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1. Introduction exercise. This is also common in other European countries, such
The Italian railroad network includes thousands of masonry
arch bridges, mainly built during the XIX century, that are still in
as UK, France, Spain and Germany [1]. The European railway net-
work has been almost completely built in one century, from the
1825, year of the first railway, to the 30’s of the twentieth century.
The first Italian railway has been realized in 1839 and the great
part of bridges have been built in the fifty years from 1860 to
1910, subsequently to the unification of Italy. Thanks to their
mechanical properties, thousands of masonry arch railway bridges
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have been built and, thanks to the durability of their materials, a
high percentage of them are still in service, Fig. 1.

Increase in transport capacity demand, deterioration of materi-
als and identification of a variety of defects have resulted in the
recent past in the need for assessment and maintenance proce-
dures for existing masonry bridges. As a consequence, considerable
effort to develop reliable structural models based on a limited
number of constitutive parameters has been made.

At present, a large amount of literature regarding the analysis up
to collapse of masonry arch bridges and masonry arches in general is
present [2–15]. However, such literature focuses almost exclusively
on 1D/2D problems. Obviously, such structural models involve vary-
ing levels of accuracy and simplifications, which limit their range of
applicability to specific cases. The most common idealizations of
masonry material behavior are elastic, non-linear elastic and elastic
plastic (for a detailed discussion the reader is referred to e.g. [9]), but
the most diffused approach, particularly in the case of masonry arch
bridges and curved structures in general, still remains limit analysis
[5,10–17]. Limit analysis provides very quickly failure mechanisms
and an estimation of the load carrying capacity of the structure
but for serviceability purposes, as the case here treated is incapable
of providing suitable information, as for instance the deflection pro-
file under the design rail/traffic load and the crack maps, i.e. the
zones undergoing inelastic deformation.

Besides the historic rules [18], the classic approach to determine
the stability of arch bridges is probably due to Pippard and Ashby
[19], Pippard [2] and Heyman [20]. Finally, Heyman [20] was the first
to extend in a clear and explicit way to masonry arches both the
kinematic and static theorems of limit analysis, according to which
the structure is safe if a thrust line inner to the arch depth can be
determined in equilibrium with the external loads.

The procedure may be handled without computational assis-
tance, and fits well with experimental data for very simple arches
without backfill and under specific load conditions. More recent
works (e.g. Gilbert and Melbourn [3], Hughes and Blackler [21]
and Boothby [4]) are based on a rigid block discretization of the
arches within limit analysis concepts coupled with FEs. While such
an approach is very appealing because it provides failure
mechanisms and load multipliers for a variety of different 2D
geometries and loading conditions, still it is based on strong sim-
Fig. 1. Proportion in percentage of masonry arch railway bridges on the overall
bridge stock of some of the main European railroad network, adapted from [1].
plifications, which disregard 3D effects and consider the role
played by the backfill only in an approximate way.

To rigorously investigate the role played by the backfill in the
determination of the actual load carrying capacity of 2D bridges,
a discretization with plane strain rigid-plastic elements and inter-
faces is needed, as recently proposed by Cavicchi and Gambarotta
[11,12]. While this latter approach is very powerful, giving good
predictions of the actual behavior of real bridges, it still has the dis-
advantage that it cannot be used for the analysis of skewed or
straight arches in presence of eccentric loads. Transversal effects
may be very important from a practical point of view, playing a
crucial role in the decrease of the load bearing capacity and 3D
limit analyses models seem still missing in the technical literature,
essentially because of the lack of commercial programs and of the
prohibitive computational cost required by refined discretizations
within standard linear programming algorithms. While limit anal-
ysis is a very appealing alternative to common non-linear simula-
tions, it is unable to give any prediction of the pseudo-ductility of
the structure, because of the material hypotheses at the base of
such formulation (infinite ductility of the constituent materials).
To have a prediction on displacements in the non-linear range,
non-linear FE approaches (ranging from 1D up to full 3D) have thus
been used in the recent past [8,22–24]. For complex geometries,
FEs models generally require many elements and variables, making
the solution of the incremental problem difficult even for small
bridges. In addition, since commercial codes are normally used, it
is also difficult to adapt material models available to the actual
masonry behavior, to properly take into account the orthotropy
along material axes [25,26], softening behavior and separate failure
surfaces for tension and compression [27–33].

Two distinct FE software are utilized in the paper to perform
several numerical simulations on the Venice trans-lagoon bridge
(Fig. 2), namely a macroscopic FE procedure dealing with isotropic
elastic–plastic materials within the commercial code Strand7 [34],
and a homogenization non-linear FE procedure recently presented
in [15,16], which relies into a discretization of the structure with
rigid parallelepiped elements and non-linear quadrilateral inter-
faces. The latter approach allows performing non-linear static sim-
ulations taking into account the orthotropic behavior and the
softening of actual masonry materials by means of a Sequential
Quadratic Programming (SQP) strategy recently presented in detail
in [16], where the reader is referred to. When for the interfaces a
rigid plastic behavior with infinite ductility is assumed, an upper
bound limit analysis can be performed, which allows the estima-
tion of collapse loads and failure mechanisms, by means of the
solution of a large scale linear programming problem (LP).

For all models, a full 3D discretization is adopted in order to
suitably consider the unsymmetrical response of the structure
induced by live loads eccentrically applied and the always present
transversal effect due to the three-dimensional geometry, even in
presence of loads symmetrically disposed on the width. Further-
more, it is worth noting that the role played by the presence of lat-
eral stone arches on the barrel vault may be estimated only using a
full 3D model.

Finally, the stabilizing role of the backfill up the collapse is eval-
uated together with the effects induced by a foundation vertical
settlement of a pile.

