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Leading edge reflection patterns for cylindrical converging
shock waves over convex obstacles

F. Vignatia) and A. Guardone
Department of Aerospace Science and Technology, Politecnico di Milano, via La Masa,
34 - 20156 Milano, Italy

(Received 18 April 2016; accepted 27 July 2016; published online 21 September 2016)

The unsteady reflection of cylindrical converging shock waves over convex obstacles
is investigated numerically. At the leading edge, numerical simulations show the
occurrence of all types of regular and irregular reflections predicted by the pseudo-
steady theory for planar shock-wave reflections over planar surfaces, although for
different combinations of wedge angles and incident shock Mach number. The
domain of occurrence of each reflection type and its evolution in time due to shock
acceleration and to the non-planar geometry is determined and it is compared to
the results of the pseudo-steady theory. The dependence of the reflection pattern on
the (local) values of the wedge angle is in good agreement with the pseudo-steady
theory. Less complex reflection patterns are instead observed at larger values of
the leading edge shock Mach number at which the pseudo-steady theory predicts
the occurrence of more complex reflection patterns. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4960625]

I. INTRODUCTION

In recent years, the focusing of converging shock waves has been meeting the interest of the
scientific community, thanks to the possibility of concentrating high energy at the focus point,
and therefore attaining high pressure and temperature locally. The applications include large-scale
energy production,1 medical treatments,2 and a number of theoretical physics studies.3 Unfortu-
nately, as it is well known,4–6 cylindrical and spherical converging shock waves suffer from surface
instabilities. However, if on one hand the intrinsic instability of free implosions often makes them
unsuitable for applications, on the other hand it also represents an opportunity, in that surface insta-
bilities can be possibly used to alter the shock wave shape into a more stable one. A very promising
stabilization method consists in the so-called shock reshaping, i.e., the modification of the shock
front shape induced by the forced interaction between the shock and a number of obstacles placed
along its propagation path. The shock front shape is eventually modified into a more stable one,
thanks to the multiple reflections over the obstacle surfaces.7

Several works demonstrate that the combination between the shock Mach number and the
geometry of the obstacle has a relevant influence over shock reflections.8–11 As it is well known,
indeed, the interaction between shock waves and solid surfaces results in a number of different
reflection types. Most theoretical works on shock reflections are based on the self-similarity of
the phenomenon. One of the relevant problems concerns the so-called pseudo-steady reflections,
i.e., the diffraction of planar shock waves propagating at constant speed by planar wedges. In
pseudo-steady interactions, the observed patterns depend only on the incident shock Mach number
Ms and on the obstacle wedge angle θLE

w , see Figure 5, which are both constant for planar waves
and obstacles. Patterns originating from pseudo-steady interactions consist of a Regular Reflection
(RR) or an Irregular Reflection (IR).12 The main difference between the two classes of reflections
consists in the number of involved waves: a regular reflection includes only the incident shock and
the reflected wave, whereas a further shock wave forms an irregular reflection. Since the pioneering
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work of Courant and Friedrichs,13 the second group was assumed to consist of Mach Reflections
(MRs) only. The MR is a peculiar flow configuration including an incident shock, a reflected shock
wave, a Mach stem, and a slip line—the latter necessary to the consistency of the system—all
intersecting at the so-called Triple Point (TP). According to Courant and Friedrichs,13 when the
triple point moves away from the reflecting surface, the reflection is Direct (DiMR). A Direct Mach
Reflection can be a Single (SMR), (Pseudo) Transitional ((P)TMR),14 or Double (DMR)15,16 Mach
Reflection. The distinction among the diverse types of Mach reflection is performed on the basis of
the complexity of the structure resulting from the reflection, as described in the complete overview
by Ben-Dor,17 along with transition criteria.

