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Introduction CHMPASS o

Space situation awareness

Space debris poses a threat to current and future space activities

= Currently 22000 objects > 10 cm and 500000 objects > 1-10 cm
Breakups generate clouds of fragments difficult to track

= Fragments can collide at 2009: Iridium 33 and Cosmos 2251
very high velocity and R - j.:lj' ™
damage Ope rat|ng zzzz —Fragmentation Debris || _. 1 | '
satellites 13000 — Spacecraft 2007: Fengyun 1-C
12600 ——Mission-related Debris 1 [ 1 A \\A
2 :;Zzz 1 | ——Rocket Bodies ] 1] MM""J <
= Need to define debris 2 HE ,,_\V-/- |
mitigation guidelines and R e ML
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Introduction CYiMPASS

Planetary protection

= On average a 10-km-sized asteroid strikes the Earth every 30-50 million years
(globally catastrophic effects)

= Tunguska class (100 m in size) asteroid impact every 100 years (locally
devastating effects)

= Very small asteroids are very frequent but generally burn in the atmosphere

= Spacecraft and launcher for interplanetary missions remain in resonance with
the Earth and other planets, planetary protection requirements to be verified

Chelyabinsk, Russia (2013), did Breakup of the object
17-30 m diameter asteroid S e WT110F during re-entry
S W e e (November 2015)
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Introduction
Space transfer

Space transfer allows the colonisation of new habitats
and reaching operational orbits for science missions
and space services.

SoléipSail deorbiting

= Trajectory design and orbit maintenance are a challenging
task

= New Space development towards great number of small
satellite for distributed services (e.g. large-constellation,
nano and micro satellites)

// pr
y./ / 3 Z

= As enabling technology, electric propulsion is increasingly LC%ZTtC:?:t)tSZC\’/ZiOen:stllr
selected as the primary option for near future missions,
while novel propulsion systems for de-orbiting and orbit-
raising are being proposed (e.g., solar sailing).

= Natural dynamics can be leveraged to reduce the

extremely high mission cost. Credit: The University o |
Michigan SRR B
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Background and proposed approach

ORBIT PERTURBATIONS

Services, technologies, Traditional approach:
science, space exploration counteract perturbations

=  Complex orbital dynamics

Reach, control " |ncrease fuel requirements
operational orbit for orbit control

Asteroids.
Planetary
protection

Space debris
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Novel approach:
leverage perturbations

Reduce extremely high
space mission costs

Create new opportunities for
exploration and exploitation

Mitigate space debris

Develop novel techniques for orbit manoeuvring by surfing through orbit perturbations
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Methodology and expected results CHMPASS €

Engineering : Low-thrust surfing
Station keeping
Interplanetary small Sats
Dynamicalisystem theory = Planetary moon missions

Orbital dynamics : .
: . Frozen orbit exploration
%" Asteroid deflection

Planetary protection

Optimisation

Semi analytical Optimisation in the s ' i
: y Maps of long-term Y i Evolutlo_n of.debrls clouds
techniques for . : phase-space of 7.« - 'End-of-life disposal
. : orbit evolution . : o .
dynamics modelling orbital elements .4 Collision avoidance

0.9

0.8
T1. Understanding of the spacecraft/space debris/asteroid orbit > g7
evolution in the planetary/interplanetary environment é 06
T2. Topology of space of orbit perturbations (stability, § 05k

ope . o
resonances, equilibria) = 0.4l
2 Y Re-entry

T3. Spacecraft/space debris/asteroid surfs these natural © 53l
currents to the desired orbit (control of dynamics) 0.2} Surfing
T4. Design of space missions: understanding of the dynamics, 0.1

optimisation, application to space mission 0 60 120 180 240 300 360
Orbit orientation wrt Moon [deg]



CYiMPASS

Task 1. Orbit perturbation modelling

Understanding the spacecraft orbit evolution

= Semi-analytical technigues to understand effects of
natural and artificial orbit perturbations
* in planetary systems (solar radiation pressure,

aerodynamic drag, third-body effect, non-uniform gravity 0_00

Eccentricity

. 90 180 70 360
potential, Lorentz force etc.) 6 [deg]
* ininterplanetary space (resonances, close approaches) Solar radiation pressure

and Earth’s oblateness

e artificial manoeuvres (low-thrust propulsion, impulsive
manoeuvres, solar sails, etc.)