In Section 2, the salient features of the different codes used are
summarized. In Section 3, the case study examined, namely the
trans-lagoon Venice railway bridge, Fig. 2, is presented in detail
and the homogenization procedures employed for the barrel vault
and the stone arches are also reported. In Section 4 the results of
the structural analyses performed both on service loads and at col-
lapse are critically discussed and the effect of backfill and span-
drels is highlighted. Finally the effect of the foundation
settlement of a pile is presented in Section 5.



Fig. 2. Historical photograph of the Venetian trans-lagoon bridge. One ‘‘stadio’’ of the bridge with artificial islands on the left and right (A). Dimension of a single arch and
transversal section at crown.
2. Modeling strategies

In order to obtain a comprehensive insight into the structural
behavior of the bridge, two different FE codes are utilized in the
paper to perform the analyses. The first software is a FE commer-
cial code, namely Strand7 [34], whereas the second is a non-com-
mercial software [15,16] specifically conceived for structural
analyses in the non-linear range of complex masonry structures.
In the following sub-sections, a brief overview of the aforemen-
tioned code features are reported.



2.1. Commercial code

Preliminarily, a general purpose commercial FE software is uti-
lized, namely Strand7 [34]. In order to analyze the structure taking
into account transversal effects, a discretization with eight-noded
parallelepiped elements is arranged. The global behavior of the
bridge is investigated in both the linear elastic and non-linear elas-
to-plastic field. In this framework, two hypotheses of increasing
complexity are done on the material behavior. When dealing with
linear elastic analyses, utilized to investigate the behavior of the
bridge under service loads, either isotropic or orthotropic constitu-
tive relationships are assumed for the different geometric elements
of the structure. In particular, when dealing with the barrel vault,
spandrels and external arch rings, orthotropic properties derived
from rigorous FE homogenization in the elastic range are adopted.
For backfill and piers, isotropic properties are assumed.

When dealing with the non-linear simulations, elastic perfectly-
plastic materials are assumed, all obeying a Mohr–Coulomb failure
criterion. It is worth nothing that, in the commercial software
Strand7, neither non-linear orthotropic or softening materials are
at user’s disposal, therefore the assumptions made for the different
masonry elements (elasto-plastic frictional materials) represent
the most realistic choice that may be done in relation with the pos-
sible material models available in the code.

For masonry vaults, spandrels and the backfill, a pure Mohr–
Coulomb failure criterion is adopted, with low cohesion and rela-
tively high friction angle. No cut-off is considered in tensile stress.
A perfect plastic behavior is assumed, within the classic hypothe-
ses of plasticity theory (associated flow rule and infinite ductility
of the material).

It is worth noting that the aforementioned assumptions about
the non-linear behavior of the material may be restrictive with ref-
erence to masonry, which, at failure, exhibits an orthotropic behav-
ior (as demonstrated by many authors, see for instance
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Fig. 3. Rigid infinitely resistant eight-noded parallepiped element used for bridges
[28,29,32,33]), softening after the peak load and non-associativity.
Nevertheless, such second approach is intrinsically more suited for
the analysis of masonry structures when compared to a standard
linear elastic computation, allowing a rough but quick preliminary
estimation of the portions of the structure undergoing inelastic
deformation, i.e. a prediction of crack patterns and failure mecha-
nisms. In the Authors’ opinion, most techniques of analysis are
adequate, possibly for different applications, if combined with
proper engineering justification [35]. Finally it must be underlined
that, in case of massive structures with very low tensile strength,
the post-peak behavior of cracked masonry has little influence on
the global response and therefore no special attention was paid
to the use of special software in order to include such an aspect.
2.2. FE homogenized non-linear code

The second approach adopted relies into FE computations per-
formed by a noncommercial FE code [15,16,36], specifically crafted
for the analysis in the non-linear range of 3D masonry structures.
Within pushover simulations, barrel vault, external arches (when
present) and spandrels, are modeled by means of orthotropic
homogenized materials exhibiting softening and obtained with a
homogenization approach similar to that proposed in [16],
whereas infill is modeled by means of a Mohr–Coulomb material.
It is interesting to notice that FE limit analysis simulations may
be performed making use of the same software and the same dis-
cretization, simply assuming for the interfaces a rigid perfectly
plastic behavior.

In the general case, i.e. with materials exhibiting softening, to
solve the non-linear structural analysis problem, a Sequential Qua-
dratic Programming (SQP) procedure within a discretization
through rigid elements and non-linear quadrilateral interfaces,
Fig. 3, again as in [15,16], is utilized. Each interface is supposed
kMn1

M
n2

kMn2
MtkMt

3

21

4

r1
I

r2
I

sI

r1
4

r2
4

s 4

r1
1

r 2
1

s 1

r1
2

r2
2

s 2

r1
3

r2
3

s 3

 interface I

interface I

P

M

uz
M

z
M

u M
y
M

ux
M

x
M

1
2

4 3

N

uz
N

z
N

u N
y
N

ux
N

x
N

y

y

y

z

x

t M
element N

 interface I
plane

3D discretization and kinematics of interfaces between contiguous elements.



Fig. 4. Typical configuration of an arch barrel, adapted from Torre [37] and FE discretization of the Venice trans-lagoon bridge with identification of external stone arches
(14,688 nodes and 12,224 bricks).
interconnected with adjoining elements by means of three non-lin-
ear displacement and three non-linear rotational springs.

In order to estimate the stress–strain non-linear behavior of
both barrel vault and stone arches to be used at a structural level,
a numerical homogenization procedure relying into a 3D FE dis-
cretization of the cell is adopted. The same code used at structural
level is utilized to determine homogenized properties at cell level,
with the only difference that within the unit cell the interfaces
between contiguous elements are assumed isotropic.

