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Abstract This work proposes the simultaneous solution of inverse kinematics and in-

verse dynamics of redundant manipulators for (nearly) real-time joint trajectory design

and feedforward control torque computation using general-purpose multibody formu-

lations and software tools based on redundant coordinate approaches. The proposed

scheme consists of a staggered sequence of three inverse kinematics problems that com-

pute positions, velocities, and accelerations, followed by an inverse dynamics problem

that computes feedforward generalized driving forces. The soundness of the proposed

scheme is illustrated by its application to several problems of increasing complexity.

Keywords Redundant Manipulators · Inverse Kinematics · Inverse Dynamics ·

Feedforward Control · Redundant Coordinate Approach

1 Introduction

Robotic manipulators can be used to automate repetitive or dangerous tasks, replac-

ing human operators. The control of manipulators involves several aspects, including

trajectory design, and feedforward and feedback control. Redundancy, dexterity and

failover handling are desirable features. The problem is discussed, for example, in [1,

2].

The prescription of the motion of the end effector, typically a tool or a payload,

implies the need to prescribe a certain number of conditions (usually up to six for

simple manipulators) on the kinematics of rigid bodies. Redundant manipulators, i.e.

manipulators whose number of joints and thus of motors is higher than the number

of prescribed conditions on the trajectory of the end effector, typically offer increased

dexterity. This gives the user the freedom to introduce further requirements on the

trajectory of the joints, for example to minimize the work or the power required to

perform a given task, avoid obstacles, tolerate faults, and so on.
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A different, although related problem is that of underactuated systems, whose num-

ber of motors is less than the actual number of degrees of freedom of the manipulator.

An active field of research in this area is related to the so-called control constraint

approach [3–5].

As soon as the desired joint trajectory is determined, feedback control is needed to

ensure that the manipulator actually follows it. In addition, feedforward control may

improve the accuracy in trajectory tracking. Feedforward is intrinsically model based;

it can be accomplished using Computed Torque Control (CTC) (see for example [6,

7]).

The problem of the inverse dynamics of redundant manipulators has been widely

discussed in the literature for decades (see for example [8]), and is still an active field

of research (see for example [9–14]). Typically, locally optimal solutions are found

by efficiently minimizing instantaneous cost functions. This makes the design of joint

trajectories possible in real-time. Integral approaches to trajectory optimization of

redundant manipulators (e.g. [15,16]) can produce better trajectories but typically

cannot meet the real-time requirement.

This work discusses how inverse kinematics and inverse dynamics of fairly general

redundant manipulator configurations can be performed using general-purpose multi-

body analysis in (nearly) real-time. A generic redundant coordinate formulation for

constrained dynamics analysis is presented in section 2, along with its projection in

the manifold of the passive constraints to produce a minimum coordinate set, to discuss

how the inverse kinematics/inverse dynamics problem can be formulated in an intuitive

manner. The inverse kinematics problem is discussed using the minimum coordinate

set approach in section 2.1, and subsequently formulated directly using redundant co-

ordinates in sections 2.1.1–2.1.3. The actual implementation of the inverse dynamics

problem is discussed in detail in section 2.2. Feedforward/feedback control is discussed

in section 2.3. Extensive numerical results are presented in section 3.

2 Inverse Kinematics and Dynamics Formulation

Consider a fully actuated system, i.e. a system with j joint variables θ; the motion of

each joint is controlled by a motor. The problem is written according to the redundant

coordinate set approach (see [17], Eqs. (33) and (34)), where x are the n coordinates

that describe the motion of the system; usually, n ≫ j (e.g. n = 6Nb for a spatial

problem, where Nb represents the number of bodies).

No reference to a specific formulation is made, since the considerations that follow

apply to a broad variety of formulations that meet the definition of redundant coordi-

nate set, regardless of the way the corresponding equations of motion are formulated.

For the records, the proposed formulation has been implemented in the free, general

purpose multibody solver MBDyn (http://www.mbdyn.org/). Limited modifications

to the solution procedure were needed.

The equations that describe the dynamics of a constrained system are

M (x) ẍ+ φT
/xλ = f (x, ẋ, t) + θT/xc (1a)

φ (x) = 0, (1b)

where vector φ contains the b passive constraint equations, and c the j = n − b

motor torques. Actually, the term ‘generalized driving forces’ should be used instead
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of ‘torques’, as the latter term is specific of actuators associated with revolute joints;

in the following, the two terms are used interchangeably.