On the contrary, irregular reflections differ from Mach reflections, because of the occurrence
of an irregular, SMR-like reflection pattern, which is usually observed in the diffraction of weak
shock waves by extremely thin wedges. In these conditions, the diffraction of a Mach reflection is
excluded by theoretical models. This apparent contradiction, named the von Neumann paradox,18

was solved with the introduction of an additional kind of non-Mach-type irregular reflection,
namely, the von Neumann reflection (vNR).19,20 Further reflection types were discovered from the
study of the reflection of weak shock waves,21 e.g., the Vasil’ev reflection22 and the Guderley
reflection.23 Based on theoretical considerations and on experimental and numerical evidences,24

the reflections listed above are the only possible detectable configurations in the reflection of planar
shock waves at the leading edge of straight wedges.

Analytical criteria derived for pseudo-steady shocks, e.g., length scale criterion,25 mechan-
ical equilibrium criterion,26 sonic criterion27,28 (an improvement of the detachment criterium, see
Ref. 29), allow us to determine the occurring reflection type depending on the combination be-
tween the incident shock Mach number and the leading edge wedge angle. The generalization of
pseudo-steady results obtained for planar shock waves interacting with planar geometries to the
case of curved wave fronts interacting with curved wall is not trivial. Indeed, the non-constant
propagation speed of converging shock waves30,31 and the positive convexity of both the shock and
the obstacle make the reflection of implosions genuinely unsteady. To the authors’ knowledge, no
complete studies of the interaction of curved shock waves with curved obstacles is available.

This work aims at investigating the reflection patterns generated by the interaction of a cylin-
drical converging shock wave with a circular-arc obstacle. Numerical simulations are performed
on a set of configurations, including different levels of incident shock Mach number Ms, obstacle
thickness-to-chord ratio t/c, and leading edge radius-to-chord ratio rLE/c. The latter is a novel param-
eter, that is not relevant in the self-similar case (see Sec. II for details), because it influences both
the shock curvature and the shock wave intensity at the impingement point.30 In the numerical
experiments, the shock propagates in dilute air, modeled as an ideal gas with constant specific-heat
ratio γ = 1.4. Viscous phenomena are assumed to be confined in the boundary layer,32 whose thick-
ness is considered negligible with respect to the reference scales of the problem. Therefore, results
are disengaged from the spatial scale. The software adopted for the numerical simulation of the
reflections is the FlowMesh code, a solver for Euler equations developed within the Department of
Aerospace Science and Technology of Politecnico di Milano.33,34

Numerical results are compared to reflection types predicted by self-similar theory17 to gain
further insight into the behaviour of genuinely unsteady reflections and to point out the similarities and
the differences between the two cases. Indeed, as pointed out by Ben-Dor and Takayama,35 some un-
steady shock diffractions can be approximately represented as a sequence of pseudo-steady reflection.

This paper is structured as follows: the definition of the investigated problem and the set of
parameters are outlined in Sec. II. The features of the numerical simulations and the methodology
are briefly reported in Sec. III. The numerical result, i.e., the partition of the plane MLE

s –θLE
w on

the basis of the reflection (regular or Mach-type), is described in Sec. IV, and it is duly discussed.
Conclusions and final considerations are reported in Sec. V.

II. SHOCK/OBSTACLE CONFIGURATIONS

As it is well known, in ideal constant-specific-heat ideal gases, pseudo-steady reflections of
planar shock waves over planar obstacles are completely determined only by the wedge angle θw
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and by the incident shock Mach number, which are both assumed to remain constant.17 In the
reflection of planar shock waves over circular-arc obstacles,36 the sole leading edge wedge angle θLE

w
was proved to be insufficient to define the type of leading edge reflection and its evolution during
time. In the same work,36 also the obstacle radius of curvature Ro was found to be influential on the
evolution of the shock wave reflection. This implies that characteristic lengths must be introduced
to deal with unsteady shock wave reflections. In this work, all the geometrical variables are made
dimensionless with the semi-chord length. All the obstacles are assumed to be defined by a circular
arc with a constant semi-chord c = 1 and variable semi-thickness t, so that the obstacle geometry is
fully defined by the parameter t/c only. Therefore, θLE

w and Ro both depend only on the value of t/c as
follows:

Ro

c
=

1
2


t/c +

1
t/c


,

θ
LE
w =

π

2
− arctan

(
1
t/c
− t/c

)
.

