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1. Introduction and motivation

At present, several aerodynamic models for wind turbine rotors
are based on the coupling of a lifting line with a model of the wake
and of the surrounding flow. A lifting line describes a blade as a
spanwise sequence of two-dimensional airfoils, typically charac-
terized by their chord, twist and aerodynamic center position with
respect to an arbitrary reference curve. Each airfoil is in turn
characterized by its lift, drag and moment coefficients, which vary
as functions of the angle of attack, Reynolds and possibly Mach
numbers. The aerodynamic coefficients are either obtained

experimentally from ad hoc wind tunnel tests (Althaus, 1988;
Abbott and von Doenhoff, 1959) or computed numerically with
specialized codes (for example, see Drela and Giles, 1987).

Different models are available for the coupling with lifting
lines, depending on trade-offs among accuracy, modeling com-
plexity, computational cost and final scope of the simulation.
Possible choices range from blade element momentum (BEM)
theory (Hansen, 2008; Schepers, 2012), dynamic and free wake
models (Peters, 2009), or computation fluid dynamics (CFD)
approaches, such as the ones based on large eddy simulation
(LES) techniques (Wu and Porté-Agel, 2011; Churchfield and Lee,
2012). Such models currently cover many of the very different
needs arising in the study and design of wind energy systems.
These range from the computation of load spectra on a machine,
typically implying in excess of 107 time steps and presently
routinely carried out by using sophisticated variants of the BEM
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approach, all the way to the generation of turbulent flow fields
within a wind farm, for which LES methods are the current
method of choice (Churchfield et al., 2012; Fleming et al., 2013).

In all these lifting-line-based approaches, the coupled model
provides for a description of the flow field around the rotor. This,
in addition to the knowledge of the instantaneous environmental
wind and blade-motion-induced speed, allows for the computa-
tion of the local angle of attack and of the relevant fluid dynamic
parameters at any point along the lifting line. From this informa-
tion, using the available airfoil aerodynamic coefficients, one can
generate the local lift, drag and moment at the corresponding
blade cross section, which are in turn fed back as driving forces to
the coupled flow model. Iterations are carried out between the
coupled flow model and the lifting line, until the flow kinematics
is coherent with the loading, according to the used model.

The ability of such approaches to accurately compute all quan-
tities of interest relies on whether the models are capable of
capturing the relevant physics, on an adequate spatial and temporal
resolution of the solution scales, and on the correct tuning of all
physical parameters. System identification (or, more precisely,
parameter estimation) techniques are available to calibrate para-
meters in mathematical models of physical systems from available
experimental observations of relevant quantities (Ljung, 1999).

This work deals with the calibration of aerodynamic models for
wind turbine rotors, and it is in particular concerned with the
estimation of lifting line airfoil aerodynamic characteristics. These
may differ from nominal assumed ones for a variety of reasons:
shape defects due to manufacturing imperfections, erosion, dirt or
ice formation; imprecisions during their two-dimensional char-
acterization because of experimental or numerical defects; lack
of two-dimensionality, uncorrected by other means in the model
(on account for example of Coriolis effects in the root region,
cross-flow due to blade sweep, or other reasons).

Goal of this work is the development of methods that can correct
available baseline airfoil characteristics, using measured rotor data.
In fact, it is clear that the loads generated on a rotor, at the hub and
along the blades, depend on the aerodynamic characteristics of the
airfoils. Hence one can hypothesize that, by using measured quan-
tities such as rotor power and thrust and blade loads, the local
characteristics of its airfoils could be inferred. The problem is
difficult because of the possible low observability of the parameters
of interest, since airfoil characteristics in some sections of the blade
might have small effects on the measured quantities. Furthermore,
as it is often the case in identification problems, some parameters
may have effects on the measurements that are similar to the ones
of other parameters, so that their respective characteristics may be
difficult to discern and separate from one another.

To deal with these problems, the method presented in this
work has been designed accordingly. To account for the inevitable
presence of various sources of errors and noise in the measure-
ments, the approach is based on a maximum likelihood formula-
tion that can account for sensor and process noise. Furthermore, to
ease the understanding of the well posedness of the problem and
the choice of a set of identifiable parameters, the method makes
use of a singular value decomposition (SVD) approach (Golub and
van Loan, 1996; Lancaster and Tismenetsky, 1985). By this method,
the physical parameters of interest, which represent corrections to
the baseline lift and drag characteristics of the airfoils, are recast in
terms of a new set of statistically independent parameters. This
reformulation of the problem presents two key advantages: first,
one has a simple way of selecting only those parameters that are
associated with a desired level of confidence; second, by visual
inspection of the eigenshape functions associated with the new
parameters, one can understand which physical characteristics of
the blade airfoils can be reliably identified from a given set of
available measurements.