= Surrogate models with dynamics system theory

* semi-analytical single and double-averaging techniques

* manifold dynamics

|
0.99 1 1.01 1.02 1.03
X

* domain of application of simplified models
Three-body problem
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Task 2. Maps of long-term evolution C¥MPASS ¢
Topology of space of orbit perturbations

= Coordinate transformation |
e variables choice and formalism, normal forms £..
e dynamics in the phase space
* Db-plane representation

0 60 180 240 300 360

2% [deg] ae

XMM-Newton orbit evolution

= Perturbation analysis

e frequency analysis for autonomous on-board
orbit prediction

* dynamic indicators for orbital/attitude chaotic
region definitions

* high order expansions techniques with averaged
dynamics

0 100 200 300
2*o [deg]

" Perturbation maps and dynamics maps INTEGRAL orbit evolution
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Task 3. Optimisation and control CYMPASS  efc

Trajectory design through perturbation and artificial manoeuvres

= Phase-space global optimisation (naturally or artificially perturbed
trajectories)

* multiple singular events (e.g., impulsive manoeuvres, gravity kicks)
* multi-scale dynamics (i.e., escape and capture phases)
e optimisation in the phase-space
= Phase-space local optimisation
e continuation techniques
* direct and indirect methods and hybrid techniques
= Blended optimisation
e solution on different levels

* automatic blending of dynamical models

* optimiser explores the phase space and progressively learn its structure
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Concept demonstration CHMPASS  ©f
Perturbation enhanced end-of-life design of INTEGRAL mission

= Astrophysics and astronomy missions
(e.g., INTEGRAL)

= Very complex dynamics under the effects of Moon
and Sun perturbation and Earth’s oblateness

= End-of-life disposal with limited amount of
propellant

1.0 F ‘ 7,7,,,,: — ‘ 7:77 :,7:,,,7 ! ! t
| 7 | @ \:
\ ]
£ o8 \ / ] z 09
5 S
5 £
3 (0]
g 0.7 ucoj 0.85!
0.6
0.8}
0.5 L L I L I L L | L L 1 L L L i
0 50 100 150 200 250 300 350 150 160 170 2*1)8[?1(;9]190 200 210
2w [deg]
Orbit phase-space evolution Trajectory design in the phase space
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Concept demonstration CHMPASS

Perturbation enhanced end-of-life design of INTEGRAL mission

Optimised solution Luni-solar perturbation
=  Moon +Sun +)J, surfing made re-entry of
= Single averaged dynamics + global optimisation INTEGRAL mission possible
INTEGRAL mission
—_ Manoeuvre in 2014

0.92f £ 10000 '
> 09 2 Natural
S =2 8000 evolution
€ 0.88f T
: . g 6000}
e 2 4000}

0.84¢ a

2000} ‘
0.82¢ Re-entry via surfing in 2028
0%0 160 170 180 190 200 210 2000 4000 6000 5000 10000

2*n [deg] Time [MJD2000]
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Space transfer

MISSION APPLICATIONS (i
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Interplanetary trajectory design CHMPASS . ofc

Combined phase-energy solution for interplanetary trajectory with fly-by

Background

= Interplanetary mission for Mars colonisation, exploration (Europa, Titan,
Enceladus, Triton), asteroid exploration (main asteroid belt and Kuiper belt)

= Variety of tools for preliminary trajectory design

'

= |ntegrate phasing analysis (Lambert
problem) with energy-based methods
(Jacobi constant) into a unique approach

= Refinement of the trajectory in the
circular-restricted three body problem

= Design through trajectory maps

Aim

Space transfer
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Interplanetary trajectory design CHMPASS ¢

Combined phase-energy solution for interplanetary trajectory with fly-by

.. . Pareto front for Earth-Mars
Prellmlnary deSIgn 200 ¢ mission via Venus fly-by

= 2-body problem with patched conic 180 f
approximation for estimation of the Av:
Lambert problem solution in the rotating
synodic frame

= Tisserand criterion for refinement in the
circular restricted 3-body problem and v,
estimation

—
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Trajecto ry refinement total time of flight [days]

= QOptimisation based on minimisation of the energy jump (i.e. Tisserand
parameter) due to the Av manoeuvre at fly-by

