

Luni-solar perturbations for missions design in highly elliptical orbits

Camilla Colombo Barcelona Mathematical Days, 28 April 2017

INTRODUCTION

Introduction

Highly Elliptical Orbits

Why highly elliptical Orbits

- Astrophysics and astronomy missions (e.g., INTEGRAL and XMM-Newton)
- Earth missions
 (e.g., Molniya or Tundra orbits, Draim constellation, magnetotail mission)
- Geostationary transfer orbits

Selection criteria

- Vantage points for the observation of the Earth and the Universe
- Avoid noise from radiation effects
- Geo-synchronicity to meet coverage requirements
- Inclination to minimise eclipse period

Introduction

Highly Elliptical Orbits

...Fascinating interaction between third body luni-solar perturbation and Earth's oblateness

...Perfect example on how we can leverage the natural dynamical effect trough manoeuvres to obtain free long-term effect on the orbit:

- Frozen orbits
- End-of-life Earth re-entry
- End-of life graveyard orbit injection

Introduction

Outline

- Dynamical model
- Analytical interpretation
- Dynamical maps
- Engineering Perturbation effects
- Applications

DYNAMICAL MODEL

Orbit propagation based on averaged dynamics

Average variation of orbital elements over one orbit revolution

- Filter high frequency oscillations
- Reduce stiffness of the problem
- Decrease computational time for long term integration

PlanODyn suite

Space Debris Evolution, Collision risk, and Mitigation **FP7/EU Marie Curie grant 302270**

End-Of-Life Disposal Concepts for Lagrange-Point, Highly Elliptical Orbit missions, **ESA GSP**

End-Of-Life Disposal Concepts Medium Earth Orbit missions, **ESA GSP**

GEO disposal in "Revolutionary Design of Spacecraft through Holistic Integration of Future Technologies" **ReDSHIFT, H2020**

COMPASS, ERC "Control for orbit manoeuvring through perturbations for supplication to space systems"

Orbit propagation based on averaged dynamics

For conservative orbit perturbation effects

Disturbing potential function

$$R = R_{\rm SRP} + R_{\rm zonal} + R_{\rm 3-Sun} + R_{\rm 3-Moon}$$

Planetary equations in Lagrange form

$$\frac{d\mathbf{a}}{dt} = f\left(\mathbf{a}, \frac{\partial R}{\partial \mathbf{a}}\right) \qquad \mathbf{a} = \begin{bmatrix} a & e & i & \Omega & \omega & M \end{bmatrix}^{T}$$

$$\frac{da}{dt} = \frac{1}{na} \frac{\partial R}{\partial M}$$

$$\frac{de}{dt} = \frac{1}{na^{2}e} \left(\left(1 - e^{2}\right) \frac{\partial R}{\partial M} - \sqrt{1 - e^{2}} \frac{\partial R}{\partial \omega} \right)$$

$$\frac{di}{dt} = \frac{1}{na^{2} \sin i \sqrt{1 - e^{2}}} \left(\cos i \frac{\partial R}{\partial \omega} - \frac{\partial R}{\partial \Omega} \right)$$

$$\frac{d\Omega}{dt} = \frac{1}{na^{2} \sin i \sqrt{1 - e^{2}}} \frac{\partial R}{\partial i}$$

$$\frac{d\omega}{dt} = -\frac{1}{na^{2} \sin i \sqrt{1 - e^{2}}} \cos i \frac{\partial R}{\partial i} + \frac{\sqrt{1 - e^{2}}}{na^{2}e} \frac{\partial R}{\partial e}$$

$$\frac{dM}{dt} = n - \frac{\left(1 - e^{2}\right)}{na^{2}e} \frac{\partial R}{\partial e} - \frac{2}{na} \frac{\partial R}{\partial a}$$

Orbit propagation based on averaged dynamics

For conservative orbit perturbation effects

Disturbing potential function

Planetary equations in Lagrange form

$$R = R_{\rm SRP} + R_{\rm zonal} + R_{\rm 3-Sun} + R_{\rm 3-Moon} \qquad \frac{d\mathbf{a}}{dt} = f\left(\mathbf{a}, \frac{\partial R}{\partial \mathbf{a}}\right) \qquad \mathbf{a} = \begin{bmatrix} a & e & i & \Omega & \omega & M \end{bmatrix}^T$$

$$\overline{R} = \overline{R}_{\rm SRP} + \overline{R}_{\rm zonal} + \overline{R}_{\rm 3-Sun} + \overline{R}_{\rm 3-Moon}$$

$$\frac{d\overline{\mathbf{a}}}{dt} = f\left(\overline{\mathbf{a}}, \frac{\partial \overline{R}}{\partial \overline{\mathbf{a}}}\right)$$