In principle, j equations θ = θ (x) can be written to express the joint variables

as functions of the redundant coordinates of the system, such that

φ/xθ
+
/x ≡ 0, (2)

where (·)+ denotes the Moore-Penrose Generalized Inverse (MPGI) [18]. θ+
/x

is the

MPGI of the Jacobian matrix of the relationship between the joint variables and the

redundant coordinates of the system, since by definition they represent the Lagrangian

coordinates of the mechanism, and thus the motion they describe intrinsically lies in the

manifold of the passive constraints, φ. Since j = n− b, the problem is fully actuated,

as already mentioned. This is typical of industrial robots, but it is also the case of

biodynamics, for example.

In principle, the problem can be rewritten as a function of the joint coordinates by

considering the first derivative of the passive constraints of Eq. (1b), namely

φ̇ = φ/xẋ = 0, (3)

by replacing ẋ and ẍ with their expressions as functions of the joint coordinates,

ẋ = θ+/xθ̇ (4a)

ẍ = θ+/xθ̈ − θ+/x
(
θ̇
)

/x
θ
+
/xθ̇, (4b)

which, thanks to Eq. (2), guarantees that Eq. (1b) and its derivatives are intrinsi-

cally satisfied, and by projecting the equation of motion (1a) in the space of the joint

coordinates, i.e.

(

θ
+
/x

)T
Mθ

+
/x

︸ ︷︷ ︸

M̂

θ̈ +
(

θ
+
/x

)T
φ
T
/x

︸ ︷︷ ︸

0, Eq. (2)

λ =
(

θ
+
/x

)T (

Mθ
+
/x

(
θ̇
)

/x
θ
+
/xθ̇ + f

)

︸ ︷︷ ︸

f̂

+
(

θ
+
/x

)T
θ
T
/x

︸ ︷︷ ︸

I

c,

(5)

where M̂ is the projection of the mass matrix in the space of the joint coordinates.

The approach of Eq. (5) is at the roots of minimum coordinate set approaches based

on coordinate projection. In [19], a review of techniques to compute matrix θ+
/x

is

presented, including coordinate partitioning, zero eigenvalue theorem, and singular-

value, QR, pseudo-upper triangular, and Schur decompositions.

However, such projection may be impractical when one wants to exploit read-

ily available general-purpose formulations based on the redundant coordinate set ap-

proach, which provide a straightforward manner to solve the inverse kinematics and

dynamics problems directly in the redundant coordinates x, although providing a con-

sistent result that can be interpreted in terms of the joint coordinates θ. The latter

approach is pursued in the present work.
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2.1 Inverse Kinematics

Consider now a set of control constraints, i.e. a set of c constraint equations

ψ (x) = α(t) (6)

that prescribe the motion of a part of the system, subjected to φ/xψ
+
/x

≡ 0. When c =

j, and ψ/x is full row rank, the problem is fully determined and its inverse kinematics

can be computed in a straightforward manner, as discussed (and implemented) for

example in [9], by solving Eqs. (6) and (1b) and their time derivatives up to second-

order, provided φ/x is full row rank as well.

However, if c < j the problem is underdetermined. A solution is needed in the

joint coordinate space θ that yields the desired end effector motion α(t), i.e., at the

velocity level,

ψ/xθ
+
/x

︸ ︷︷ ︸

J

θ̇ = α̇, (7)

which implies a solution of the form

θ̇ = J
+
α̇+

(

I− J
+
J

)

ω, (8)

where the portion of an arbitrary set of joint angular velocities ω that lies in the

nullspace of the Jacobian matrix J can be added to those resulting from a least-squares

solution of Eq. (7), and optionally used to meet some local optimality condition. The

Jacobian matrix J can be weighted1 by a symmetric, positive definite matrix W (usu-

ally diagonal) before inversion:

θ̇ = W (JW)+ α̇ = J
+
W
α̇; (9)

W = M̂
−1/2

, the inverse of the square root of the mass matrix in the space of the joint

coordinates, is often used (see [20] for a discussion about weighting with the square

root of the mass matrix). The resulting motion is then used to compute the j torques

c by solving the corresponding inverse dynamics problem.

