minimum and maximum
(see Section 7.A.8 of [14]).

In the univariate case directional convexity is equivalent to convexity, while in the multi-
variate case there are no implications between the two concepts. Directional convexity implies
supermodularity and it is equivalent to supermodularity plus componentwise convexity. For
smooth functions, directional convexity is equivalent to the nonnegativity of all entries in the
Hessian matrix, while supermodularity is equivalent to the nonnegativity of all entries out of the
principal diagonal. Clearly, no implications exist between this concept and the usual convexity
of ϕ, which corresponds to the positive semidefiniteness of the Hessian matrix. However, ϕ

is directionally convex, and convex if and only if it is supermodular and convex. Finally, in
the smooth case, ϕ is directionally convex if and only if its gradient is increasing, i.e. if all the
partial derivatives are increasing functions.

In order to establish multivariate comparison results, we need a generalization of Lemma 6.

Lemma 8. Let φ ∈ C2(Rm) be convex and supermodular, and let gi ∈ C2(R) be convex and
nonnegative. Let �m := {−1, 1}m. It follows that

h(u) =
∑

p∈�m

φ(p1g1(u), . . . , pmgm(u))

is convex.

Proof. If we denote by yi the arguments of the function φ, we can write

h′(u) =
∑

p∈�m

m∑
i=1

pig
′
i (u)

∂φ

∂yi

(p1g1(u), . . . , pmgm(u)),

h′′(u) =
∑

p∈�m

[ m∑
i=1

pig
′′
i (u)

∂φ

∂yi

(p1g1(u), . . . , pmgm(u))

+
m∑

i=1

m∑
j=1

pipjg
′
i (u)g′

j (u)
∂2φ

∂yi∂yj

(p1g1(u), . . . , pmgm(u))

]
.

Clearly,
m∑

i=1

m∑
j=1

pipjg
′
i (u)g′

j (u)
∂2φ

∂yi∂yj

(p1g1(u), . . . , pmgm(u)) ≥ 0,

since the Hessian of φ is positive semidefinite. Moreover, if we define Zi := pig
′′
i (u), the first

term can be written as

∑
p∈�m

m∑
i=1

pig
′′
i (u)

∂φ

∂yi

(p1g1(u), . . . , pmgm(u)) = 2m
E[∇φ(p1g1(u), . . . , pmgm(u)) · Z],



where Z = (Z1, . . . , Zm). Since φ is convex and supermodular, and gi is nonnegative, all the
components of ∇φ are increasing in pi . The same holds for the components of Z, since, by
hypothesis, gi is convex. From the multivariate covariance inequality, it follows that

E[∇φ(p1g1(u), . . . , pmgm(u)) · Z] ≥ E[∇φ(p1g1(u), . . . , pmgm(u))] · E[Z] = 0.

The assertion follows.

As in Lemma 6, the smoothness requirements on φ and gi can be dropped, but we added
them in order to simplify the proof. The multivariate analogue of Lemma 7 is the following
statement.

Lemma 9. Let Xn and Sn be as in (1) and (6). Let φ : R
n+1 → R be supermodular and convex,

and let the innovations εi be symmetric. Then the function

hk(x) := E[φ(X0, . . . , Xn) | εk = x]

is convex.

Proof. From the symmetry of the innovations we can write

hk(x) = Eε0,...,εk−1,εk+1,...,εn [φ(σ0ε0, g1ε1, . . . , gkx, . . . , gnεn)]
= Eε0,...,εk−1,εk+1,...,εn

[
1E

∑
p∈�n+1

φ(σ0p0ε0, g1p1ε1, . . . , gkpkx, . . . , gnpnεn)

]
,

where E = {(ε0, . . . , εk−1, εk+1, . . . , εn) : εi ≥ 0, i �= k}. Since each gi is convex in εk , from
Lemma 8, it follows that, for each σ0 > 0 and εi ≥ 0, i �= k , the function

hk(x) =
∑

p∈�n+1

φ(σ0p0ε0, g1p1ε1, . . . , gkpkx, . . . , gnpnεn)

is convex. Averaging with respect to εi , with i �= k, it also follows that hk(x) is convex.

This enables us to state our main multivariate comparison result.

Theorem 5. Let Xn and Sn be as in (1) and (6). Let the innovations εi be symmetric. If ε̃k is
also symmetric and ε̃k ≥cx εk , then

E[φ(X0, . . . , Xk, . . . , Xn)] ≤ E[φ(X0, . . . , X̃k, . . . , X̃n)]

for every function φ : R
n+1 → R which is supermodular and convex.