Notation

A rotor area
CD drag coefficient
CF thrust coefficient
CL lift coefficient
CP power coefficient
CMx in-plane bending moment coefficient
CMy out-of-plane bending moment coefficient
F aerodynamic thrust
J cost function
N number of samples
P aerodynamic power
R rotor radius
V wind speed
m number of outputs
n number of parameters
si ith singular value
F Fisher information matrix
G sensitivity matrix of outputs with respect to

parameters
M square root of Fisher matrix
R error covariance matrix
S square matrix of singular values
U matrix of left singular vectors
V matrix of right singular vectors
Σ rectangular matrix of singular values
n vector of shape functions
p vector of physical parameters

r residual vector
y output vector
z measurement vector
ψ vector of eigenshapes
θ vector of statistically independent parameters
Δ corrective function
Ω rotor speed
α angle of attack
β blade pitch
χp;q correlation between pth and qth parameters
η non-dimensional spanwise coordinate
λ tip speed ratio
ρ air density
s standard deviation
dp;q element p, q of Fisher matrix inverse
ð�Þn estimated quantity
ð�Þ0 nominal quantity
ð�ÞT transpose
ð�ÞID identifiable quantity
ð�ÞNID non-identifiable quantity
ð�Þ true (unknown) quantity
BEM blade element momentum
CFD computational fluid dynamics
LES large eddy simulation
ML maximum likelihood
RANS Reynolds averaged Navier–Stokes
SQP sequential quadratic programming
SVD singular value decomposition
TSR tip speed ratio



There are at least two main possible application areas of the
methodology proposed here. In the first, one extracts local airfoil
information from numerical simulations; for example, given CFD
results on the full rotor, one could estimate the local airfoil character-
istics in complex three-dimensional regions at the root and tip of the
blade. Similar ideas have been previously described in Bak et al. (1999).
In the second application area, one estimates airfoil properties from
experimental measurements performed on a rotor. Conceptually, the
measurements could be performed in the field, on a suitably instru-
mented machine and with an appropriate processing of the raw data.
In this paper, on the other hand, the technique is applied to a scaled
rotor model tested in the wind tunnel of the Politecnico di Milano. In
fact, wind tunnel testing can be used for the validation and calibration
of mathematical models of wind energy systems, supporting accurate
measurements of problems in aerodynamics, aeroservoelasticity and
control under known boundary conditions (Bottasso et al., 2013b).

The scaled wind turbine used in this study was tested in a
number of operative conditions spanning a suitable range of
angles of attack at the blade airfoils. From such measurements,
the airfoil characteristics were identified using the method
described in this paper. Significant mismatches with respect to
the nominal properties of the airfoils were detected. These were
traced back to manufacturing imprecisions due to the very small
scale of the model, as well as to a significant sensitivity of the
airfoil performance to transition strip geometry and testing con-
ditions at the low Reynolds of the experiments. The improved
lifting lines were then used in a variety of validation activities, of
which two examples are given here.

In a first aerodynamic application, the updated airfoil charac-
teristics were used for a combined lifting-line-LES simulation of
the wind turbine model and its wake (Schito, 2011), as shown in
Fig. 1. The computational domain comprised the whole wind
tunnel test section, including the turbulence and roughness
elements used to generate a turbulent boundary layer. In turn,
the results of the simulation were used for validating the approach
in its ability to predict the wind turbine wake structure, turbu-
lence intensity and speed deficit, by comparison with hot wire
measurements.

In a second aeroelastic application, the updated airfoil char-
acteristics were used for the simulation of emergency shut-downs
following a grid loss (Bottasso et al., 2013b). Several different open
loop pitch profiles were tested in the wind tunnel, obtaining
measured responses during the aerodynamic braking operations
that differed in the maximum overspeed and peak loads at the
tower base. The same pitch profiles were used for aeroelastic
simulations of the shut-down procedures, obtaining the excellent
correlations between experimental and simulation responses
shown in Fig. 2.

In both cases, lifting lines of good quality and with a tuning of
their parameters that actually reflected their airfoil performance
were instrumental for the achievement of good simulation results
and the final validation of the computational tools.

The paper is organized as follows. Section 2 describes the
proposed approach, and starts by formulating the estimation
problem as a maximum likelihood optimization. Next, the SVD
approach is introduced as a way of robustifying the formulation,

Fig. 1. LES simulation of a scaled wind turbine model in a wind tunnel, using experimentally calibrated lifting lines, and comparison with experimental wake measurements.



by addressing the problem of well-posedness and identifiability.
The section is concluded by the definition of the estimation
parameters, of the constraints and of the outputs associated with
the available measurements. Results are presented in Section 3. At
first, the estimation of the airfoil properties of a scaled wind
turbine model is presented; the direct use of physical quantities is
shown to be ill-posed in this case, due to the collinearity of some
parameters, while the SVD-based approach overcomes the pro-
blem and leads to the identification of a good quality lifting line
model. Finally, the effects of multiple spanwise load measure-
ments are illustrated by means of a simulation study; as expected,
such additional measurements allow for a better distinction of the
characteristics of the different airfoils than in the case when only
hub measurements are available. Conclusions and outlook are
given in Section 4.

2. Formulation

2.1. Maximum likelihood estimation

Consider a BEM model of the aerodynamics of a wind turbine
(Hansen, 2008). The model is noted MðpÞ, where pARn is a vector
of free physical parameters that need to be estimated from available

measurements. In the present work, parameters p are related to the
aerodynamic lift and drag characteristics of the rotor blade airfoils,
as more precisely described later on. Because of the inevitable
presence of noise in the measurements, the unknown parameters
collected in vector p are to be regarded as stochastic variables.

Given some output quantities y¼ hðpÞ, yARm, their experi-
mentally measured quantities z can be expressed as

z¼ yþr; ð1Þ

where the residual r is due to both measurement and modeling
errors, the latter caused by modeling approximations or unre-
solved physics in M.