The possibility to exploit ω, i.e. the redundancy of the system, to improve the

quality of robots’ actuation has been a research topic for more than 30 years, as dis-

cussed for example by Hollerbach and Suh, [21]. Suggested criteria include the mini-

mization of position-dependent scalar performance indexes, e.g. joint limits avoidance

(Liégeois, [22]), dexterity measures like kinematic and dynamic manipulability indexes

(e.g. Yoshikawa [23], although that measure has been generalized and at the same time

criticized by Doty et al., [24]), or the norm of the joint torques themselves, as discussed

by Hollerbach and Suh in [21] and subsequent works. The latter condition requires to

1 J+

W
in Eq. (9) is readily obtained by pseudo-inverting Jθ̇ = (JW)W−1

θ̇ = α̇. It corre-
sponds to solving

[

W−2 JT

J 0

]{

θ̇

λ

}

=

{

0

α̇

}

,

disregarding λ, which minimizes the ℓ2-norm of θ̇ subjected to Jθ̇ = α̇, weighted by W−2.
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express Eq. (8) at the accelerations level, in order to estimate the torques as func-

tions of the motion, leading to what has been termed unweighted or inertia-weighted

null-space algorithm: the (weighted) joint accelerations are

θ̈ = J
+
W

(
α̈− J̇Wθ̇

)
. (10)

The corresponding joint torques thus are

c = M̂θ̈ +
˙̂
Mθ̇ + f̂ = M̂J

+
W
α̈+

(
˙̂
M− M̂J

+
W

J̇W

)

θ̇ + f̂ . (11)

In [21] the authors suggest to minimize the norm of the difference between the torques

c and the average of the minimum and maximum value, (cmax + cmin)/2, often zero.

As noted by Suh and Hollerbach in [25], an approach like this may have undesirable

effects; for example, local minimization of the torques does not prevent the achievement

of singular operating conditions, and the manipulator does not necessarily come to a

rest position when the end-effector stops.

In general, several criteria can be formulated to eliminate the local arbitrariness

associated with redundant actuation, keeping in mind that local optima may not

necessarily lead to globally optimum behavior, although local criteria are required, for

example, to achieve the capability to design the joints’ trajectory in real-time.

In this work, the procedure of Eq. (5) is not directly implemented; on the contrary,

a straightforward manner to obtain the same result using an approach based on a

redundant coordinate set formulation is proposed, with the objective of avoiding the

need to explicitly compute J, but rather resorting to existing, well established general-

purpose implementations. An important aspect of this approach is that it can be applied

to arbitrary configurations, including open and closed-loop kinematic chains, and thus

parallel manipulators [26].

In order to guarantee a priori the compliance with the constraints, the configuration

is predicted first, followed by the computation of the corresponding velocities and

accelerations resulting from the numerical differentiation of the predicted configuration,

corrected to comply with the derivatives of the constraints.

2.1.1 Position

Following the approach proposed in [27], the inverse kinematics problem at the position

level is recast into the computation of a weighted minimal norm solution of the kineto-

static problem

minimize J ′(x)

subjected to φ (x) = 0

ψ (x) = α(t) (12)

where the ‘prime’ (·)′ denotes entities associated with the position problem, which

results in

φ
T
/xλ

′ +ψT
/xµ

′ = f
′ (x) (13a)

φ (x) = 0 (13b)

ψ (x) = α(t), (13c)
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with f ′ = −J ′

/x. Here J ′ can be constructed as the combination of an ‘ergonomy’ func-

tion, corresponding to some potential energy-like function with respect to a measure of

the relative motion between the parts of the system, and of a ‘proximity’ function that

weights the change of configuration with respect to that at the previous time step, i.e.

J ′ (x) = Ĵ ′ (θ) + w′ 1

2
(x− xprev)

T
M (x− xprev) . (14)

The use of the mass matrix M, scaled by the coefficient w′, intuitively makes it possible

to weigh proximity contributions with respect to the inertia associated with changing

the related configuration.

Other cost functions can be envisaged. For example, along the lines of the null-space

algorithm illustrated in [21], a quadratic form like

J ′

c =
1

2
(c− cave)

T
M̂

−1
(c− cave) (15)

can be considered, where c are defined in Eq. (11) whereas cave is the average of the

minimum and maximum torque that each motor can produce, to obtain a weighted

least-squares solution that minimizes the norm of the torques instantaneously required

to perform the task. Since at this stage the problem is only being solved at the positions

level, an estimate of the current acceleration ẍ = ẍ(x) based on the configuration

and its derivatives at the previous steps and on the current configuration is needed.

This approach has been formulated and investigated but, in view of the limitations

highlighted by the authors themselves in [25], it has been discarded, and thus it is no

longer mentioned in the present work.