T_—1+2/—(1 2) + 2u* .
b—@ ap €h K n T,

= Local numerical optimisation convergency improved with energy-phase method

Space transfer
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CYiMPASS

Spacecraft constellation design
Optimisation of constellation geometries for space-based applications

Background

5000 4

= Recent advances in satellite constellations for
surveillance, communication, navigation and
positioning, defence.

z [km]

= Large Constellation plans for global internet (i.e. " Wy : ,
OneWeb, Samsung, SpaceX etc.) v 5000

0

-5000 &l
y [km] B e

' IRIDIUM constellation

Aim 5000
= Comparative assessment of different constellation
geometries for space-based applications

= Multi-objective optimisation for optimal geometry . ol
design for given mission 0 8

y [km] A x [km]

z [km]

-5000

3 GPS constellation

Space transfer
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Spacecraft constellation design
Optimisation of constellation geometries for space-based applications

Constellation geometry design

Parameters: number of orbital planes, relative inter-
plane phase angle, inclination, angular radius of
coverage circle, elevation angle

Two constellation pattern analysed: Street-of-
Coverage (SOC) pattern, Delta pattern

Optimisation of constellation design

Coverage: excess coverage

Launchability: Inclination of s/c and launch site
Robustness: mean value of coverage percentage
Constellation build-up: number of orbital planes

Stationkeeping: Av budget for altitude maintenance

Collision avoidance: collision opportunities per year,
minimum angular separation

End-of-life disposal: Av budget for de-orbiting

Space transfer

Camilla Colombo
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Excess coverage for 4-fold constellation
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Space debris

MISSION APPLICATIONS (GRS
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Debris fragment evolution CYMPASS . efc

Evolution and collision risk of debris clouds via a density-based approach

Background
= 90 satellites and upper stages fragmented Fragmentation orbits, 2000 = ys < 2017
. l - =
since 2000 alone ; .
. . . — ZW: ® @ .
= Debris fragments subject to a multitude of E -}C.Oé 80 _
) — o
perturbations £ 1000 0 2
. L . . 2 ¥ =
= Need to predict collision risk with active 2 HEa 5
S Sy £ 40 @
missions especially in LEO 3 1004 o e £
S o) ° 10 £
< | o® ® =100 20
1 LEO @ > 1000
102 T ——T—
102 103 104 10°

Aim

= Cloud model based on the evolution of fragment
density in the space of orbital elements

.. . . On orbit fragmentations

= Collision risk calculation between 2000 and 2017

= |ndex for orbiting spacecraft to describe
interaction with space debris

Perigee height h, [km]

J'NIi; Space debris
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CYiMPASS

Debris fragment evolution

Evolution and collision risk of debris clouds via a density-based approach

00 \\ Density profile — ﬁi
Cloud evolution model msol )

=  NASA’s break-up model to give initial o0y -
fragment distribution

= Smooth exponential atmosphere modeland ¥ | =
improved semi-analytical method I

= Gridding method in the phase space N s

-
M
w
o

1000 --.

Height h [km]

T T T T T T
10-18 10718 10714 10712 10-10 1078 10-6
Density p [kg/m?]

Quickly assessment of

. . . . . 35000
= Time of band closure for distinguishing 039
. . - 30000 0.25
cloud evolution phases (i.e. cloud occupies
orbit = ring = band) g 23000 020 _
= Fragment evolution in the orbital element 3 20000 o
space ‘E 15000 0.10
10000 0.05
Evolution of fragment 0.00

. 150 200
cloud in GTO Time after fragmentatmn At [years]

Semi-major axis a [km]

. Space debris

Camilla Colombo POLITECNICO MILANO 1863




End-of-life disposal trajectory design

Lagrangian point mission end-of-life disposal oor
0.008

. 0.006 -
Alm 0.004 -

= End-of-life trajectory design for missions at the ooz

Lagrangian point
= Study of re-entry conditions
= Study of resonances

4

Design approach

= Energetic method based on the analysis of the

Jacobi integral

= Manoeuvre seqguence optimisation in the
rotating n-body problem

= Mission application to Gaia and Lisa Pathfinder
missions

i Space debris

CHMPASS

> Of
-0.002
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X
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End-of-life disposal trajectory design C¥MPASS, o