For spandrels, since bricks are disposed in header bond and a FE
discretization of the unit cell would be very demanding especially
in the non-linear range, a simplified homogenization procedure
with few plane-stress triangular elements and interfaces and
already presented in [36] is adopted.

The non-linear uniaxial behavior of the displacement springs is
thus deduced either by homogenization (FEM or simplified) or
directly using the constitutive behavior of the isotropic material.

Kinematic variables for each rigid eight-noded element are thus
represented by three centroid displacements (uE

x ,uE
y ,uE

z ) and three
rotations around centroid G(UE

x ,UE
y ,UE

z ), see Fig. 3. The jumps of dis-
placements on a point P of an interface is ½UðPÞ� ¼ UG

M � UG
Nþ

RMðP � GMÞ � RNðP � GNÞ, where [U(P)] is the displacement jump



between elements N and M in correspondence of point P, UG
E is the

E centroid displacement and RE is the E rotation matrix.
Having defined a local frame of reference rI

1 � rI
2 � sI for the

interface between N and M elements (vertices corresponding to
nodes P1, P2, P3 and P4, Fig. 3), we assume that it is characterized
by two axes laying on the interface plane and mutually orthogonal,
being the third axis perpendicular to the interface. Denoting with
Re the rotation matrix with respect to the global coordinate sys-
Barr
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Fig. 5. Venice trans-lagoon bridge, stress–strain rela
tem, the jump of displacements may be written in the local system
as ½eUðPÞ� ¼ Re½UðPÞ� where the superscript ~ indicates quantities
evaluated in the local system.

Once the displacement jump in the local frame of reference is
known, it is easily possible to evaluate both the displacement jump
of the interface centroid GI and the rotations of the interface.

To solve the discretized non-linear FE problem, under the
hypotheses of elasto-plasticity, it has been shown that any
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Fig. 6. The 3D model of a single arch with loads applied and transversal sections in which diagrams are taken.
structural problem may be solved incrementally by means of the
constrained minimization of the total energy stored in the system,
as follows:

max � 1
2 ðk

EÞT HE
kE þ ðkEÞTðNEÞT DEeE

n
subject to : kE P 0
eE

t ¼ eE þ eE
pl

rE ¼ DEeE
pl

8>>>>><>>>>>:
ð1Þ
Fig. 7. The texture of m
where DE is the assembled elastic stiffness matrix, eE (eE
pl) is the

assembled elastic (plastic) part of the total strain vector eE
t , NE is

the shape functions matrix of the used finite element, kE is the plas-
tic multiplier vector, HE is the hardening matrix and rE is the
assembled stress vector.

When dealing with softening materials, it has been shown [16]
that problem (1) may be again used iteratively, under the simplify-
ing hypothesis that the stress–strain curves are approximated by
means of a stepped function. Full numerical details of the proposed
asonry barrel vault.



Fig. 8. The elementary cell for the homogenization of barrel vault.

Fig. 9. FE homogenization model of the barrel vault elementary cell, with periodic
boundary conditions applied.

Table 1
Elastic properties adopted for the homogenization of the barrel vault.

Young’s modulus (MPa) Poisson’s ratio Density (kg/m3)

Bricks EB = 5000 mB = 0.2 qB = 1800
Mortar EM = 1000 mM = 0.2 qM = 1800
approach may be found in [16], where the reader is referred for an
insight. Here we only put in evidence that the resultant mechanical
model is constituted by 6 elasto-plastic springs per interface, see
Fig. 3 and [15]. Within each iteration, by means of the stepped
function adopted as approximation for the real behavior, an elas-
tic-perfectly plastic behavior for each spring is utilized, meaning
that 12 plastic multipliers for each interface are needed (two for
each spring, k+ and k�, corresponding to positive or negative
kinematic variables). In this way, optimization variables entering
into the QP problem are relatively small (12 plastic multipliers
for each interface, 3 displacements and 3 rotations for each
element).

Within the FE model adopted, it can be shown that problem (1)
may be re-written as:
min 1
2 ½ðk

þ � k�ÞT Kepðkþ � k�Þ þ UT
elKelUel� � FT Uel

n
subject to : kþ P 0 k� P 0

(
ð2Þ

Assuming that the structural model has nin interfaces and nel

elements, symbols in Eq. (2) have the following meaning:

1. Kel is a 6nel � 6nel assembled matrix, collecting elastic stiffness
of each interface.

2. k+ and k� are two 12nin vectors of plastic multipliers, collecting
plastic multipliers of each non-linear spring (e.g. flexion, shear,
etc.).

3. Kep is a 12nin � 12nin assembled matrix built from diagonal
matrices of hardening moduli of the interfaces.

4. Uel is a 6nel vector collecting the displacements and rotations of
the elements.

5. F is a 6nel vector of external loads (forces and moments) applied
on element centroids.

Typically, the independent variable vector is represented by ele-
ment displacements Uel and plastic multiplier vectors k+ and k�.

To deal with softening, an iterative procedure based on QP is
adopted, as shown extensively in [16], where the reader is referred
to for details. QP problem (2) is solved in terms of displacement



Table 2
Mechanical properties (linear and non-linear) adopted in the numerical simulations with the non-commercial code, structural level.