The gradient

f
′ = −J/x = −θT/xĴ

′

/θ − w′
M (x− xprev) (16)

can be interpreted as a set of elastic torques. A quadratic form of Ĵ ′,

Ĵ ′ =
1

2
(θ − θ0)

T K (θ − θ0) , (17)

yields linear elastic torques; higher-order forms

Ĵ ′ =
∑

i=1,j

(
1

2
Kii (θi − θi0)

2 +
1

l
Hii (θi − θi0)

l
)

, (18)

with l ∈ 2 + 2N (i.e. [4, 6, . . .]), increasingly penalize the departure from the centered

configuration (l = 4, with Hii/l = 16wi/(θimax
− θimin

)4 and θi0 = (θimax
+ θimin

)/2,

was proposed in [28] to estimate ergonomy solutions of the motion of a human arm);

however, the local penalty matrix that corresponds to the Hessian matrix of Ĵ ′ could be

singular or poorly conditioned when any of the dummy springs is close to the optimal

centered position (i.e. when θi ∼= θi0), unless Kii > 0.

In practice, when w′ ≡ 0 this phase can be easily implemented in general-purpose

multibody solvers using generic elastic elements of arbitrary complexity, related to

the joint coordinates, while solving a static problem. The availability of special elastic

elements with appropriate constitutive properties can be exploited (see for example [29,

30]), as done in the present work. The multipliers λ′ and µ′ do not have any physical

meaning and their value is discarded; the same occurs in the subsequent kinematics

solution phases.
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The problem of Eqs. (13) can be solved resorting to a Newton-like iterative pro-

cedure as long as φ/x and ψ/x are full row rank. Rank-deficient Jacobian matrices

indicate a singular condition, which could be overcome resorting to pseudo-inversion.

Since the redundant coordinate set approach is used, singular Jacobian matrices imply

an actually singular configuration, rather than a singularity related to the choice of

the Lagrangian coordinates. To some extent, such configurations can be avoided by

appropriately crafting the ergonomy functions.

The problem is nonlinear as long as the constraint equations and the dummy

elastic torques are nonlinear. In order to exemplify the process, let us consider a(n

oversimplified) linear problem, with

{
φ

ψ

}

= Ax

{
0

α(t)

}

= α∗(t) (19)

and

f
′ = −K(x− x0) + f

′

0. (20)

The solution would be

x = K
−1

A
T
(

AK
−1

A
T
)
−1
α

∗(t)

+

(

I−K
−1

A
T
(

AK
−1

A
T
)
−1

A

)(

x0 +K
−1

f
′

0

)

, (21)

which, for f ′0 = 0, x0 = 0, corresponds to a weighted least squares solution and,

with K = kI, to x = A+α∗(t), to the minimal norm solution. In practice, K is

ideally associated with springs, i.e. elastic elements that react relative motion, thus

a minimum of the related strain energy minimizes the difference between the current

and the reference (e.g. maximum ergonomy) configuration. The external force f ′0 can

be used to further influence the optimal solution, e.g. by adding gravity.

2.1.2 Velocity

Subsequently, a similar problem must be solved for velocities and accelerations. Those

problems are simpler, since the derivatives of the constraint equations are linear re-

spectively in the velocities and accelerations. In the velocity case, the problem is

minimize J ′′(ẋ)

subjected to φ/xẋ = 0

ψ/xẋ = α̇(t) (22)

which results in

φ
T
/xλ

′′ +ψT
/xµ

′′ = f
′′ (x) (23a)

φ/xẋ = 0 (23b)

ψ/xẋ = α̇(t) (23c)
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with f ′′ = −J ′′

/x. The norm of the error between ẋ and its estimate obtained by

numerical differentiation of the previously computed configuration x, weighted by the

mass matrix, is used, namely

J ′′ (ẋ) =
1

2

(
ẋ− ˙̂x

)T
M
(
ẋ− ˙̂x

)
, (24)

where a generic linear interpolation operator L, function of the time step h, is used to

estimate

˙̂x = L (x, h) . (25)

In order to be able to run the process in a time marching fashion, e.g. to evaluate the

trajectory in real-time, a forward operator is needed. The simplest one is single-step;

the first-order accurate derivative estimate at step k is

˙̂xk =
1 + ‖ρ∞‖

h
(xk − xk−1)− ‖ρ∞‖ ẋk−1; (26)

the asymptotic spectral radius ρ∞ must satisfy the condition 0 ≤ ‖ρ∞‖ < 1 for

algorithmic stability. In practice, implicit Euler (i.e. ‖ρ∞‖ = 0) is often needed to

avoid spurious oscillations in the torques estimated in the subsequent inverse dynamics

phase.