Single average

<u>Average</u> over the revolution of the perturbing body around the primary planet

$$\overline{\overline{R}} = \overline{\overline{R}}_{\text{SRP}} + \overline{R}_{\text{zonal}} + \overline{\overline{R}}_{3-\text{Sun}} + \overline{\overline{R}}_{3-\text{Moon}}$$

$$\frac{d\overline{\overline{\mathbf{a}}}}{dt} = f\left(\overline{\overline{\mathbf{a}}}, \frac{\partial\overline{\overline{R}}}{\partial\overline{\mathbf{a}}}\right)$$

Double average

PlanODyn: Planetary Orbital Dynamics

Integration method: explicit Runge-Kutta (4,5) method, Dormand-Prince pair Implemented in Matlab

▶ "Planetary Orbital Dynamics Suite for Long Term Propagation in Perturbed Environment," ICATT, ESA/ESOC, 2016.

Perturbation model

Perturbations in planet centred dynamics

- Atmospheric drag (piece-wise exponential model)
- Zonal harmonics of the Earth's gravity potential, J_2^2
- Solar radiation pressure (with eclipses)
- Third body perturbation of the Sun
- Third body perturbation of the Moon

Ephemerides options

- Analytical approximation based on polynomial expansion in time
- Numerical ephemerides through the NASA SPICE toolkit
- Numerical ephemerides from an ESA implementation

Orbital elements in Earth centred equatorial J2000 frame

PlanODyn: Planetary Orbital Dynamics

Third body potential

$$R_{3B}(r,r') = \frac{\mu'}{r'} \left(\left(1 - 2\frac{r}{r'}\cos\psi + \left(\frac{r}{r'}\right)^2 \right)^{-1/2} - \frac{r}{r'}\cos\psi \right)$$

- $\mu^{\,\prime}\,\,$ gravitational coefficient of the third body
- $r\,{}^\prime$ position vector of third body
- r position vector of satellite
- Ψ angle between satellite and third body

 $A = \hat{P} \cdot \hat{r}'$

Dynamical model

Third body potential

Third body potential in terms of:

- Ratio between orbit semi-major axis and distance of the third body $\delta = \frac{a}{r'}$
- Orientation of orbit eccentricity vector with respect to third body
- Orientation of semi-latus rectum vector with respect to third body $B = \hat{Q} \cdot \hat{r}'$
- Composition of rotation in orbital elements

$$\hat{P} = R_3(\Omega)R_1(i)R_3(\omega)\cdot\begin{bmatrix}1 & 0 & 0\end{bmatrix}^T$$
$$\hat{Q} = R_3(\Omega)R_1(i)R_3(\omega + \pi/2)\cdot\begin{bmatrix}1 & 0 & 0\end{bmatrix}^T$$
$$\hat{r}' = R_3(\Omega')R_1(i')R_3(\omega' + f')\cdot\begin{bmatrix}1 & 0 & 0\end{bmatrix}^T$$

Third body potential

Series expansion around $\delta = 0$

$$R_{3B}(r,r') = \frac{\mu'}{r'} \sum_{k=2}^{\infty} \delta^k F_k(A,B,e,E)$$

Average over one orbit revolution

$$\overline{R}_{3B}(r,r') = \frac{\mu'}{r'} \sum_{k=2}^{\infty} \delta^{k} \overline{F}_{k}(A,B,e)$$

Partial derivatives for Lagrange equations

$$A(\Omega, i, \omega, \Omega', i', u')$$
$$B(\Omega, i, \omega, \Omega', i', u')$$
$$\overline{F}_{k}(A, B, e)$$

Kaufman and Dasenbrock, NASA report, 1979

 $\mu^\prime\,$ gravitational coefficient of the third body

dM

- \mathbf{r}' position vector of third body
- *E* eccentric anomaly

$$\overline{F}_{k}(A,B,e) = \frac{1}{2\pi} \int_{-\pi}^{\pi} F_{k}(A,B,e,E) (1-e\cos E) dE$$

$$\frac{\partial \overline{F}_{k}}{\partial \Omega} = \frac{\partial \overline{F}_{k}}{\partial A} \frac{\partial A}{\partial \Omega} + \frac{\partial \overline{F}_{k}}{\partial B} \frac{\partial B}{\partial \Omega}$$

$$\frac{\partial \overline{F}_{k}}{\partial i} = \frac{\partial \overline{F}_{k}}{\partial A} \frac{\partial A}{\partial i} + \frac{\partial \overline{F}_{k}}{\partial B} \frac{\partial B}{\partial i}$$

$$\frac{\partial \overline{F}_{k}}{\partial \omega} = \frac{\partial \overline{F}_{k}}{\partial A} \frac{\partial A}{\partial \omega} + \frac{\partial \overline{F}_{k}}{\partial B} \frac{\partial B}{\partial \omega}$$

$$\frac{\partial \overline{F}_{k}}{\partial a} = \frac{k}{a} F_{k}$$

$$\frac{\partial \overline{F}_{k}}{\partial e}$$

Order of the luni-solar potential expansion

Third-body perturbing potential of the Moon at least up to the fourth order of the power expansion