Proof. From the previous lemma we have

E[φ(X0, . . . , Xk, . . . , Xn)] = Eεk
[hk(εk)] ≤ Eε̃k

[hk(̃εk)] = E[φ(X0, . . . , X̃k, . . . , X̃n)].

We note that we are not able to prove supermodular or componentwise convex orderings for
(X0, . . . , Xn); at the moment both hypotheses on φ seem to be necessary for Lemma 8.



7. The GARCH(1, 1) case

We now focus on the GARCH(1, 1) model specified by

Xn = σnεn, εn⊥σn, E[εn] = 0, σ 2
n+1 = α0 + α1X

2
n + β1σ

2
n , (8)

with α0, α1, β1 > 0 and α1 + β1 < 1. For this model, the recursive dynamics of the volatility
or of the variance (4) can easily be made explicit as follows (see [13]):

σ 2
n+1 = σ 2

0

n+1∏
i=1

(β1 + α1ε
2
n−i+1) + α0

[
1 +

n∑
k=1

k∏
i=1

(β1 + α1ε
2
n−i+1)

]
.

From this expression, it is immediate that σ 2
n+1 and σn+1 are increasing functions of the

parameters α0, α1, and β1. We already noted that this model is a special case of both M1 and
M2, so all the comparison results for varying innovations of the preceding sections hold. In
this section we are interested in establishing comparison results for varying parameters α0, α1,
and β1. As mentioned in the introduction, intuition suggests that an increase in α0, α1, and β1
should correspond to an increase in the variability of Xn and Sn; in this section we prove it
rigorously. As in the previous sections, here the tilde denotes variables obtained by substituting
α0, α1, or β1 with α̃0, α̃1, or β̃1.

Proposition 1. Let Xn be as in (8). If α0 ≤ α̃0, α1 ≤ α̃1, and β1 ≤ β̃1, then |Xn| ≤st |X̃n|,
X2

n ≤st X̃2
n, and Xn ≤cx X̃n.

Proof. Since σn and σ 2
n are increasing functions of the parameters, if α0 ≤ α̃0, α1 ≤ α̃1,

and β1 ≤ β̃1, it follows that σn ≤st σ̃n and σ 2
n ≤st σ̃ 2

n . As in the proof of Theorem 2, it follows
that |Xn| ≤st |X̃n| and X2

n ≤st X̃2
n. From Lemma 2, σn ≤st σ̃n implies that Xn ≤cx X̃n.

The last point is to prove the convex comparison of the sums Sn; again, this is nontrivial
since the Xn are not independent; we provide a proof in the case of symmetric innovations.

Theorem 6. Let Xn be as in (8) and Sn as in (6). Let all the innovations εi be symmetric. If
α0 ≤ α̃0, α1 ≤ α̃1, and β1 ≤ β̃1, then Sn ≤cx S̃n.

Proof. As before, we write

Sn = σ0ε0 + g1(ε0, α0, α1, β1)ε1 + · · · + gn(ε0, . . . , εn−1, α0, α1, β1)εn,

where the functions gi are increasing in the parameters α0, α1, and β1. Let φ be any convex
function. We first prove that E[φ(Sn)] is increasing in the parameters α0, α1, and β1. From the
symmetry of the innovations εi we can write

E[φ(Sn)] = Eε0,...,εn [φ(σ0ε0 + · · · + gnεn)]
= Eε0,...,εn

[ ∑
p∈�n+1

φ(σ0p0ε0 + · · · + pngnεn) 1{ε0≥0,...,εn≥0}
]
.

For each nonnegative value of ε0, . . . , εn, we define

h(σ0, α0, α1, β1) =
∑

p∈�n+1

φ(σ0p0ε0 + · · · + pngnεn).



We see that h is increasing in α0, α1, and β1; indeed, we can compute

∂h

∂α0
=

∑
p∈�n+1

φ′(σ0p0ε0 + · · · + pngnεn) · (p1ε1g
′
1 + · · · + pnεng

′
n) ≥ 0

from the multivariate covariance inequality, as in the proof of Lemma 6. The same reasoning
shows that ∂h/∂α1 ≥ 0 and ∂h/∂β1 ≥ 0.

It follows that E[φ(Sn)] is increasing in α0, α1, and β1; but then, if α0 ≤ α̃0, α1 ≤ α̃1, and
β1 ≤ β̃1,

E[φ(Sn(α0, α1, β1)] ≤ E[φ(Sn(α̃0, α̃1, β̃1)],
that is, Sn ≤cx S̃n.
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