The linear problem




M φT
/x ψ

T
/x

φ/x 0 0

ψ/x 0 0











ẋ

λ′′

µ′′






=







M ˙̂x

0

α̇(t)






(27)

needs to be solved. As shown in [31], weighting the norm of the velocity correction

with the mass matrix minimizes (and guarantees to reduce, in case of scleronomic

constraints) the correction of the kinetic energy.

2.1.3 Acceleration

A similar problem arises for the accelerations,

minimize J ′′′(ẍ)

subjected to φ/xẍ = −
(
φ/xẋ

)

/x
ẋ

ψ/xẍ = α̈(t)−
(
ψ/xẋ

)

/x
ẋ (28)

where a quadratic form analogous to that of Eq. (24),

J ′′′ (ẍ) =
1

2

(
ẍ− ¨̂x

)T
M
(
ẍ− ¨̂x

)
, (29)

is used, which resembles the function G(ẍ) that is minimized in Gauss’ principle of

least constraint [32], where ¨̂x plays the role of the acceleration of the unconstrained

system, M−1f . The reference acceleration ¨̂x can be estimated with the same operator,

Eq. (25), used for the velocity. The linear problem





M φT
/x ψ

T
/x

φ/x 0 0

ψ/x 0 0











ẍ

λ′′′

µ′′′






=







M¨̂x

−
(
φ/xẋ

)

/x
ẋ

α̈(t)−
(
ψ/xẋ

)

/x
ẋ







(30)

needs to be solved, which uses the same matrix of the velocity solution, Eq. (27).
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2.2 Inverse Dynamics

Under the previously stated assumptions, the problem is now fully determined, since

all joints are equipped with a motor. The problem of Eqs. (1) formally becomes

M (x) ẍ+ φT
/xλ = f + θT/xc (31a)

φ (x) = 0 (31b)

θ (x) = θ (x) [yes, an identity], (31c)

where the previously computed motion x (i.e. x and its time derivatives as resulting

from inverse kinematics) is prescribed, and the corresponding torques c need to be

computed, resulting in the control forces u = θT/xc. The motion is now fully determined

by the previous inverse kinematics solution, and the passive constraints of Eq. (31b), as

well as the closure constraints of Eq. (31c), are intrinsically satisfied; as a consequence,

the problem of Eqs. (31) reduces to Eq. (31a) only, which is reformulated as

[

φT
/x −θT/x

]{
λ

c

}

= f −M (x) ẍ. (32)

It is worth noticing that Eq. (31c) in practice could be actually written as

θ (x) +Wφ (x) = θ̂ (x) , (33)

where W is an arbitrary j × b weight matrix. For example, this is the case of the

free, general purpose multibody solver MBDyn, which provides the versatile total joint

element discussed in [33]. That formulation was successfully exploited to implement

the proposed formulation as well as inverse dynamics for the computation of muscular

activation [34] and the control-constraint formulation proposed in [4].

In this work, during the inverse dynamics phase each motor is modeled using a spe-

cial constraint derived from the previously mentioned total joint [33]. Such constraint

provides a contribution to the matrix in Eq. (32) that corresponds to θ/x, but actually

is in the form of θ̂/x, for each pair that includes a motor, regardless of its type, which

can be an arbitrary combination of linear and angular motions.

The solution of the problem of Eq. (32), with θ/x replaced by θ̂/x, requires matrix

[

φT
/x −θ̂

T
/x

]
−1

=






(

φ+
/x

)T
−WT

(

θ+
/x

)T

−
(

θ+
/x

)T




 . (34)

As a consequence, the torques c are formally computed as

c = −
(

θ
+
/x

)T
(f −M (x) ẍ) , (35)

i.e. the torques do not depend on matrix W, and thus θ/x does not need to be com-

puted, as θ̂/x suffices.

If the exact expression of θ/x for any reason is needed, such that it is exactly

orthogonal to φ/x, a value in the form of the Jacobian matrix of Eq. (33) can be

modified by projecting it as

θ
T
/x =

(

I− φT
/x

(

φ/xφ
T
/x

)
−1
φ/x

)

θ̂
T
/x =

(

I− φ+
/xφ/x

)

θ̂
T
/x, (36)
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since by construction W = θ̂/xφ
T
/x(φ/xφ

T
/x)

−1 = θ̂/xφ
+
/x

.