Given p, the probability of the experimental observation zi is
noted pðzijpÞ. Having a sample of observations S¼ fz1; z2;…; zNg,
the likelihood function of the set is defined as

f ðS;pÞ ¼ ∏
N

i ¼ 1
pðzijpÞ; ð2aÞ

f ðS;pÞ ¼ ðð2πÞmdet RÞ�N=2 exp �1
2

∑
N

i ¼ 1
rTi R

�1ri

!
; ð2bÞ

where the second expression assumes white and zero mean
residuals. The error covariance is noted R, where E½rirTj � ¼ Rδij, E½��

Fig. 2. Multibody simulation of emergency shut-downs of a scaled wind turbine model in a wind tunnel, using experimentally calibrated lifting lines, and comparison with
experimental measurements. Solid lines: simulation; dashed lines: experimental values; red (lighter) lines: higher initial pitch rate; black (darker) lines: lower initial pitch
rate.



being the expected value operator and δij the Kronecker delta
symbol. If modeling errors are present, the assumption of zero
mean residuals might not be fully satisfied, although it is often used
in practical applications (Jategaonkar, 2006).

A maximum likelihood (ML) estimate pn of the free parameters
is obtained by maximizing function f ðS;pÞ or, equivalently, mini-
mizing its negative logarithm

pn ¼ arg min
p

J; ð3Þ

where

J ¼ � ln f ðS;pÞ; ð4aÞ

J ¼Nm
2

ln 2πþN
2
ln det Rþ1

2
∑
N

i ¼ 1
rTi R

�1ri: ð4bÞ

A robust implementation of problem (3) can be based on the
following iteration (Klein and Morelli, 2006; Bottasso et al.,
2013a):

1. Assuming a temporarily frozen error covariance R, minimize
with respect to p the cost

Ĵ ¼ 1
2

∑
N

i ¼ 1
rTi R

�1ri; ð5Þ

which is obtained from Eq. (4b) by neglecting all irrelevant
constants.

2. Assuming temporarily frozen parameters p, minimize J with
respect to R, which gives (Jategaonkar, 2006)

R¼ 1
N

∑
N

i ¼ 1
rirTi : ð6Þ

3. Return to step 1, and repeat until convergence.

This approach should be contrasted with the classical weighted
least squares approach, which amounts to performing step 1 only
once, by assuming R known and frozen.

To enhance conditioning, both parameters and outputs are
non-dimensionalized by suitable reference quantities. Further-
more, to improve convergence towards physically meaningful
solutions, bounds expressing upper and lower admissible values
for the free parameters are appended to the optimization of step 1,
which is in turn performed via a sequential quadratic program-
ming (SQP) approach (Gill et al., 1981).

2.2. Identifiability criteria and singular value decomposition

Given a sample S of observations and a definition of the free
parameters p, it is important to assess the well posedness of
problem (3). One useful tool for understanding the characteristics
of a given identification problem is Cramér–Rao analysis
(Jategaonkar, 2006; Klein and Morelli, 2006; Cramér, 1946), which
gives a lower bound on the variance of the estimates. Indicating as
p the true (unknown) parameter values, the covariance of their
estimates pn is bound from below as

Varðp�pnÞZF �1; ð7Þ
where FARn�n is the Fisher information matrix

F ¼ ∑
N

i ¼ 1
GT
i R

�1Gi; ð8Þ

and GiARm�n the sensitivity of the ith observation of output
vector y with respect to the parameters p, i.e. Gi ¼ ∂yi=∂p. Criterion
(7) can be used a priori, i.e. before having estimated the para-
meters, to understand the well-posedness of the problem, and a

posteriori, i.e. after the solution of (3), to judge the accuracy of the
computed result. Clearly, small values or linear dependencies in
the sensitivity matrix G lead to a singular or nearly singular
information matrix F , and hence to large uncertainties in the
estimates.

The collinearity between two parameters can also be assessed
by the elements of the Fisher information matrix inverse. Denoting
as dp;q the element of F �1 located at row p and column q, the
correlation between the pth and qth parameters is computed as

χp;q ¼
dp;qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dp;pdq;q

p : ð9Þ

Low identifiability is indicated by high (typically 40:90) values of
χp;q, for paq.

Although the Cramér–Rao inequality and the correlation matrix
are important tools for the understanding of the well-posedness of
an estimation problem and of the quality of the identified model,
they still offer little help in practice in the case of difficult
estimation problems. In fact, if an ill-posed case is detected, none
of these quantities offers a constructive way of reformulating a
better problem, and one is left to a trial and error approach in the
often vane quest for an improved choice of parameters.

This situation can be ameliorated by the use of the SVD (Golub
and van Loan, 1996). By this approach, the original problem
expressed in terms of the physical parameters p is recast in terms
of a new optimal set of statistically independent parameters. SVD-
based identification in the context of robotics applications has
been previously described in Sheu and Walker (1991), Shome et al.
(1998), Khalil and Dombre (2002), and Waiboer (2007).

From its definition, the Fisher matrix can be factorized as

F ¼MTM; ð10Þ
where MARNm�n is defined as

M ¼

R�1=2G1

R�1=2G2

⋮
R�1=2GN

2
66664

3
77775: ð11Þ

In a typical identification problem Nmbn, as the number of
measurements is much larger than the number of unknowns.
The SVD of matrix M is

M ¼UΣVT ; ð12Þ
where UARNm�Nm and VARn�n are square orthogonal matrices,
whose columns are respectively the left and right singular vectors
of M. Matrix ΣARNm�n is structured as

Σ¼ S
0

� �
; ð13Þ

where SARn�n is a diagonal matrix whose entries si are the
singular values, customarily sorted in descending order, i.e.
s1Zs2Z⋯ZsnZ0.