Barrel vault

Mortar Blocks Backfill

E 1000 5000 1400 (MPa) Young modulus
G 450 2200 500 (MPa) Shear modulus
c 1.0ft 0.12–0.08–0.04 (MPa) Cohesion
ft 0.20 c/tanU (MPa) Tensile strength
U 36 30–20 (�) Friction angle
Gf

I 0.003 Elastic-perfectly plastic (N/mm) Mode I fracture energy
Gf

II 2Gf
I Elastic-perfectly plastic (N/mm) Mode II fracture energy

Stone arches Spandrels

Mortar Blocks

E 1000 13,000 2800 (MPa) Young modulus
G 450 5600 1200 (MPa) Shear modulus
c 1.0 ft 1.4ft (MPa) Cohesion
ft 0.25 0.18 (MPa) Tensile strength
U 36 36 (�) Friction angle
Gf

I 0.03 0.04 (N/mm) Mode I fracture energy
Gf

II 2 Gf
I 2Gf

I (N/mm) Mode II fracture energy

Table 3
Homogenized elastic properties of the barrel vault.

E11 E22 E33

Young’s modulus (MPa)
3480 3592 2861

G12 G23 G31

Shear Modulus (MPa)
1340 1100 1120

m12 m23 m31

Poisson’s ratio
0.18 0.194 0.158
and plastic multipliers step increments. The initial solution of the
problem is always represented by the solution at the previous step.
Fig. 10. Elementary cell and FE model with periodic boundary conditions applied,
stone arch.

Table 4
Elastic properties adopted for the homogenization of the stone arch.

Young’s modulus (MPa) Poisson’s ratios Density (kg/m3)

Stone ES = 10,000 mS = 0.2 qS = 2700
Mortar EM = 1000 mM = 0.2 qM = 1800
3. Application to the trans-lagoon Venice bridge

3.1. Historical description of bridge

The trans-lagoon Venice bridge was built in 1846. During its
life, it was subjected to many interventions of restoration and
modification of the original project, and it is now the result of more
than 150 years of history [25,37,38]. The bridge, see Figs. 2 and 4,
relies into 222 arches, divided in 6 modules of 37 arches, named
‘‘stadii’’, separated from the close ones by artificial islands. Each
module is divided in 7 sequences of 5 arches, except the central
one of 7 arches: between each sequence there is a big pier
(‘‘pila–spalla’’) in order to prevent a global collapse due to the fall
down of a single arch. For this reason the bridge can be reasonably
considered as a sum of minor bridges. Fig. 2 represents one sta-
dium: it is possible to notice the sequences of arches and the differ-
ence between the artificial islands (A), the big piers (B and C) and
the normal piers (numbered or P).

Each arch has a span of 10 m and a rise of 1.73 m, with a ratio S/
R equal to 1:1.58. The vault has a curvature radius of 8.80 m at
intrados and a transversal length of 9 m. The thickness changes:
0.65 m at the crown, 0.80 m in the half of middle span, 0.94 m at
the abutments. Abutments and piers are made of Istrian stones.
Foundations are realized with the typical technology of historical
Venetian buildings: wooden larch piles fixed in the lagoon bed.
The arch barrel and the spandrel walls are made by Venetian
bricks. Backfill is made by heterogeneous incoherent materials.

3.2. Discretization adopted and load cases considered

The 3D FE discretization adopted for the numerical analyses
within all models is schematically depicted in Fig. 4. The discreti-
zation is obtained by means of a suitable extrusion of a 2D model,
taking into account the actual disposition of the different structural
elements along the thickness (spandrels, external arch rings, back-
fill and masonry vault) basing on a detailed analysis of historical
transversal sections available to the authors [26], see Fig. 2. The
2D model is previously discretized on the base of both direct



Table 5
Homogenized elastic properties of the stone arch.

E11 E22 E33

Young’s modulus (MPa)
8335 9823 9823

G12 G23 G31

Shear modulus (MPa)
3416 4075 3416

m12 m23 m31

Poisson’s ratio
0.17 0.19 0.20
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Fig. 11. Vertical displacements at intrados of crown. Top: LM71 on both rails.
Bottom: LM71 on single rail.
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survey of the authors (conventional topographic and photogram-
metric data) and available historical documentation.

The mesh is quite refined and regular and relies in parallelepi-
ped eight-nodes elements with low distortion ratio and with dis-
tinct properties of each meaningful structural element (barrel
vault, piers, rings, spandrels, backfill, infill and railway ballast).
For the case under study, the barrel vault is completely made by
brick masonry. However, several masonry arch railway bridges
built in the same period, were typically conceived with two exter-
nal arch rings made by stone voussoirs, with the internal part made
by brick masonry [37], see Fig. 4. In this latter case, it has been
sometimes experienced a larger thickness of the external rings
when compared with that of the central barrel vault. In this work,
apart the actual configuration of the Venice trans-lagoon bridge,
the hypothesis of the existence of two external stone arch rings
has been made: the aim is to investigate the influence of the rings
on the structural behavior of the bridge.

Considering the consistent and growing rail traffic that at pres-
ent the bridge is called to carry, an evaluation of its behavior under
service and ultimate (collapse) loads may provide interesting infor-
mation respectively on the assessment of functionality and load
bearing capacity, with the aim of ensuring its conservation or to
improve/refurbish its structural performance.