(1)

The computational domain and the geometry are sketched in Fig. 1. The geometry of the
obstacle is taken from the test rig described in Ref. 8. The configuration includes an array of 8
circular-arc obstacles with a thickness-to-chord ratio t/c = 0.14 and symmetrically arranged at a
distance rLE/c = 2.8 from the origin (0,0). According to Ref. 8, the Mach number of the incident
shock wave is MLE

s = 2.7, and it is evaluated when the shock is about to approach the obstacle
leading edge, i.e., at r/c = rLE/c + 0.4. The same parameters and operating conditions of Ref. 8 were
adopted also in Ref. 37, which focuses on a parametric study of the shock reshaping by means of
numerical simulations.

In this work, the value of t/c is varied over thirteen levels as follows:

t/c = 0.07 · (1, 2, 3, 4, 5, 6, 6.5, 7, 8, 9, 11, 13) ,1, (2)

where the latter value, t/c = 1, corresponds to the cylindrical case.
In the numerical simulations, the shock wave is generated by imposing a circumferential pres-

sure and density step far upstream the obstacle leading edge on still gas. The pressure and density
step is located at a radial distance of 10c from the origin. This distance was chosen to guarantee
self-similar convergence of the shock waves.30 A three-wave system is generated, i.e., a shock wave
moving inwards, a contact discontinuity following the shock wave, and a rarefaction wave moving
outwards. The internal pressure Pi and density ρi are kept constant for all the simulations, whereas
the initial external pressure is Pe = βPPi. The parameter βP, namely, the initial pressure ratio, is the

FIG. 1. (a) Sketch of the computational domain and of geometrical features. A half-obstacle is represented, with leading-edge
radius rLE/c and leading-edge wedge angle θLE

w , depending on the thickness-to-chord ratio t/c. The obstacle profile is a
circular-arc, with center in (x0,y0) and radius Ro. The shock is depicted before the reflection, at a radius rs > rLE, converging
towards the focus point (0,0) with a Mach number Ms. In the plot, rs indicates the distance from the origin (0,0) and Ro is the
distance from the center of the circular-arc obstacle. (b) Dependence of Ro/c and of θLE

w on the parameter t/c in the considered
cases.
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TABLE I. Test matrix for the numerical experiments. Considered parame-
ters are the thickness-to-chord ratio t/c, the radial coordinate of the obstacle
leading edge rLE/c, and the initial pressure ratio βP. In all tests, the operating
fluid is air in standard conditions, with γ = 1.4.

Thickness-to-chord
ratio

t/c 0.07, 0.14, 0.21, 0.28, 0.35, 0.42, 0.445, 0.49,
0.56, 0.63, 0.77, 0.91, 1

Chord-normalized
leading edge radius

rLE/c 2.8, 5.6, 7

Initial pressure
ratio

βP 11, 16, 27, 36, 48, 60, 75, 90, 110, 130

controlled parameter to characterize the diverse shock waves. The shock intensity, indeed, is propor-
tional to the value of Ms evaluated at r/c = rLE + 0.4, namely, at 0.4c upstream the obstacle leading
edge. Note that the quantities βP and MLE

s are not interchangeable, because the Mach number of a
wave generated by a given βP changes in space and time in accordance to Guderley’s law.30 The
values of βP are chosen in order to have equally distributed MLE

s over ten levels, from 2.2 to 6.7,
at rLE/c = 2.8. The dependence of MLE

s on βP for different values of rLE/c for converging shock is
reported in Figure 15 of Ref. 37.