It is readily verified that, given Eq. (12), the information matrix
is decomposed as

F ¼ VS2VT ; ð14Þ
where the columns of V can now be interpreted as the eigenvec-
tors of F , and si

2 as its eigenvalues. Similarly, the information
matrix inverse is decomposed as F �1 ¼VS�2VT . This decomposi-
tion suggests a change of variables from the physical parameters p
to a new set of unknowns:

θ¼VTp; ð15Þ
where θ represents the new parameters obtained by rotation of p
with the right singular vectors. Conversely, the original parameters



can be recovered from the new ones as p¼ Vθ. Using (7), the
Cramér–Rao bounds for the estimates θn of the new unknown true
values θ are

Varðθ�θnÞZS�2: ð16Þ
Hence, the new parameters are statistically independent, being
their covariance a diagonal matrix.

This decoupling significantly simplifies the identification
design problem, as one can now select an acceptable threshold
for the variance of the estimates and identify only those para-
meters that are associated with a lower Cramér–Rao bound, i.e.
only those that can be estimated with a satisfactory level of
accuracy.

This can be seen as follows. An unconstrained secant Newton
solution (see Jategaonkar, 2006) of problem (3) for frozen covar-
iance (step 1 of the iterative approach of Section 2.1) reads

FΔp¼ � ∂Ĵ
∂p

; ð17Þ

where Δp is the correction to the current value of the parameters.
Using the SVD of the Fisher matrix, which is also the Jacobian of
the problem, and recasting in terms of the θ parameters, the
problem is diagonalized and becomes

S2Δθ¼ �VT ∂Ĵ
∂p

: ð18Þ

It is clear that small singular values in S imply the near singularity
of the Jacobian of the recast problem. From this point of view,
setting now an acceptable threshold for the variance of the
estimates means choosing a lower bound for the singular values,
so as to ensure that the matrix is full rank and the problem
solvable. To this end, matrix S can now be partitioned as

S ¼
SID 0
0 SNID

" #
; ð19Þ

where SID contains all singular values such that siZ1=st , s2t being
the highest acceptable variance of the estimates, while SNID is
approximated as

SNID � 0: ð20Þ
The vector of parameters θ and the matrix V of right singular
vectors are accordingly partitioned as θ¼ ðθT

ID;θ
T
NIDÞT and

V ¼ ½V IDVNID�, and the estimation problem (3) is now solved in
terms of the sole identifiable parameters, i.e. using

p� V IDθID: ð21Þ
Finally, the left singular vectors can be used for understanding

the contribution of each single observation yi to the estimation of
the new parameters. In fact, by partitioning the left singular vector
matrix in row blocks as

U ¼

U1

U2

⋮
UN

2
6664

3
7775; ð22Þ

one can readily show that the gradients of the outputs with
respect to θ are

∂yi
∂θ

¼ R1=2U iΣ: ð23Þ

2.3. Definition of estimation parameters

A lifting line within a BEM approach describes a blade in terms
of airfoils, specifying their spanwise twist and chord distributions,
as well as their aerodynamic center location with respect to a

reference line. For each airfoil, aerodynamic properties are given in
terms of lift CL, drag CD and possibly moment CM coefficients vs.
angle of attack α, possibly parameterized in terms of the Reynolds
number. Such quantities are typically obtained by wind tunnel
tests or numerical simulations, and stored in look-up table form.
Hence, the aerodynamic properties of a lifting line can be thought
of as functions of the angle of attack α and of the spanwise blade
location η, with η¼0 at the blade root and η¼1 at the tip.

In this work, the physical quantities used for model parameter-
ization are defined as unknown additive functions that correct
some available (baseline) airfoil quantities. For the kth aerody-
namic property Ck (k¼L for lift, or k¼D for drag), this correction is
expressed as

Ckðα;ηÞ ¼ C0
k ðα;ηÞþΔkðα;ηÞ; ð24Þ

where C0
k ðα;ηÞ is the baseline quantity, while Δkðα;ηÞ is the

additive corrective function. In turn, each corrective function is
discretized by the following two-dimensional interpolation over
the α–η domain:

Δkðα;ηÞ ¼ nT ðα;ηÞpk; ð25Þ

where nðα;ηÞ is a vector of two-dimensional shape functions and
pk the vector of associated nodal values of the interpolation for the
kth property. In this work, simple bilinear shape functions were
used, although other choices are clearly possible. Finally, the
vector of physical property parameters is defined as p¼ ðpT

L ;p
T
DÞT ,

stacking the lift and drag nodal parameter vectors. To maintain the
aerodynamic properties within acceptable physical values, suitable
bounds can be enforced as inequality constraints within the
optimization process. Noting respectively lpar and upar the upper
and lower parameter bounds, such constraints are simply formu-
lated as lparrprupar. In the present work, bounds were used to
express the necessary positivity of drag, although the correspond-
ing inequalities were never active at convergence.

With the SVD approach, the change of variables p¼ V IDθID is
used; here the partitioning of the parameter vector p in the lift and
drag parts induces a similar row-block partitioning of the right
singular vector matrix. In terms of the new set of parameters, the
interpolation of the corrective function over the α–η domain
becomes

Δkðα;ηÞ ¼ψT
k ðα;ηÞθID; ð26Þ

where ψkðα;ηÞ ¼ VT
IDk

nðα;ηÞ is the vector of eigenshapes of the
aerodynamic corrections, and V IDk

is the row block corresponding
to either lift or drag. Through ψk, the identifiable parameters have
now an effect on both lift and drag, coupling them together,
coherently with the coupled nature of the problem. Moreover, a
visual inspection of the eigenshape functions helps in clarifying
the actual identifiability of physical parameters in the various
regions of the domain, and this contributes to the overall under-
standing of the characteristics of the estimation problem. Possible
bounds on the parameters are also affected by the change of
variable, and are readily expressed as

lparrV IDθIDrupar: ð27Þ

Due to the intrinsic nonlinearity of the problem, the sensitivity
matrices Gi as well as the residual covariance R depend on the free
parameters; in turn, this means that the SVD results change when
the parameters change. On account of this, the SVD eigenshape
functions should be updated, and this can be done within the
Newton iterations of problem (3) or within the major iterations of
the algorithm of Section 2.1; the latter approach was followed in
the present work.