This is the case, for example, when the contribution of redundant motors to the

torque exerted about one joint needs to be estimated; a typical occurrence is in biome-

chanics, where multiple antagonistic and synergetic muscles contribute to the torque

about each articulation. In those cases, (θ+
/x

)T = θ/x(θ/xθ
T
/x)

−1 is needed to project

the muscles’ forces and moments, expressed in the space of the redundant coordinates,

x, exactly on the joint coordinates. However, this discussion is outside the scope of the

present work.

2.3 Feedforward and Feedback Control

Formally, the projected equation of motion, Eq. (5), yields the feedforward control

torques

cf.f. = M̂
¨̂
θ − f̂ (37)

that constitute the computed torque control (CTC) when
¨̂
θ is equal to the desired joint

acceleration θ̈d. By setting the joint acceleration
¨̂
θ that drives the torque demand to

¨̂
θ = θ̈d +KD

(
θ̇d − θ̇

)
+KP (θd − θ) , (38)

where the desired joint angles θd and their derivatives result from the solution of the

cascaded inverse kinematics problems, the actuated forward dynamics problem becomes

M̂
((
θ̈d − θ̈

)
+KD

(
θ̇d − θ̇

)
+KP (θd − θ)

)
= 0. (39)

Under the assumption that M̂ > 0 (positive-definite), which is true as long as M > 0

and θ+
/x

is full column rank, i.e. the configuration is not singular, and by defining

appropriate values of KD and KP (symmetric, positive definite), the dynamics of the

tracking error in the joint space is described by a linear, time invariant homogeneous

system. The choice of KD and KP gives some freedom in tuning the dynamics of

the error, e.g. the peak time and the overshooting, although special attention needs

to be paid to prevent problems like spillover, essentially related to modeling errors

and unmodeled dynamics, especially those resulting from compliance of the joints and

flexibility of the arms.

It is worth noticing that Eq. (5) needs not be written explicitly; as soon as measures

of the joint coordinates and their derivatives are available during the forward analysis

(e.g. in form of measurements or run-time processing of the analysis), the feedback

torque correction is

cf.b. = M̂
(
KD

(
θ̇d − θ̇

)
+KP (θd − θ)

)
. (40)

Given their feedback nature, when the projected mass matrix of the system is diagonally

dominant, as it is the case in usual applications, an estimate of M̂ suffices, although

no formal proof of stability can be given. In practice, M̂ is often approximated by

a diagonal matrix, and diagonal KD and KP are chosen as well, thus making the

feedback torque corrections co-located.
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Fig. 1 Three-link arm motion resolved using linear ergonomy functions (every 20 steps, about
0.182 s).

3 Numerical Results

The proposed formulation has been implemented in the previously mentioned free,

general-purpose multibody solver MBDyn. Three examples, consisting of a three-link

arm, a PA10-like robot and a bio-inspired robot are presented.

3.1 Three-link Arm

The first application is a simple three-link arm, which is essentially used to exem-

plify the effects of different weighting on the quality of the on-line kinematics and

feedforward control computation. This problem has been widely used in robotics to

demonstrate redundancy-related features.

The data and one of the test cases proposed by Hollerbach and Suh in [21] are used

to validate the proposed approach. Each link of the arm is 1 m long; the mass of each

link is 10 kg, and is uniformly distributed. In the initial configuration, the joint angles

are θ1 = −45 deg, θ2 = 135 deg, and θ3 = −135 deg.

The prescribed trajectory of the free end of link #3 is a constant acceleration/constant

deceleration straight path along a straight line ∆y = ∆x. In the case presented here

the total length of the path is 0.83 m in each direction. Figure 1 shows a sketch of

the motion of the three-link arm where the redundancy is resolved using the proposed

approach with linear ergonomy functions applied to the rotation of each joint. The

ergonomy torques are zero in the initial configuration. Figure 2 compare the torques

resulting from the inverse dynamics analysis with those computed in [21] using the

“unweighted pseudoinverse” approach, formally analogous to the present one. The line

labeled ‘present, ergo’ eliminates the redundancy using identical ergonomy springs,

while the line labeled ‘present, proxy’ uses the proximity function weighted by the

mass matrix as in Eq. (14). Figure 3 shows the corresponding joint angles.

3.2 Feedforward Control of a PA10-like Robot

The second application consists in a Mitsubishi PA10-like robot, a 7 joint machine of

general use in the industry and in robotics research. A sketch of the robot is presented in

Figure 4. Table 1 contains the Denavit-Hartenberg parameters that define the geometry
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Fig. 3 Three-link arm joint rotations.

of the PA10-like robot. The value of θ0 refers to each joint angle’s initial value. Table 2

contains the simplified inertia properties of each body, starting from #2. The inertia

tensor about the center of mass has been neglected, since no reliable data could be

gathered.
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Fig. 4 Sketch of the PA10-like robot.