The obstacle is located in three different positions, corresponding to rLE/c = 2.8, 5.6, and 7. The
effect of the leading edge radius on the reflection is two-fold: by varying rLE/c, the curvature of the
shock wave at the obstacle leading edge is modified and also the value of MLE

s obtained at a given
βP is modified. The numerical experiments are distributed on a full factorial design38 for an overall
number of 390 treatments, see Table I.

III. NUMERICAL SIMULATIONS OF CONVERGING SHOCK WAVES

Numerical simulations are performed by means of a multi-domain procedure39 consisting of
two steps.

The first step concerns the shock onset from an initial pressure difference in the so-called
far field. The initial condition consists in two uniform regions, i.e., the internal and the external
one. In the internal region, the pressure is Pi = 104 Pa and the temperature is Ti = 298.15 K, in
accordance to Ref. 37. In the dilute conditions of interest, the polytropic—namely, constant specific
heats—ideal gas model is used to describe the thermodynamics of air. Therefore, the internal den-
sity is computed as ρi = Pi/ (RTi), where R is the mass-averaged gas constant R = R/nc

h=1 Mhzh,
with nc the number of components of the gas mixture, Mh the molecular mass, and zh the molar
fraction of the hth component. Air is modeled as a binary mixture of mostly diatomic gases, i.e.,
nitrogen (78%) and oxygen (21%), and therefore, R = 287.046 J/(kg K).

The external pressure is Pe = βPPi; the external density is computed from the Rankine-Hugoniot
conditions for polytropic ideal gas. Before the shock-obstacle interaction, the shock exhibit cylin-
drical symmetry and therefore the solution is computed by means of one-dimensional Euler solver
in cylindrical coordinates,40 which allows a reduced computational cost with respect to the solution
of the two-dimensional problem. The one-dimensional radial simulation ends when the shock wave
is about to approach the obstacle leading edge.

The one-dimensional solution is then interpolated over a two-dimensional domain including the
region of interaction to initialize the calculation of the shock-obstacle interaction, i.e., the second
step of the multi-domain approach. The shock reflection over the obstacle leading edge is simulated
by means of the FlowMesh code, a Finite Volume solver for unsteady Euler’s equation developed
at the Department of Aerospace Science and Technology of Politecnico di Milano.33,34 The code
uses high-resolution flux and backward Euler method for the time integration of the equations. The
reader is referred to Refs. 39 and 37 for a detailed description of the multi-domain approach.

Reference 37 also reports the assessment on the space and time discretization for the shock-
obstacle interaction problem of interest here. The pressure along the obstacle and the temperature
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096103-5 F. Vignati and A. Guardone Phys. Fluids 28, 096103 (2016)

FIG. 2. Numerical Schlieren in correspondence with a circular obstacle leading edge: (a) uniform grid and (b) local
refinement, with the corresponding meshes in (c) for uniform ∆x = 0.01 and (d) for refined ∆x up to 0.001 (βP = 130,
t/c= 1, rLE= 14).

at the focus point of the imploding shock are computed in Ref. 37 using diverse grid spacings
and time steps. Since the same configurations (obstacle shape, thickness, position, and shock Mach
number) are examined in this work, the same space and time discretizations are adopted. Therefore,
calculations are performed on a fixed grid with normalized node spacing ∆x = 0.002, and hence,
the number of nodes of two-dimensional meshes ranges between 200 000 and 500 000 depending on
rLE/c. An a priori mesh refinement is performed at the obstacle leading edge to capture the details of
the shock diffraction. In the present work, the numerical grid was assessed also against the resolu-
tion of flow features, including the complex triple-point configuration. Figure 2 shows the numerical
Schlieren in the close proximity of the obstacle leading edge for uniform (∆x = 0.01) and locally
adapted (with a minimum spacing of ∆x = 0.001) grids. In both cases, the reflection pattern is a
transitional Mach reflection, though the finer grid allows for a more detailed representation of the
flow features. Numerical experiments with finer grids do not show significant improvements over
the locally adapted one, in terms of resolution of the flow features. A similar procedure is followed
to determine the time step ∆τ, by analysing the leading edge patterns obtained from different values
of ∆τ. The adopted time step is ∆τ/τref = 1.8 × 10−4. τref is the reference time, and it is computed as
c/
�
2.5
√

TiR
�
.