Blitzer L., Handbook of Orbital Perturbations, Astronautics, 1970
 Chao-Chun G. C., Applied Orbit Perturbation and Maintenance, 2005

Validation: XMM Newton trajectory

Propagation time: 1999/12/15 to 2013/01/01

Initial Keplerian elements from ESA on 1999/12/15 at 15:00: a = 67045 km, e = 0.7951, i = 0.67988 rad, $\Omega = 4.1192$ rad, $\omega = 0.99259$ rad System: Earth centred, equatorial J2000

Mean vs high fidelity dynamics

Initial Keplerian elements: a = 50000 km, e = 0.5, i = 35.88 deg, $\Omega = 225$ deg, $\omega = 63.9$ deg

Finite-time Lyapunov exponent calculation

$$\mathbf{y}' = \mathbf{f}(x, \mathbf{y})$$
 $\mathbf{y}(x_0) = \mathbf{y}_0,$ $a \le x \le b$

Linearise locally

$$\frac{d}{dt}\Delta \mathbf{y} = J \cdot \Delta \mathbf{y}$$

Jacobian matrix satisfy the following conditions

- For Stability: $\operatorname{Re}[\lambda_s(x)] < 0$ s = 1, 2, 3, ..., m
- For Stiffness: stiffness ratio =

$$R = \frac{\max \left\| \operatorname{Re} \left[\lambda_{s}(x) \right] \right\|}{\min \left\| \operatorname{Re} \left[\lambda_{s}(x) \right] \right\|} \gg 1 \quad s = 1, 2, 3, ..., m$$

 $\lambda_{s}(x)$ are the eigenvalues of the Jacobian of the system

Toward finite-time Lyapunov exponent calculation

High fidelity dynamics orders of magnitude more stiff than semi-analytic (J₂ and Luni-Solar)

ANALYTICAL INTERPRETATION

Third-body double averaged potential

Double averaging over one orbit revolution of the s/c and one orbit evolution of the perturbing body (either Sun or Moon) around the Earth

$$\overline{\overline{R}}_{3B}(r,r') = \frac{\mu'}{r'} \sum_{k=2}^{\infty} \delta^{k} \overline{\overline{F}}_{k}(e,i,\Omega,\omega,i')$$

Earth's centred equatorial reference system.

Same approach as El'yasberg (and Kozai) with some improvements:

- Avoid simplification that Moon and Sun orbit on the same plane (very important for precise orbit evolution)
- Facilitate the introduction of the effect of the zonal harmonics

$$\overline{\overline{F}}_{k}(e,i,\Delta\Omega,\omega,i') = \frac{1}{2\pi} \int_{0}^{2\pi} \overline{F}_{k}(A(\Omega,i,\omega,\Omega',i',\omega'+f'),B(\Omega,i,\omega,\Omega',i',\omega'+f'),e)df'$$

► Kozai, Secular Perturbations of Asteroids with High Inclination and Eccentricity, 1962

El'yasberg, Introduction to the theory of flight of artificial Earth satellites - translated, 1967

Third body Kozai theory

1.0F

0.9

0.8

0.7

0.6

0.5

28/04/2017

0

50

100

Eccentricity

- Delaunay's transformation
- Time-independent Hamiltonian

$$W\left(\frac{a}{a}, \Theta, e, 2\omega\right) = \cos t \qquad \Theta = (1 - e^2)\cos i^2$$

Kozai, Secular Perturbations of Asteroids with High Inclination and Eccentricity, 1962

Rotating reference system

$$\overline{\overline{F}}_{3Bsys,2}(e,\omega,i) = \frac{1}{32} \left(\left(2 + 3e^2 \right) \left(1 + 3\cos(2i) \right) + 30e^2 \cos(2\omega) \sin^2 i \right)$$

 El'yasberg, Introduction to the theory of flight of artificial Earth satellites - translated, 1967

Initial condition in a, e, i, ω defines a contour line in phase space

Equilibrium solution

Librational solutions

24

Third body Kozai theory

$$W\left(\frac{a}{a'},\Theta,e,2\omega\right) = \cos t \qquad \Theta = (1-e^2)\cos i^2$$

28/04/2017

Eccentricity

1.0

0.9

0.8

0.7

0.6

0.5

0

50

100

 2ω [deg]

Third-body double averaged potential

Reference system for figure:

- x-y plane lays on the Moon orbital plane
- z-axis in the direction of the Moon angular momentum

Kozai, El'yasberg: $\overline{\overline{F}}_{_{3Bsys,2}}(e,\omega,i)$

Third-body double averaged potential

Kozai, El'yasberg: $\overline{\overline{F}}_{_{3Bsys,2}}(e,\omega,i)$

Third-body double averaged potential

Non autonomous loops in the e- ω phase space!