Having this target in mind, the static analyses are conducted in
both the linear and non-linear field. In particular, the following FE
simulations are conducted:

(1) Linear static analyses, suited to investigate the behavior
under service loads. In this case, only the commercial soft-
ware is utilized. Different hypotheses on the vaults, sup-
posed exclusively constituted by a thick brick masonry
layer or by the vault and two external stone stiffening arch
rings, see Fig. 4, are made. Elastic properties of both the vault
and the arch rings are obtained by standard linear elastic FE
homogenization, see [29,32,39–41]. Two different load cases
are investigated, the first simulating the passage of a train on
a single track and the latter on both tracks. The entity of the
traffic loads are provided by Italian Railway regulations [42].
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Fig. 13. LM71 load on both tracks without stone arches. Load displacement curves
at different values of infill cohesion at two different friction angles: (a) 30�, and (b)
20�.
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Load case LM71 double track Φ=20° with arches
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Fig. 14. LM71 load on both tracks with stone arches. Load displacement curves at
different values of infill cohesion at two different friction angles: (a) 30�, and (b)
20�.
In particular, Italian Railways require to apply two different
typologies of loads labeled as LM71 and SW2, differing for
both the entity and typology of loads (pressures and concen-
trated forces), position and application length. For the spe-
cific case at hand, it is found that LM71 is less conservative
when applied symmetrically with respect to the middle span
of the structure. Usually, it is found that such structures,
despite quite dated, may resist well against the passage of
heavy trains. It is however important to have an insight into
the entity of displacements induced by a passage of a train
and, eventually, investigate with more attention the behav-
ior under repeated load condition.

(2) Non-linear static analyses, suited to investigate the behavior
of the structure beyond elasticity, under external loads
increased up to the activation of a failure mechanism. In this
context, two different typologies of analysis are conducted,
namely pushover (which relies into an incremental proce-
dure with non-linear materials) and limit analysis. When
dealing with limit analysis the materials are assumed
rigid-plastic and the procedure allows obtaining the active
failure mechanisms and the associated collapse load, with-
out providing any indication on displacements near failure.
This second set of simulations is performed using both the
commercial and non-commercial software. In both cases,
the interaction between the barrel vault and the backfill is
accounted for. When the commercial code is used, as already
pointed out, isotropic materials are adopted [34,26]. In addi-
tion, elastic-perfectly plastic materials obeying an associated
flow rule under a classic Mohr–Coulomb failure criterion are
assumed. When dealing with the non-commercial software,
softening orthotropic materials are assumed [15,16]. Limit
analysis simulations are obtained excluding softening from
the computations, with the same code used for the non-lin-
ear analyses [33]. In presence of softening, the stress–strain
relationships for the different materials constituting the
bridge and depicted in Fig. 5 are utilized. Within limit anal-
ysis, peak values in Fig. 5 are assumed. In this latter case,
while the less realistic hypothesis of infinite ductility of
the materials is assumed instead of a more consistent
decrease of the strength at high deformations, it is expected
that softening in tension and shear have little effect on the
global pushover curves, especially within the range of
small-moderate displacements. The loads considered in the
non-linear static analyses belong to two categories: the first
is a vertical load simulating the passage of a train, increased
up to failure of the structure, whereas the second is a settle-
ment of one of the piers, again increased up to collapse.
When dealing with the first typology, the amount and typol-
ogy of loads applied on the models are provided by technical



Fig. 15. LM71 load on both tracks. Deformed shape obtained with the non-commercial FE code. (a) Perspective view. (b) Lateral, front and bottom views.

Fig. 16. LM71 load on both tracks. Deformed shape obtained with the commercial FE code. (a) Front. (b) Perspective and lateral views.



Italian regulation [42]. In particular, as already pointed out,
any bridge should be loaded by the two train load typologies
provided by regulation, called LM71 and SW2. LM71 is a load
applied on the whole span, whereas SW2 is a single span
load typology. LM71 seems associated generally to higher
internal stresses and deflections on the bridge and hence
the discussion is here limited to LM71. The loads have been
applied in order to evaluate both the longitudinal and the
transversal behavior of the bridge. When dealing with the
longitudinal behavior, two parallel LM71 loads have been
assumed to act symmetrically on the bridge, whereas the
transversal effect has been investigated with a single LM71
load placed eccentrically on a single track, as illustrated in
Fig. 6. When dealing with the foundation settlement, an
increasing vertical displacement is imposed at the base of
one of the piers. No limit analysis predictions can be
obtained in this case, as a consequence of its well-known
inability to provide any information on displacements at
failure. Such load case appears quite realistic, especially for
the Venice lagoon, where the soil mechanical properties
may both vary quickly from point to point and are generally
very low.
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Load case LM71 single track Φ=20°

Load case LM71 single track Φ=30°
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Fig. 17. LM71 load on single track without stone arches. Load displacement curves
at different values of infill cohesion at two different friction angles: (a) 30�, and (b)
20�.
3.3. Homogenization of barrel vault and stone arches by means of a 3D
FE discretization of the elementary cell

A preliminary homogenization in the elastic and non-linear
case, Fig. 5, to evaluate the stiffness and non-linear stress–strain
behavior of masonry barrel vault and stone arches at a structural
level is performed. At the micro-scale, an elementary cell (also
called Representative Element of Volume or REV), which provides
all the geometrical and mechanical characteristics needed to com-
pletely describe the whole masonry wall by its repetition, is iden-
tified and suitably meshed with the same parallelepiped rigid and
infinitely resistant elements interconnected by inelastic interfaces
used at a structural level, see previous Section.
3.3.1. Homogenization of the barrel vault
The barrel vault under consideration and the REV used in the

numerical simulations are depicted in Figs. 7 and 8 respectively.
A standard FE homogenization procedure, see [28,29,32,39–41]
for theoretical details, is performed to estimate mechanical proper-
ties (both elastic moduli and stress–strain curves) to be used at a
structural level.

The discretization adopted within a well-established displace-
ment based procedure, with unitary displacements applied in
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Fig. 18. LM71 load on single track with stone arches. Load displacement curves at
different values of infill cohesion at two different friction angles: (a) 30�, and (b)
20�.



linear elasticity in the various cases and constraints are depicted in
Fig. 9.