2.4. Definition of outputs

In this work the problem outputs y associated to the experi-
mental observations z are defined as

y¼ ðCP ;CF ;…;Cj
Mx;C

j
My;…ÞT ; j¼ 1;Nsec: ð28Þ

CP and CF are respectively the rotor power and thrust coefficients
defined as

CP ¼
P

1=2ρV3A
; ð29aÞ

CF ¼
F

1=2ρV2A
; ð29bÞ

where P is power, F is thrust, ρ the air density, V the wind speed,
A¼ πR2 the rotor area and R its radius. CP and CF, in turn, depend
on blade pitch β and on the tip speed ratio (TSR) λ¼ΩR=V .
Similarly Cj

Mx and Cj
My are non-dimensional moment coefficients

related to the in and out-of-plane bending moments Mx and My at
the generic jth blade cross section, coefficients that are defined as

Cj
Mx;y ¼

Mj
x;y

1=2ρV2AR
; ð30Þ

while Nsec is the number of blade sections where such quantities
are measured.

Even in stationary winds, the operating conditions of wind
turbines are non-stationary because of non-uniform and non-axial
inflow over the rotor disk. For this reason, measurements z
associated to the outputs y defined above have to be intended as
obtained by averaging over a suitable number of rotor revolutions.

3. Results

3.1. Calibration of the lifting line model of a scaled rotor

3.1.1. Description of experimental measurements
The proposed approach was used for the calibration of the lift

and drag characteristics of the rotor of an aeroelastically scaled
and actively controlled wind turbine model, described in more
detail in Bottasso et al. (2013b).

The rotor has a diameter of 2 m, with a solidity of about 0.04. To
account for the rather small chord-based Reynolds due to the
reduced size of the model, the blade was designed using the
special low-Reynolds airfoils AH79-100C (Althaus, 1988) and
WM006 (Olesen, 2009), the former airfoil being used in the
inboard section of the blade and the latter in the outboard one.
Not to alter the aerodynamic characteristics of the airfoils, inter-
polations of the cross sectional shapes were limited to a relatively
small transition region between the inboard and outboard sec-
tions, and at the root region to smoothly deform the inboard airfoil
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into the blade root cylinder. The blade spanwise chord distribution
was geometrically scaled from the one of a reference full-scale
machine; on the other hand, to account for the change of airfoils
between full scale and scaled blades, the blade twist was modified
to yield an optimal spanwise distribution of the axial induction
factor. The blades were equipped with transition strips, with
variable chordwise width and spanwise thickness, that were
optimized with the goal of maximizing aerodynamic power.

A high fidelity multibody model of the wind turbine was
developed by means of the aeroservoelastic simulation code Cp-

Lambda, based on a finite element multibody approach (Bauchau
et al., 2001; Bottasso and Croce, 2006–2013). The rotor blades are
modeled by geometrically exact beam elements, whose stiffness and
mass properties were previously validated by means of modal
frequency measurements (Bottasso et al., 2013b). The aerodynamics
is modeled bymeans of the blade-element momentum (BEM) model,
based on the annular stream-tube theory with wake swirl.

Rotor torque was measured by means of strain gages located on
the shaft, and previously calibrated by using known dead weights,
while rotor speedwas obtained by an optical encoder. The longitudinal
force generated by the turbine was measured by a balance located at
the tower base. The balance reading was corrected for rotor up-tilt and
by subtracting the drag of the tower-nacelle assembly, as measured in
separate tests conducted on the turbine without the blades, yielding
the rotor thrust. The unperturbed wind speed was measured upwind
of the wind turbine by a triple hot wire probe, while air density was
computed from the recorded air pressure, temperature and humidity.
The measured thrust and power data, as well as the TSR, were
corrected for blockage by applying the disk actuator method proposed
in Bahaj et al. (2007) and verified by RANS CFD simulations of the
experiment with and without wind tunnel walls.

Rotor aerodynamic performance was measured by testing the
model in the low-turbulence aeronautical test section of the wind
tunnel at the Politecnico di Milano, for varying wind speed, rotor

speed and blade pitch settings. Testing conditions were optimized
to cover a wide range of angles of attack, while at the same time
keeping the Reynolds number as high as possible and similar
across the various test points. Fig. 3 shows contour plots of the
angles of attack at four spanwise stations for varying blade pitch
angle β and TSR. In the graphs, ‘� ’ symbols mark the testing
conditions where measurements of rotor performance were
obtained. It appears that the angle of attack range for the AH79-
100C airfoil is about [�1 to 20] deg, covering the pre-stall, stall
and post-stall regimes; on the other hand, the range for WM006 is
circa [0–10] deg, and limited to the pre-stall regime.