IV. NUMERICAL EXPERIMENTS

A. Leading edge reflection patterns

According to available theoretical and experimental results, the reflection of a planar shock
wave over either planar or curved obstacles can result in multiple reflections patterns.17 The main
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FIG. 3. Numerical Schlieren image highlighting a regular reflection of a cylindrical implosion with MLE
s = 6.7 over a

cylindrical obstacle with rLE/c = 2.8.

subdivision concerns the number of waves belonging to the structure that arises within the reflection
and their interactions.

When only the initial, i.e., the incident, and a single reflected shock are observed, the reflection
is termed regular; these two waves merge into a point belonging to the reflecting surface called
reflection point. Usually, a regular reflection occurs for very large values of θLE

w , as illustrated in
Fig. 3, which depicts the numerical simulation of the reflection of a shock wave with MLE

s = 6.7
over a cylindrical obstacle with θLE

w = π/2.
If a third shock—a Mach stem—and a slip line are observed, the reflection is named Mach

reflection, and the reflection point becomes a triple point. Fig. 4 reports numerical results of four
simulations of the reshaping of cylindrical shocks with MLE

s = 6.7 in rLE/c = 2.8 over variable t/c

obstacles. For all four depicted configurations, the reflection is of Mach type, but the patterns
behind the triple point differ from each other. Mach reflections are further divided into diverse
sub-categories, depending on the complexity of the resulting structure, including Double Mach
Reflections (DMRs, (a)), Transitional Mach Reflections (TMRs, (b)), Pseudo-Transitional Mach
Reflection (PTMR, (c)), and Single Mach Reflection (SMR, (d)).17 The numerical simulations
suggest that the lower the value of t/c, the less complex the resulting shock structure.

It is worth noticing that all the reflections reported in Figs. 3 and 4 concern incident shock
waves with MLE

s = 6.7 in rLE/c = 2.8, corresponding to βP = 130, and differ from each other only
because of different values of t/c. This is in accordance with pseudo-steady results: in general, for a
given MLE

s , the lower is t/c, the less complex is the resulting shock structure.
The theory of pseudo-steady shocks predicts that for small perturbations, namely, both weak

shocks and thin wedges, the three-shock structure resulting from the reflection fades towards a
structure similar to a MR, but with a gradual bending of the incident shock and of the Mach stem
rather than a single point of intersection, that is indeed the TP. This kind of flow structure is known
as von Neumann reflection (vNR).19,20 Even though the present numerical experiments are designed
to obtain Ms > 2 at rLE/c = 2.8, the aforementioned extension of the factorial design to rLE/c > 2.8
produced some configurations with an incident shock Mach number lower than 2, generating a
weak reflection on obstacles with the lowest t/c. The grid resolution in this case is not sufficient
to determine whether the observed configuration is a vNR or a SMR (or a different type of weak
reflection, see the discussion in Ref. 37) and to perform a detailed analysis of the complex region of
the equivalent TP.41 For this reason, this work only focuses on strong shocks, and the occurrence of
the vNR-like structure is only reported for completeness.
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FIG. 4. Reflection patterns detected in the diffraction of cylindrical implosions over circular-arc obstacles: (a) t/c =