The REV has been identified on the base of the real arrangement
of the bricks. However, some hypotheses have been formulated on
the base of the visible bricks pattern – as shown in Fig. 7 – and on
the base of drawings of the original project, due to the impossibil-
ity of a direct view of the internal bricks. Considering the arrange-
ment of blocks along the arch ring, two rows of bricks have been
identified, as shown in Fig. 7. The barrel vault has been considered
with a constant thickness of 800 mm for the sake of simplicity in
the structural model, however in reality it has a lower thickness
at crown and a higher thickness at abutments. The bricks have
the typical dimensions of historical Venetian bricks, equal to
250 � 120 � 50 mm3. The thickness of mortar joints is about equal
Fig. 19. LM71 load on single track. Deformed shape obtained with the non
to 10 mm. Both bricks and mortar have been modeled as isotropic
materials. The mechanical properties adopted for the model of the
REV are reported in Table 1 (elastic properties) and in Table 2
(inelastic properties).

Considering the small dimensions of the REV when compared to
the whole barrel vault, the problem has been geometrically linear-
ized, reasonably assuming a flat REV.

The elastic properties obtained by homogenization are reported
in Table 3, whereas the inelastic axial behavior (along a horizontal
and vertical direction) and shear to be used within the non-linear
approach are depicted in Fig. 5. In Fig. 5, it is also reported the
stepped approximation used in the non-commercial FE code
[15,16], needed to perform Sequential Quadratic Programming
computations.
-commercial FE code. (a) Perspective and lateral views. (b) Front view.



3.3.2. Homogenization of the stone arch
The same homogenization procedure has been applied to a hyp-

othetic texture of a stone arch, with REV as in Fig. 10. The thickness
of the arch rings has been assumed constant and equal to the thick-
ness of the barrel vault, therefore equal to 800 mm. The arch rings
are assumed made of blocks having dimensions equal to
800 � 400 � 300 mm3. Mortar joints thickness is assumed equal
to 5 mm. Both bricks and mortar have been modeled as isotropic
materials by means of brick elements. Elastic mechanical proper-
ties adopted for the constituent materials of the REV are reported
in Table 4, whereas inelastic parameters of stones and mortar are
summarized in Table 2.

Also in this case, as previously described, considering the small
dimensions of the REV when compared to the entire arch ring, the
REV has been considered flat. The elastic properties obtained
through homogenization are summarized in Table 5, whereas its
axial and shear inelastic behavior is depicted in Fig. 5.
4. Results of the numerical analyses under conventional train
loads

The results of a number of numerical simulations performed in
the linear and non-linear range under conventional train loads act-
ing, and performed by means of both the commercial and non-
commercial software, are here presented and critically compared.

Numerical simulations comprise linear elastic analyses under
service loads, non-linear pushover analyses with two different load
conditions up to failure, limit analyses and pile settlement simula-
tions, with displacements increased up to failure of the structure.
Fig. 20. LM71 load on single track. Deformed shape obtained with the c
3D effects and role played by the backfill are critically analyzed
in light of the numerical results obtained with the three
approaches comparatively used.
4.1. Linear analyses: serviceability conditions

Preliminarily, a parametric linear static analysis has been per-
formed to evaluate the sensitivity of the global behavior of the
bridge to the presence or absence of the stone arch rings under ser-
vice condition. Among all the analyses performed, only the most
meaningful results are here reported. A synopsis of the numerical
data obtained is represented in Figs. 11 and 12.

In particular, Fig. 11 shows the vertical displacements of the
intrados nodes at the top of the barrel vault, whereas in Fig. 12
the stresses along the horizontal direction (longitudinal direction
of the bridge) on the same nodes are depicted.

In the diagrams, continuous lines represent the barrel vault
completely made of bricks, dashed lines represent the bridge with
one external stone arch ring and dash-dotted lines the bridge with
two symmetric external stone arches.

As can be noted, Fig. 11 shows clearly that vertical displace-
ments at intrados of crown of the model with the two external
stone arch rings are sensibly smaller then the displacements of
the model representing the actual configuration. Fig. 12 shows that
there is a transmission of stresses between the barrel vault and the
external stone arch rings, with a consequent reduction of stresses
in the barrel vault. This effect is reduced near the center, due to
the considerable transversal thickness of the structure, which is
of the same order of magnitude of bridge span.
ommercial FE code. (a) Front and (b) Perspective and lateral views.



4.2. Nonlinear analyses: effect of backfill and spandrels

The contribution of the backfill in stabilizing a bridge has been
well known from many years. For instance, in the 40’s of the last
century, some authors noticed a change of the line of thrust caused
by the backfill in arch bridges [43], but the importance of backfill
became clearer in the 60’s, when some researchers shown a higher
load-bearing capacity due to backfill contribution [44,45].

The presence of a solid joint may allow the development of a
flat arch inside the backfill. This phenomenon can change the span
of the arch, as demonstrated for instance by the collapse of Traver-
sa Railway Bridge in the Italian railway between Torino and Geno-
va [46]. An evaluation of the increase in the load bearing capacity
due to backfill can be found in Smith [47], whereas the role of the
other structural elements has been studied by Molins and Roca
[48], which showed an increase of the failure load when modeling
not only the arch itself but also the other elements. Similar numer-
ical analyses with comparable results have been performed by Cav-
icchi and Gambarotta [11–14], who studied the influence of the
backfill on two literature bridges with a 2D upper bound approach.