Not insignificant differences were observed between the
experimentally measured and theoretical BEM-based rotor aero-
dynamic performance, computed using the nominal airfoil polars
obtained by other authors from wind tunnel measurements. The
small size of the blade prevented the direct local measurement of
airfoil aerodynamic characteristics by pressure taps or other
means. Hence, the procedure described in this work was applied
to infer the airfoil characteristics from the experimental measure-
ments of the global rotor performance, this way bypassing the
need for realizing difficult local measurements.

3.1.2. Direct identification of physical parameters
At first, the identification of the aerodynamic properties of the

airfoils was attempted by using the physical parameters p, i.e. the
nodes of the α–η interpolation of the corrective functions defined
in Eq. (25). Linear shape functions in the α range were used, with
nodes located at �1, 4, 8, 11 and 14 deg for the AH79-100C airfoil,
and at 1, 4, 7, 10 deg for the WM006 one. In the η range, constant
shape functions were used in the spanwise sections where the two
airfoils are used, and linear ones for the transition segment.

Fig. 4 shows the power coefficients vs. TSR for various
blade pitch settings. Triangle symbols mark the experimental

4 6 8 10
0

0.1

0.2

0.3

0.4

TSR

C
P

β = −1 deg

Measurements
Nominal model
Identified model

4 6 8 10
0

0.1

0.2

0.3

0.4

β = 0 deg

TSR

C
P

4 6 8 10
0

0.1

0.2

0.3

0.4

β = 1 deg

TSR

C
P

4 6 8 10
0

0.1

0.2

0.3

0.4

β = 2 deg

TSR

C
P

4 6 8 10
0

0.1

0.2

0.3

0.4

β = 3 deg

TSR

C
P

Fig. 4. Power coefficients CP vs. TSR for various blade pitch settings β by the direct identification of aerodynamic parameters. Triangles: experimental measurements; dashed
lines: BEM model prior to identification; solid lines: identified BEM model.
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measurements; dashed lines indicate the output of the BEM model
using the nominal aerodynamic properties, i.e. prior to identifica-
tion, while solid lines report the results after identification.
Similarly, Fig. 5 shows the thrust coefficients. There are large
discrepancies between the outputs of the nominal model and the
measurements. Assuming that the BEM model is capable of
realistically representing the aerodynamics of the rotor in this
nearly axial and very nearly steady condition, which is quite likely,
it is reasonable to assume that these discrepancies can be traced
back to the airfoils not behaving as predicted by their nominal
aerodynamic characteristics. On the other hand, the match after
identification appears to be much improved.

Fig. 6 reports the lift and drag coefficients of the two airfoils
plotted vs. the angle of attack. Each figure shows the nominal
characteristics using a dashed line, the identified properties using
a solid line, and finally the Cramér–Rao standard deviation of the
estimates using a dotted line. The lift coefficients of the WM006
airfoil appear to be very different from the nominal ones: the
identified lift curve appears to be shifted downwards as the airfoil
had a lower camber. Due to the reduced dimensions of the blade,
even small imprecisions in the blade manufacturing process could
cause considerable dissimilarities in the shape of the airfoils, in
turn leading to large differences in the aerodynamic properties.
The standard deviation of the estimates for the inner, AH79-100C,
and outer, WM006, airfoils are quite different. In particular, the
outer airfoil has a much higher level of confidence than the inner

one. This is expected, as the outer part of the blade plays a major
role in determining the rotor characteristics.

Analysis of the correlation matrix shows a strong collinearity
among the airfoil property parameters, as seen in Table 1 for the
lift coefficients. In particular, it appears that the lift of the inner
airfoil is highly correlated to the lift of the outer one in the pre-
stall range. Similar results and conclusions are obtained by looking
at the correlation of the drag coefficients.

Although the quality of the identification, as seen by looking at
the global rotor performance, appears deceptively good, these
simple considerations highlight the difficulty of the problem. First,
the sensitivity of the outputs with respect to the inner airfoil
parameters is low. As a consequence, estimates of the inner airfoil
properties have a very low level of confidence. Furthermore, there
is a high level of correlation between inner and outer airfoils.
Therefore, any error in the identification of the former affects in a
significant and unpredictable way estimates of the latter. These
problems clearly illustrate the limits of the approach based on the
direct identification of the physical properties.

3.1.3. SVD-based identification
The SVD-based approach was used for repeating the identifica-

tion, using the same experimental data of the previous section.
Bilinear shape functions were employed in this case, with nodes
located at α¼�8, 1, 3, 5, 7, 9, 25 deg and at η¼0, 0.2, 0.4, 0.6, 0.8, 1.0.

Table 1
Correlation matrix of the lift parameters.

Nodes [deg] AH79-100C WM006

�1 4 8 11 14 1 4 7 10

AH79-100C
�1 1.00 0.88 0.76 0.63 0.45 �0.98 �0.89 �0.75 �0.47
4 – 1.00 0.85 0.70 0.49 �0.92 �0.99 �0.82 �0.50
8 – – 1.00 0.76 0.52 �0.78 �0.86 �0.95 �0.47
11 – – – 1.00 0.53 �0.65 �0.70 �0.85 �0.72
14 – – – – 1.00 �0.45 �0.50 �0.56 �0.85

WM006

1 – – – – – 1.00 0.93 0.78 0.48
4 – – – – – – 1.00 0.83 0.51
7 – – – – – – – 1.00 0.56
10 – – – – – – – – 1.00
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Fig. 7. Variance of the orthogonal parameters based on the nominal model (at left) and after a first estimation (at right). The black horizontal solid line indicates the
identifiability threshold. (a) Based on nominal model. (b) After first estimation.