Table 1 Denavit-Hartenberg parameters of the PA10-like robot.

Joint # d, m θ0, deg a, m α, deg
1 0.315 0.0 0.0 -90.0
2 0.0 45.0 0.0 90.0
3 0.450 0.0 0.0 -90.0
4 0.0 45.0 0.0 90.0
5 0.500 0.0 0.0 -90.0
6 0.0 45.0 0.0 90.0
7 0.080 0.0 0.0 0.0

Table 2 Inertia properties of the PA10-like robot.

Body # M , kg xCM, m
2 8.41 0.06325
3 3.51 0.08944
4 4.31 0.04609
5 3.45 0.16470
6 1.46 -0.03000
7 0.24 -0.02900

3.2.1 Anisotropic Ergonomy Functions

The case of anisotropic ergonomy functions is considered first. The prescribed trajec-

tory of the node that represents the last body is







x

y

z






=







−0.6 (1− cos(πt))

−0.3 (1− cos(2πt))

0.0






m. (41)

The motion is periodic, with period T = 1 s. No specific orientation is prescribed; as

a consequence the problem is 7− 3 = 4 times underdetermined.

Figures 5 and 6 respectively show the end-effector trajectory in a Cartesian x–y

plane and the time histories of the x and y components of the end-effector trajectory.

Figure 8 shows the joint angles and torques for two sets of ergonomy functions. In

both cases the functions are linear. In the case labeled ‘isotropic’ the same coefficient
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Fig. 7 Sketch of PA10-like robot motion in case of isotropic (top) and anisotropic (bottom)
ergonomy functions (0 ≤ t ≤ 1 s, every 0.2 s).
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Fig. 8 PA10-like robot: joint angles (degrees) and torques (Nm) in case of isotropic and
anisotropic ergonomy functions.

Kii = K is used for all joints, while in the one labeled ‘anisotropic’ K11 = 10−3K is

used for joint #1. This allows joint #1 to provide most of the motion, as opposed

to the previous case; as a consequence, joints #3 and #5 do not essentially move, as

clearly shown in Figure 8 on the left.
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Table 3 PA10-like robot, trajectory data

L 0.18 m
t0 0.0 s
t1 1.0 s
t2 2.0 s
t3 2.5 s
ω π/2 radian/s

3.2.2 Obstacle Avoidance

This problem tests the obstacle avoidance functionality, which is obtained by penalizing

the absolute position of the manipulator. The prescribed trajectory is

x(t) =







0 t0 ≤ t ≤ t1

L

(

1
(
1 + tan3 (ω(t− t1))

)1/3
− 1

)

t1 ≤ t ≤ t2

−L (1 + ω(t− t2)) t2 ≤ t ≤ t3

(42a)

y(t) =







Lωt t0 ≤ t ≤ t1

L

(

ωt1 +
tan (ω(t− t1))

(
1 + tan3 (ω(t− t1))

)1/3

)

t1 ≤ t ≤ t2

L (ωt1 + 1) t2 ≤ t ≤ t3

(42b)

z(t) = 0 (42c)

with ω = π/(2(t2−t1)) and data from Table 3. It is inspired by [35], and corresponds to

a rectilinear segment in the y direction at constant speed, followed by an arc of a curve

of the form (x/L)3 + (y/L)3 = 1, at nearly constant speed, that bends the trajectory

towards the negative direction of the x axis, and finally by another rectilinear segment

in the −x direction, again at constant speed. The axis of the tool is required to remain

vertical, i.e. oriented along z. As a consequence, 5 components of tool motion are

prescribed. The initial configuration of the robot only differs from that of Table 1 for

the angle of joint #4, which is now θ0 = 90 deg. Isotropic ergonomy functions are

considered; in the restricted case, joint #4 is required to stay away from point P =

{0.3,0.5,0.6} in space using a linear elastic rod between that joint and point P. The

rod is active only during the inverse kinematics phase of the analysis and penalizes the

reduction of the distance. The distance of joint #4 from point P in the unrestricted

and restricted cases is shown in Fig. 9, while a sketch of the robot motion is provided

in Fig. 10. The corresponding joint angles and torques are illustrated in Fig. 11.

3.3 Feedforward and Feedback Control of a Bio-inspired Robot

The third application consists of a bio-inspired robot, sketched in Figure 12, made of

11 identical modules connected by revolute hinges. An early version of this problem

was analyzed in [27,9]. The hinges of two consecutive modules are rotated 6/11π radian

apart. Each hinge is located 0.0634 m radially from the main axis of the manipulator.