The numerical simulations here performed with both Strand7
[34] and the non-commercial code [15,16] are conducted perform-
ing several pushover analyses assuming for the backfill a
Mohr–Coulomb failure criterion with elastic-perfectly plastic
behavior, and a sensitivity analysis is performed changing cohesion
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Fig. 21. Synopsis of failure loads obtained with limit analysis. (a) LM71 load on
both tracks. (b) LM71 load on single track.
and friction angle in a realistic range. In particular, three values of
cohesion for the backfill are investigated equal to 0.04, 0.08 and
0.12 MPa, associated with two values of the friction angle, equal
to 30� and 20�. According to literature data, the most realistic
mechanical properties for an existing backfill in a bridge are a very
low cohesion (well approximated by the lower value here investi-
gated) and a moderately high value of friction angle, typically
around 30–35�.

Pushover analyses are conducted with either FE codes increas-
ing up to failure the train load LM71, in presence and absence of
lateral stone arches and assuming both configurations for the
external load, i.e. the symmetric and unsymmetrical one, simulat-
ing the presence of trains on whole bridge or on a single track
respectively.

A huge amount of numerical simulations has been performed,
namely 24 pushover analyses for both codes utilized, i.e. with
and without reinforcing stone arches, two load cases, three differ-
ent cohesions of the backfill and two different friction angles.

In addition, FE limit analyses have been repeated on the same
FE discretization with a limit analysis code previously developed
by one of the authors [49], in order to have a precise prediction
of the entity of the loads associated to the collapse of the structure,
without the need to perform computationally expensive incremen-
tal simulations. In any case, it is worth noting that software
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Fig. 22. Data extrapolation for backfill with vanishing cohesion and comparison
with results obtained with a 2D approach in absence of backfill (double track).
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Fig. 23. Right pile settlement. Load displacement curves at different values of infill
cohesion at two different friction angles: (a) 30�, and (b) 20�.
available in [15,16] is capable of providing the same final results
when elastic-perfectly plastic materials are assumed.

Pushover curves and failure loads so obtained are shown from
Fig. 13 to Fig. 20 for all the cases investigated, along with deformed
shapes at collapse provided by both the commercial and non-com-
mercial FE software.

From an overall and comparative analysis of simulations results,
the following considerations may be drawn:

(1) The role played by the backfill in increasing the load bearing
capacity is quite evident from results and once again its sta-
bilizing effect against vertical loads is confirmed, as already
pointed out by classic literature [11–13].

(2) The ultimate loads obtained for the three values of cohesion
and the two values of friction angle inspected for the backfill
are comparatively represented in Fig. 21. It is interesting to
notice that ultimate loads of the bridge associated to a back-
fill with no cohesion may be easily deduced from Fig. 21
after proper data extrapolation, see Fig. 22. Collapse loads
obtained in absence of cohesion reasonably represent the
lower bound values expected in practice and should be com-
pared with collapse loads obtained in absence of backfill to
estimate the beneficial role played by the backfill in increas-
ing the load bearing capacity of such structures.

(3) In Fig. 22-a, a comparison between failure loads obtained in
absence and presence of backfill is shown for the symmetric
case and absence of external stone arches. Only in this latter
case, indeed, the utilization of 2D limit analysis approaches,
as for instance Ring [6], is possible. As can be noted, even in
presence of backfill with zero cohesion and small friction
angle, the increase of the load bearing capacity with respect
to the case without backfill is greater than 50%.

(4) Friction angle has a clearly evident role on the increase of
the load bearing capacity of the structure, for all the cases
investigated and especially in presence of vanishing cohe-
sion of the backfill and without lateral stone arches. The
presence of the stone arches, indeed, increases the load bear-
ing capacity of the structure, making the stabilizing role of
the backfill less evident.

(5) The introduction of the lateral stone arches is quite benefi-
cial, since it is associated clearly to an increase of both stiff-
ness and strength of the structure. Such feature is well
reproduced by all models.

(6) Orthotropy of the barrel vault and the spandrels has little
influence on the global behavior of the structure, as clearly
shown by the small discrepancies of the pushover curves
provided by the commercial code (isotropic materials) and
the non-commercial software with rigid elements and non-
linear interfaces (orthotropic materials).

(7) Generally and as expected, the approach with orthotropic
materials and rigid elements provides pushover curves
exhibiting both larger initial stiffness and collapse loads.
Reasons at the base of such response stand in the larger
strength of the orthotropic material used along preferential
directions (barrel vault, stone arches when present and
spandrels) and the discretization by means of rigid elements
and non-linear interfaces, where deformability is concen-
trated exclusively between adjoining elements.

(8) Softening behavior of the materials has a clear effect on the
global pushover curve generally under large displacements
of the control node, near the collapse of the structure, see
for instance Fig. 13. An approximation with elasto-plastic
material without softening is therefore acceptable in this
case and may provide accurate predictions of the load bear-
ing capacity of the structure.
(9) The nonsymmetric behavior of the structure and 3D effects
are obviously quite evident when dealing with the train load
on a single track. In this case, the discrepancy between push-
over curves provided by the isotropic and orthotropic FE
model are more marked, because the barrel vault works in
bending along the transversal direction, where the strength
of the equivalent orthotropic material is greater. An addi-
tional contribution comes in both load cases (trains on both
tracks or on a single track) also from the in-plane strength of
the spandrels along the horizontal direction, which is not
taken into account in the isotropic model and may explain
the discrepancies in the pushover curves obtained, also
when dealing with the load case with symmetrical loads.

5. Results of numerical analyses under foundation settlement
of a pile

One of the most significant causes of failure for a masonry arch
bridge is the differential settlement of piles. A complete list of the
potential structural consequences due to loss of support in an arch
bridge is provided by McKibbins et al. [50]. When springing
remains parallel, the typical settlements that may occur are verti-
cal differential settlement between adjacent supports, horizontal
spread of support and horizontal inward movement.