Based on the nominal model, a first analysis of the singular
values was attempted. The sensitivities of the outputs with
respect to the scaled physical parameters were computed by

finite differences, while the noise covariance was assumed to be
R¼ s2e I, with se ¼ 0:005, which is a reasonable value for both
CP and CF.
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At left, Fig. 7(a) shows the variance of the orthogonal para-
meters, s2θi ¼ 1=s2i , computed for the nominal model, i.e. prior to
any estimation. The identifiability threshold, also shown in the
plot as a horizontal solid line, was chosen equal to 0.003, which

corresponds to an expected standard deviation of the identified
parameters of about 5.5% of their reference values. The plot
illustrates the fact that there are only 10 parameters that are
actually identifiable with a good level of accuracy.

Fig. 9. The next six lowest identifiable eigenshapes. (a) 7th eigenshape. (b) 8th eigenshape. (c) 9th eigenshape. (d) 10th eigenshape. (e) 11th eigenshape. (f) 12th eigenshape.



After having performed a first estimation using the 10 identifi-
able orthogonal parameters, the SVD eigenshapes were updated
recomputing the output sensitivity matrices and a second optimi-
zation was performed. The updated variance of the orthogonal
parameters is shown in Fig. 7(b) at right. The number of identifi-
able parameters is now equal to 12, a slight increase with respect
to the first estimate. Notice however that, by using the SVD to
optimize the choice of unknowns, the number of free variables is
now reduced with respect to the direct approach, where 18
parameters were used.

Figs. 8 and 9 show the SVD eigenshapes of the identifiable
parameters. Visual inspection of these shape functions suggests
the following comments:

� Due to the coupled nature of the problem, each shape is
associated to both airfoil lift and drag.

� As expected, the root region, up to about 20% span, is char-
acterized by little identifiability of the airfoil characteristics,
drag being particularly poorly visible.

� Most shapes have ‘crests’ aligned with the η-axis. The sharp
variations in the α direction highlight the ability of the various
shapes in distinguishing the effects generated at different
angles of attack. On the other hand, the typically more modest
changes in the η direction show that it is harder to separate the
effects of the various spanwise sections of the blade to a good
level of confidence. This is to be expected, since only hub loads
are used here, and it becomes therefore hard to distinguish the
influence of the inboard and outboard airfoils. To have a better
spanwise identifiability one needs to separate the effects of the
various blade regions by using spanwise load measurements, as
illustrated later on.

� The lowest three eigenshapes are mostly associated to lift in
the outer blade segment, which was in fact found to be the
most identifiable quantity using the direct approach.

All these observations are in line with the limits that were found in
the use of the direct approach.

Figs. 10 and 11 show the power and trust coefficients vs. TSR for
different blade pitch settings, prior to and after identification. All
plots show an excellent correlation of the calibrated model with the
measurements. Even if a slight underestimation of the CP coefficient
for pitch angles of 2 and 3 deg still remains, the correlation of this set
of parameters is better than the one obtained by the direct approach.

For the blade section located at η¼0.86, Fig. 12 shows the lift
(at left) and drag (at right) vs. angle of attack α. The plots report
the nominal (dashed line) and the identified (solid line) character-
istics, as well as their standard deviations (dotted line); the direct
identification results of the previous section are plotted using a
thin solid line. Despite its limits, in this blade portion of high
identifiability the direct approach achieves results that are appar-
ently quite similar to the ones of the SVD-based approach. Notice
however that the deviations of the lift and drag properties
obtained by the SVD-based approach are respectively about one-
half and one-fifth of those achieved with the direct method, and
the estimates therefore now have a much improved level of
confidence.

3.2. Simulation study on the effects of multiple spanwise load
measurements

The experimental tests described in the previous section have
shown that the calibration of the lifting line model of a rotor can
be performed by using hub loads, and very noticeable improve-
ments in the accuracy of the computed rotor power and thrust
were reported even in the presence of a significant initial mis-
match of the nominal model. Nonetheless, the analysis has also
shown that the use of the sole hub loads has a somewhat limited
ability in distinguishing the effects of multiple spanwise locations
along the blade, which is indeed something to be expected
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Fig. 10. Power coefficients CP vs. TSR for various blade pitch settings β by the SVD-based identification of aerodynamic parameters. Triangles: experimental measurements;
dashed lines: BEM model prior to identification; solid lines: identified BEM model.



according to intuition. This fact has also been well illustrated by
the inspection of the eigenshape functions that map the SVD
parameters into the physical ones.

To clarify the effect that additional blade load measurements
might have on the spanwise resolution of the method, a simula-
tion study was conducted by using the same rotor model and
choice of all parameters while increasing the number of sectional
outputs Nsec in Eq. (28). The first sectional output was always
located at the blade root, while the other ones were uniformly
distributed along the blade span; in all cases, hub power and
thrust were always included in the output vector.

Fig. 13 shows a sample of eigenshapes for Nsec ¼ 1 (blade root
loads), Nsec ¼ 2 (blade root and mid-span loads), and Nsec ¼ 3
(blade root, one and two thirds span loads). Not all lowest

identifiable eigenshapes are shown for space limitations, but this
small sample is sufficient to illustrate the effects of addition
measurements. For these three configurations, the number of
identifiable parameters was 13, 17 and 18, with a progressive
increase with respect to the 12 identifiable parameters when the
sole hub loads were used. Visual inspection of the eigenshapes
clearly shows an increased spanwise variability of the functions,
with a consequent improved spanwise localization and resolution.