0.42 DMR, (b) t/c = 0.28 TMR, (c) t/c = 0.14 PTMR, and (d) t/c = 0.07 SMR are obtained for MLE
s = 6.7 at rLE/c = 2.8.

B. Partition of the MLE
s –θLE

w plane

The classical approach to the determination of shock reflection types, adopted also for steady,
pseudo-steady, and some unsteady cases (see, e.g., Ref. 42), consists in classifying the shock config-
urations depending on the shock wave Mach number Ms and on the obstacle wedge angle θw. Since
in these cases both Ms and θw are constant, these two parameters alone are sufficient to fully identify
each configuration. On the contrary, during the reflection of converging shock waves over curved
obstacles, both Ms and θw change locally. In the present study, the reference values of Ms and θw
are the values of the shock Mach number at rLE/c + 0.4 and of the leading-edge wedge angle, MLE

s
and θLE

w , respectively. Each combination of leading edge shock Mach number MLE
s and leading edge

wedge angle θLE
w results in one of the aforementioned reflection types, and therefore, the plane is

partitioned along transition lines, in accordance with classical criteria.25,26,29

The same classification is applied here for the first time to the diffraction of cylindrical shocks
over circular-arc obstacles: the diverse types of leading edge reflections are reported in Fig. 5, ar-
ranged by MLE

s and θLE
w . The first parameter includes the effects of βP and rLE/c. The intensity of the

shock wave depends on the initial pressure ratio βP and, in accordance with Guderley’s theory, the
shock speed increases as the shock wave approaches the focus point. Therefore, the Mach number
at the leading edge reflection of each shock wave depends also on the radius of the obstacle leading
edge. According to (1), the value of θLE

w depends only on t/c, and therefore, the influence of all the
geometrical factors and operating conditions is accounted for. Note that in Fig. 5 data appear to be
more concentrated for MLE

s ∈ [2,3] because for βP = 11,16,27 the reflection types are plotted also
for rLE/c = 5.6 and rLE/c = 7.

In Fig. 5, full lines represent the partitions of the plane in diverse regions, corresponding to the
reflection types according to the pseudo-steady theory. The partitions lines are computed from to the
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FIG. 5. Leading edge reflection types. Full lines represent the partition of the plane according to the length-scale criterion for
pseudo-steady reflections. The diverse symbols represent diverse reflection types of converging shock waves over circular-arc
obstacles, as resulting from numerical simulations. Where two different symbols overlap, the distinction between the two
types of reflection is not clear.

length scale criterion.24,25 The theory was developed under the pseudo-steadiness assumption, and
therefore, it does not strictly apply to this context, where two unsteadiness sources are present, i.e.,
the obstacle profile and the shock curvature. However, as suggested in several works,35,36 to a first
approximation, the unsteady shock diffraction can be interpreted also as a sequence of steady states.
All the reflection types predicted by pseudo-steady criteria for the explored range of MLE

s and θLE
w

can be observed also in the investigation of the interaction between curved shocks and obstacles:
regular reflections and single, (pseudo-)transitional, and double Mach reflections. The validity of
the pseudo-steady representation in describing the diffraction of a shock wave over a wedge is
confirmed by the present numerical simulations.

The comparison between the transition lines of pseudo-steady reflections and numerical results
in Fig. 5 reveals that for a given θLE

w , the MLE
s which separates two diverse regions on the plane

for unsteady reflections is higher than the corresponding pseudo-steady case. The occurrence of
this shift at each transition suggests that, in each region of the plane, the less complex reflection
type in the unsteady case occurs even in the range of Mach numbers where the more complex
type would be expected according to pseudo-steady theories. On the contrary, if MLE

s is fixed and
θLE

w is increased, the observed configuration is the same as the one predicted by the pseudo-steady
theory. Indeed, both the qualitative trend of transition lines and quantitative values of the transition
wedge angles remain the same as for pseudo-steady shock reflections. In the pseudo-steady case,
the transitional wedge angles as function of MLE

s show a convergence towards an asymptotic value
for increasing MLE

s .17 With reference to Fig. 5, the above asymptotic behaviour of the partition lines
can be observed also in the reflection of cylindrical shocks over circular-arc obstacles. Therefore,
at a given MLE

s , the comparison is performed between the asymptotic value of the partition lines
and the asymptotic value of the boundaries of the domains of occurrence of each reflection type.
Unlike the comparison at fixed θLE

w , this comparison at fixed MLE
s shows good accordance with

pseudo-steady results. In particular, the asymptotic value of θLE
w separating the onset of regular and