Fig. 24. Right pile settlement. Deformed shape obtained with the non-commercial FE code. (a) Perspective views. (b) Zones where major plasticization occurs, with
identification of plastic hinges on the barrel vault.
In these cases, the arch develops three hinges (rarely the arch is
able to accommodate support movements with two hinges). If
three hinges form and vertical or horizontal settlement continues,
then this activates a failure mechanism and should be treated
immediately.

In Fig. 23, the load displacement curves obtained when an
increasing vertical settlement of the right pile is imposed (under
a displacement driven procedure within both FE codes) are shown,
at different values of infill cohesion and two different friction
angles. For the sake of completeness, in Figs. 24 and 25, the
deformed shapes obtained near failure, with a clear visualization
of the three hinges forming the failure mechanisms, and obtained
by both the non-commercial and commercial software are
depicted. In this case, it is quite evident the total absence of trans-
versal 3D effect, as it was easily deducible by the expected failure
mechanism. Quite large displacements are required to fully acti-
vate the mechanism, meaning that the performance of the bridge
under differential settlement is expected to be high. In any case,
since the bridge is called to withstand the passage of railway traf-
fic, it should be checked the state of damage under displacement
compatible to the passage of a train.

In reality, bridges are often subjected to a combination of
different settlements that increases the negative effects of the
individual settlements. For instances, a combination of translation



and rotation of the base of a pier causes severe cracking in the arch
barrel and in the spandrel walls; settlements of abutments com-
bined with rotation provoke diagonal cracks in the arch barrel.
The worst case is when loss of support produces a distortion of
the arch barrel which can seriously reduce the load carrying capac-
ity of the bridge. The investigation of all these cases to quantita-
tively determine the most unfavorable scenario is outside the
scopes of the present paper and a specialized wide research pro-
gram is required in this case. However, it is interesting to notice
that the full 3D procedure proposed allows to perform in a quite
reliable manner pushover analyses up to failure of the structure,
with a computational effort that remains quite reasonable even
for relatively complex geometries, as that studied in the present
work. As a consequence, at least in principle, it can be affirmed that
the software used is capable of provide predictions of the non-lin-
ear behavior of a bridge under both a displacement and a force dri-
ven framework, efficiently. As a matter of fact, indeed, a single
pushover simulation required less than 180 min to be performed
Fig. 25. Right pile settlement. Deformed shape obtained with the commercial FE
code. (a) Front and lateral views. (b) Perspective view.
on a standard PC equipped with 6 GB RAM and an Intel Core i5
CPU at 2.30 GHz, under common 64 bit Windows 7 OS.
6. Conclusions

Comparative analyses conducted by means of several material
models and different software, may be a robust procedure to inves-
tigate the behavior at failure and under service loads of historical
masonry arch bridges. The analyses conducted in the paper, when
considered synoptically, allow to make the following remarks on
the case study analyzed:

� The role played by the backfill in increasing the load bearing
capacity. A sensitivity analysis is indeed performed changing
cohesion and friction angle values and the failure loads so
obtained are compared with those predicted in absence of it.
� The role played by the lateral stone arches in both increasing

the stiffness and strength of the structure.
� The necessity of 3D analyses for evaluating the nonsymmetric

behavior due to the eccentricity of loads and of the structure.
In any case, even in presence of symmetric loads, a 3D effect
is still present, with larger deformations concentrated in the
central part of the structure.
� The role of material characteristics, such as orthotropy and soft-

ening of masonry.

The available methods for simulating the behavior of masonry
bridge structures resort to different theories or approaches, result-
ing in: different levels of complexity (from simple graphical meth-
ods and hand calculations to complex mathematical formulations
and large systems of non-linear equations), different availability
for the practitioner, different time requirements (from a few sec-
onds of computer time to many hours of processing) and, of course,
different costs. This notwithstanding, this is not a sufficient reason
to prefer one method to another. Indeed, a more complex analysis
tool does not necessarily provide better results. Most techniques of
analysis are adequate, possibly for different applications, if com-
bined with proper engineering reasoning.

As a matter of fact, the results emerged from the analyses allow
to conclude that the bridge is safe for the passage of standard
trains, whenever the important role of the backfill is not disre-
garded. However, an experimental mechanical characterization of
both backfill and barrel vault would be crucial in the safety assess-
ment of the structure, because the numerical analyses conducted
with both the commercial and non-commercial software result
rather sensitive to the strength ratio between the different materi-
als constituting the structure. On the other hand, albeit the simpli-
fications intrinsically accepted within the commercial code, it can
be stated that results in good agreement with those provided by
much more sophisticated approaches have been systematically
obtained. The results represent an indirect validation of the elas-
to-plastic analysis conducted with the commercial code, which at
present represents the most refined procedure that can be used
in practice, also considering that an experimental characterization
of the materials is possible only on models that require a few
parameters to set.

Finally, considering that the bridge rests on a soil with very poor
mechanical properties, the most useful technical information pro-
vided by the paper is the analysis under foundation settlements.
From simulation results, it is pretty clear that both a vertical small
displacement of the pile could result into unacceptable serviceabil-
ity conditions, as well as could activate a failure mechanism that is
unable to fully utilize the available extra resistance provided by the
backfill, as a consequence of the formation of a cylindrical hinge in
correspondence of the crown, where the thickness of the backfill is



very low. Obviously, in this latter case 3D effect is not so relevant,
as it may occur for differential settlements experienced for bridge
piles in rivers, where water floods may be responsible for rotations
of the supports.

It is under study by the authors a comprehensive numerical
analysis to conduct with alternative approaches based on coupled
Finite Element and Discrete Element Methods, in the context of a
2D discretization, to have a full insight into the role played by
the combination of a huge amount of input parameters, such as
boundary conditions, material properties (especially in the post
peak range), loads applied and interaction between contiguous
arches.
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