Fig. 13(a) and (b) shows eigenshapes that appear to be very similar
to those of Figs. 8(a) and 9(c). Hence, it appears that the sole addition
of blade root loads does not significantly improve on the situationwith
respect to the use of hub loads; this is to be expected, as the two sets
of loads carry essentially the same informational content. On the other
hand, the addition of measurement points along the blade span allows
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Fig. 12. Lift CL and drag CD coefficients vs. angle of attack α for the airfoil located at η¼0.86. Thick solid lines: SVD-based identification; thin solid lines: direct approach;
dashed lines: nominal properties; dotted lines: standard deviation of SVD-based estimates.
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Fig. 11. Thrust coefficients CF vs. TSR for various blade pitch settings β by the SVD-based identification of aerodynamic parameters. Triangles: experimental measurements;
dashed lines: BEM model prior to identification; solid lines: identified BEM model.



for a better separation of the effects of the various spanwise sections of
the blade. As shown in Fig. 13(d) and (f), in this case sharp variations
along the η-axis are present in the eigenshapes. It is also interesting to

note, looking at Fig. 13(a), (c) and (e), that the first eigenshape is
not significantly affected by the number of spanwise blade load
measurements.

Fig. 13. Sample of identifiable eigenshapes for various spanwise blade load measurement configurations. (a) Nsec ¼ 1, 1st eigenshape. (b) Nsec ¼ 1, 8th eigenshape.
(c) Nsec ¼ 2, 1st eigenshape. (d) Nsec ¼ 2, 8th eigenshape. (e) Nsec ¼ 3, 1st eigenshape. (f) Nsec ¼ 3, 7th eigenshape.



Clearly, the larger the number of spanwise measurements, the
better the spanwise localization becomes. This is illustrated in Fig. 14,
which shows for the second eigenshape how the domain of
influence, i.e. that region where the eigenshape differs from zero, is
reduced as Nsec increases, indicating a sharper localization. It should
be remarked that the optimal number and configuration of measure-
ment points must in general be determined based on the specific
goals and characteristics of any given application. In fact, while in
numerical applications one can straightforwardly place measurement
points anywhere along the blade, the situation is different when
measuring actual blade loads, where the need for spanwise resolu-
tion must be traded against cost and complexity of installation.

4. Conclusions

This paper has considered the calibration of wind turbine
lifting line models, to be used for a variety of possible simulations
ranging from performance, to aeroelasticity, to CFD.

The problem has been formulated as a constrained optimiza-
tion of a maximum likelihood cost function, that accounts for the
presence of sensor and process noise, using rotor loads as driving
measurements. The to-be-identified physical parameters have
been selected as additive corrective functions of the airfoil lift
and drag characteristics, interpolated with respect to angle of
attack and blade span using suitable shape functions.

The direct identification of such physical parameters has been
shown to be particularly difficult, due to low observability and
collinearity, especially in the root region of the blade. To overcome
this problem, easying and robustifying the calibration process, a
novel SVD-based identification has been described. The approach
makes use of the SVD of the square root of the Fisher information
matrix, this way defining a new set of statistically independent
identification parameters. By recasting the problem in terms of the
new parameters, one can straightforwardly restrict the estimation
to only those quantities that have sufficiently low variance, and
hence that are reasonably observable given the available measure-
ments. The associated eigenshapes map the same parameters
back to the physical ones, a fact that can be used to gain a better
understanding of the problem characteristics. Moreover, the
SVD-based identification relieves the user from the burden of
choosing the optimization parameters, a process often based on
trial and error.

The main features of the formulation have been illustrated by
means of examples, which allow for the following conclusions to
be drawn. First, the sole use of hub loads was sufficient for
obtaining a substantial improvement of the lifting line model of
a scaled rotor, where the airfoils appeared to behave quite
differently from their nominal expected characteristics. Clearly,
improvements can be obtained only for conditions in the range of
the available measurements, which should therefore cover the
extension of angles of attack of interest. Second, drag, being much
smaller than lift, has typically low observability, especially in the
root region of the blade. Third, although reasonable results can be
obtained by the sole use of hub loads, a more precise distinction
among the effects of various spanwise sections requires multiple
spanwise load measurements.

Conceptually, there is no reasonwhy the new proposed method
should not be usable also for the calibration of lifting line models
from field test data on a machine that is equipped with the
necessary sensors, although there are at least a couple of hurdles
that would need to be overcome. First, one needs to sufficiently
cover the range of angles of attack of interest, and this would
require the machine to be operated at varying partialized set
points. Second, the method as used here assumes steady or nearly
steady operating conditions, which are nonexistent in practice
because of wind variability and turbulence. One could compute
suitable averages over properly chosen time windows, which
would need some careful data processing, or one could also use
a transient model instead of the present steady one, which
however would also incur in a non-negligible computational
effort. On the other hand, one could expect smaller differences
between the nominal and estimated characteristics than the ones
observed in the example studied here, which is a rather extreme
and peculiar case.

Yet another possible application of the present method is
concerned with the extraction of aerodynamic coefficients from
CFD simulations. For example, it would be interesting to try to
estimate by this method the three-dimensional correction due to
the centrifugal pumping and Coriolis effects (see Lindenburg,
2004). Several works have documented in the literature the direct
computation of airfoil polars from the local distribution of pres-
sure and velocity. Unfortunately however, the computation of the
effective sectional angle of attack turns out to be a not obvious task
(see Shen et al., 2009), so that the estimation procedure proposed
in this work could provide for an interesting alternative.
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