Mach reflections at the leading edge is termed critical leading wedge angle or θcr
w: for the reflection

of cylindrical converging shocks over circular-arc obstacles, it is observed that θcr
w remains close but

slightly smaller than the corresponding one for pseudo-steady reflections, which ranges from 49◦ to
51◦, depending on the adopted criterion. This means that the onset of an unsteady Mach reflection
at the leading edge is impossible when θLE

w > 48◦. In this case, when a regular reflection occurs at
the leading edge, a transition from regular to Mach reflection is observed to take place during the
shock propagation along the obstacle, similarly to what is observed in Ref. 36 for the reflection of
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planar shock waves over curved obstacles, and it will be discussed in future works for the case of
converging shock waves.

In Fig. 5, the two reflections in the bottom-left of the MLE
s –θLE

w plane are possibly either single
Mach reflections or von Neumann reflections. However, due to the uncertainty about the possibility
of obtaining von Neumann reflection for the considered parameters (see Ref. 37 for details), no
further comments is possible in the present work.

V. COMMENTS AND CONCLUSIONS

Numerical simulations of cylindrical converging shock waves interacting with circular-arc
obstacles were performed for air in dilute conditions, under the constant-specific-heat ideal-gas
model. A multi-domain approach was used to interface two solvers for the Euler equations: a one-
dimensional cylindrical one—for the simulation of the cylindrical shock onset and propagation—
and a two-dimensional solver for Euler equations in Cartesian formulation for the simulation of the
shock-obstacle interaction.

The effects of the shock Mach number and of the obstacle thickness and distance from the focus
point on the reflection type at the leading edge of the obstacle were considered. The pseudo-steady
theory was used as a reference for the local features of the reflections. All the reflection types which
are known to occur in the pseudo-steady case were observed here for the first time also in the
diffraction of cylindrical converging shock waves over circular-arc obstacles.

Numerical results show the occurrence of regular reflections and of single, (pseudo-)transitional,
and double Mach reflections in the diffraction of strong converging shock waves over circular-arc
obstacles.

The occurrence of each reflection type is associated to two parameters, i.e., the shock wave
Mach MLE

s 0.4 chord upstream of the obstacle and the leading-edge slope θLE
w . A partition of

the plane MLE
s − θLE

w in four regions was obtained, showing on the one hand a good accordance
with pseudo-steady results for the values of θLE

w triggering the transitions between the various
reflections—including θcr

w—but, on the other hand, a relevant difference in the values of transitional
Ms. In particular, in each region of the plane, the less complex reflection type in the unsteady case
is observed even in the range of Mach numbers where the more complex type would be expected
according to pseudo-steady theories.

Besides the understanding of fundamental properties of curved shock reflections over curved
geometry, the present results can be used to provide a guideline in selecting the suitable obstacle
configuration to achieve the envisaged shock polygonalisation in shock-reshaping applications.

A final remark concerns the choice of the range of variation of each parameter: t/c is varied
from a value very close to zero up to one, and therefore, all the possible thickness effects were ac-
counted for. The shock wave Mach number at the leading edge is varied over the largest range, too.
Indeed, for shocks stronger than the explored ones, high temperature effects become non-negligible,
and therefore, the polytropic ideal gas model cannot apply. On the contrary, if weaker shocks
are considered, it is necessary to keep into account the different physics of weak shock reflec-
tions.21 Moreover, we note that the present results depend on the chosen gas (air) via the con-
stant specific-heat-ratio γ. The influence of γ on the reshaping of cylindrical shock by means of
circular-arc obstacles was studied by Kjellander et al.8 by comparing experiments with air (γ = 1.4)
and argon (γ = 5/3) in terms of integral parameters only. The influence of γ on the partition of the
MLE

s –θLE
w plane in Figure 5 is left for future investigations.
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