The hinge axis is oriented tangentially and normal to the main axis of the manipulator.

In the reference configuration each module is spaced 0.058 m along the main axis of

the manipulator.
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Fig. 9 PA10-like robot: distance of joint #4 from point P = {0.3,0.5,0.6} in unrestricted and
restricted cases.

Fig. 10 Sketch of PA10-like robot motion in unrestricted (top) and restricted (bottom) cases
(0 ≤ t ≤ 2.5 s, every 0.5 s).

Figures 13–16 compare motion and loads resulting from the inverse kinematics

and inverse dynamics analysis, labeled ‘inv. dyn.’, with those resulting from direct

integration in time. In the case labeled ‘f.b. + f.f.’ the torques computed by the inverse

dynamics analysis are applied in feedforward, while the corresponding motion is used

in feedback. In the case labeled ‘f.f., no f.b.’ the inverse kinematics motion is used in

feedback with the same gains used for the previous case, but no feedforward is used.

Figure 13 shows a projection on the x–y plane of the trajectory of the end effector (a

lemniscate) from 2 s to 6 s, i.e. after the start-up transient. The prescribed trajectory,

including the start-up phase, is






x

y

z






= f(t)







0.125 cos(πt)

0.125 cos(2πt)

0.050






m

f(t) =







1− cos(πt)

2
t < 1 s

1 t ≥ 1 s.
(43)

The rotation of the end effector is only allowed about the global z axis. As a conse-

quence, the problem is 11− 5 = 6 times underdetermined.

Figure 14 shows the time histories of all components of the trajectory of the end

effector, while Figure 15 shows those of the joint coordinates. Figure 16 shows the

torques of the joints.
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Fig. 11 PA10-like robot: joint angles (degrees) and torques (Nm) in unrestricted (top) and
restricted (bottom) cases.

The trajectories obtained using feedforward and feedback are essentially coincident

with the ones from inverse analysis; the maximum error in the position of the end

effector is of the order of 5 ·10−5 m. On the contrary, the trajectories obtained without

feedforward show significant errors, thus justifying the effort placed in predicting the

feedforward torques in addition to the desired joint trajectories.

Figures 17–20 show the same results of the previous ones with a +20% perturbation

of the mass of the last body, which represents an uncertainty on the mass of the end-

effector. The curves labeled ‘f.f. + f.b., nom.’ use the nominal feedback gains, while

those labeled ‘f.f. + f.b.’ are obtained using twice as large feedback gains. In both cases

the curves differ from the nominal ones, but the error is limited, and can be reduced

using the feedback control.
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Fig. 12 Sketch of bio-inspired robot during the start-up transient.
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Fig. 13 Bio-inspired robot: x–y components of end effector trajectory.

4 Conclusions

An algorithm for the real-time solution of inverse kinematics and inverse dynamics

of redundant manipulators formulated in redundant coordinates has been presented.

The configuration is determined first, by solving a nonlinear problem consisting of

the passive and the control constraints, augmented by a functional consisting of a

choice of several local optimality conditions usually formulated as least-squares min-

imization of cost functions. Ergonomy, proximity and torque boundary avoidance are

proposed. Velocity and acceleration are subsequently computed by solving linear prob-

lems where the redundancy is eliminated by minimizing the distance with respectively

the velocity and accelerations resulting from the numerical differentiation of the al-

ready computed configuration change from the previous time step. The solution of the

inverse dynamics problem yields the joint torques required to implement the computed

torque control of the actual system. The algorithm has been implemented in a free,

general-purpose multibody solver, exploiting the availability of general-purpose elastic
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Fig. 14 Bio-inspired robot: end effector trajectory.
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Fig. 15 Bio-inspired robot: joint angles (degrees).
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Fig. 16 Bio-inspired robot: joint torques (Nm).
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Fig. 18 Bio-inspired robot: end effector trajectory with +20% mass perturbation.
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Fig. 19 Bio-inspired robot: joint angles (degrees) with +20% mass perturbation.
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Fig. 20 Bio-inspired robot: joint torques (Nm) with +20% mass perturbation.

elements to model arbitrary ergonomy functions, and of the mass matrix to implement

proximity cost functions. Applications of increasing redundancy and complexity are

presented, to highlight the capability of the approach to produce accurate predictions

of the kinematics and dynamics of the system and to support the implementation of

robust feedback control systems based on feedback linearization.
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