Solar sail end-of-life deorbiting Solar sailing deorbiting

Solar sail deorbiting

= Solar sail for end-of life deorbiting in Earth
centred orbit

= Novel technique for solar sailing to maximise
deorbiting effect

06

€ = 0409908
Ciag = 0.361726

Method

= Study of the orbit evolution in the phase space

considering Earth’s oblateness, atmospheric o
drag and solar radiation pressure \\ //
= Definition of sailing law for quasi-passive end-of- o W @ s 1 @ 20 20 20 20 W x0

. . . . ¢, [degree]
life deorbiting via long-term modulation of solar Phase space: SR J2 and

| radiation pressure atmospheric drag, propagation over
) 45 years, i, = 10 deg, a, = 11000 km

o
IS

Eccentricity
o
w

|

‘.. Space debris
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Planetary protection

MISSION APPLICATIONS &) Jetesi
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Planetary protection analysis CHMPASS ¢
Evolution and collision risk of debris clouds via a density-based approach

Breakup of the object WT110F

Background during re-entry (November 2015)

= Interplanetary missions must satisfy planetary
protection requirements (no biological contamination
of sensible scientific planets, i.e. Mars, Europa, etc.)

= Uncertainty in the orbit propagation due to launcher
injection error, uncertain spacecraft design
parameters, propulsion system failure

$

Av, [km/s]

Aim

= Develop tools for n-body propagation over 100 years

= \Verification of planetary protection requirements of e ¥ L SR
European Space Agency missions 8, [k/s] x10°2

» Letizia et al.
Miss-distance resulting from

\ launcher inection error
/ Planetary

protection
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CHMPASS ©

Planetary protection analysis

Evolution and collision risk of debris clouds via a density-based approach

%107 Velocity distribution (Launcher of Solo)

4 Random initial solution
Numerical integration N " 1S boundary sl
= Understand how the errors in a single propagation 7
may affect planetary protection verification 7]
= Development of symplectic and energy-preserving By
s{ i
methods i
0
H H H %107 2
Sampling of the uncertainty domain - T e
= Efficient methods to sample the initial dispersion s Bplane of Verus
(i.e. line sampling and subset decomposition) Yy ;"
= Comparison with traditional Monte Carlo approach | !
Representation 05 b
= B-plane analysis of impact and resonance £ o =
conditions =08
-1
> letizia et al.: representation of the worst s ; Nenus CA
close approaches for the 1000 Monte ' “Aaggr - Venus: Impact
Carlo runs of the launcher of Solo on the 22 T15 1 <05 0 05 1 15 2
b-plane of Venus. oLkl x10°
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Planetary protection CIMPASS @

Reference missions for different NEA threat scenarios

= Prepare a response to an Near Earth Asteroid -
(NEA) impact threat scenario 15

= Study mission design for NEA deflection
mission

ylkm]

= Consider a diversity of cases: asteroids have

different orbit and physical properties B Deflection

= Study of selected case for direct and P 4
resonant encounter : 1 - 1

= Design of robust deflection manoeuvre X [kl <10°
* Uncertainties on asteroid characteristics Direct deflection mission to 2010RF12

e Uncertainties on orbit determination and
manoeuvre error
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Conclusions CHMPASS  erc

Contributions

= Beauty: Understanding of perturbations dynamics

= Novelty: Surf by exploiting natural disturbances
(Problem into opportunity)

" |mpact: Perturbation-enhanced mission design
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Collaborations
COMPASS project
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Pl: Camilla Colombo

Funding: 1.5M€ European Research
Funding Start Grant

Aim:
= Reduce high space mission costs

= Create new opportunities for space
exploration and exploitation

= Mitigate space debris
Applications:

= Space debris

= Asteroid missions

= Constellation

= Small satellites

" |nterplanetary & planetary
trajectories with low thrust
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Collaboration CHMPASS e

COMPASS project

EESHLIE: Collaboration:
= JERREE HB X 222 = Non-European researcher
» AT = PhD, Post Doc and researchers
= European Research Council and = European Research Council and
S EHE QS PAY N R 282 X0 Chinese National Natural Science
Foundation
For info see:

https://erc.europa.eu/sites/default/files/document/file/agreement_ERC_NSFC_zh.pdf
https://erc.europa.eu/sites/default/files/document/file/agreement_ERC_NSFC_en.pdf
http://www.nsfc.gov.cn/publish/portal0/tab87/info51450.htm

Moreover:

PhD @PoliMi by Chinese State Scholarship Fund
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