DYNAMICAL MAPS

Long-term orbit evolution

- 1. Grid in inclination, eccentricity and ω (Moon plane reference system)
- 2. Propagation over ±30 years with PlanODyn
- 3. Evaluate

Long-term orbit evolution

Luni-solar + zonal Δe maps

- Semi-major axis equal to 67045.39 km (XMM Newton's orbit)
- Different values of initial inclination with respect to the orbiting plane of the Moon
- Here: fixed t_0 and fixed Ω_0 to analyse one loop in the phase space but different Ω_0 can be taken into account with $2\omega + \Omega_0$

Colombo "Long-Term Evolution of Highly-Elliptical Orbits: Luni-Solar Perturbation Effects for Stability and Re-Entry," 25th AAS/AIAA Space Flight Mechanics Meeting, 2015

Long-term orbit evolution

28/04/2017

Long-term orbit evolution

Long-term orbit evolution - Initial inclination 45 degrees

Long-term orbit evolution

Long-term orbit evolution - Initial inclination 64.28 degrees

BCM 2017 - Colombo

28/04/2017

Design of disposal manoeuvres

ENGINEERING PERTURBATION EFFECTS

Engineering the perturbation effects

Design disposal manoeuvre in the phase space

Design manoeuvre in the phase space

- Re-entry transfer on trajectories in the phase space to reach $e_{crit} = 1 (R_{Earth} + h_{\rho, drag})/a$ Maximum Δe exploitable for re-entry or free orbit change
- Graveyard: transfer to quasi-stable point in the phase space Bounded Δe for graveyard disposal orbits

Preliminary analysis Earth re-entry

- Multi-start method plus local constrained optimisation
- Gauss planetary eqs. for finite differences to compute change in orbital elements
- Orbit evolution computed with double average eqs.

Preliminary analysis Earth re-entry

CMPASS

erc

Engineering the perturbation effects

Design disposal manoeuvre in the phase space

28/04/2017

APPLICATIONS

Integral: gamma-ray observatory ESA's Integral observatory is able to detect gamma-ray bursts, the most energetic phenomena in the Universe

Operational orbit

Mission scenario

- Propagation time: 2002/11/13 to 2021/01/01
- Initial Keplerian elements from Horizon NASA on 2002/11/13 at 00:00:
 a = 87736 km, e = 0.82403, i = 0.91939 rad, Ω = 1.7843 rad, ω = 5.271 rad

Operational orbit

Mission scenario

- Propagation time: 2002/11/13 to 2021/01/01
- Initial Keplerian elements from Horizon NASA on 2002/11/13 at 00:00:
 a = 87736 km, e = 0.82403, i = 0.91939 rad, Ω = 1.7843 rad, ω = 5.271 rad

Design disposal manoeuvre in the phase space

- Only 5 Keplerian elements are propagated: a, e, i, Ω, ω
- Optimal true anomaly f_M where the manoeuvre is applied is selected through optimisation
- Dynamics of the mean/true anomaly is much faster than the evolution
- Single manoeuvre considered at different dates within a wide disposal window [2013/01/01 to 2029/01/01]

Re-entry disposal design

For each initial condition global optimization $x = [\Delta v \ \alpha \ \beta \ f]$

Genetic algorithm

- Population of 100 individuals and a maximum of 200 generations
- The tournament selection is applied to identify the best individuals and the mutation is used 10% of the times to maintain genetic diversity

Constraints

Mission constraints

Parameter	Value	
Dry mass	3414 kg	Mission extended
No. thrusters thrust	8 x 20 N	Change in attitude and orbital control
Specific impulse I _{sp}	235 s	- Change in attitude and orbital control
Propellant	Hydrazine	system (four reactions wheels instead
Available fuel (01/01/2013)	61.5 kg	of three nominal + one redundancy)
Equivalent Δv	61.9 m/s	Limiting the degradation of the wheels
Fuel consumption	8 kg/year	Reduction of the fuel consumption.
Pointing constraints	Telescope never points closer than 15 deg from the Sun	 Spacecraft lifetime would increase of 6-8 years (going from 2020 to 2026-2028)
c _R at BOL	1.3	
Max A/m EOL	0.013 m ² /kg	200 XMM-Newton
		150 INTEGRAL
		XMM-Newton 4WD
	اللاما س	
		50
		0 unusable fuel + margin
		2000 2010 2020 2030 [year]

Results

Results

N	Re-entry	Av [m/c]	Re-entry epoch	Minimum
	manoeuvre [date]		[date]	perigee [km]
1	01/01/2013	39.03	19/09/2028	49.86
2	27/05/2013	71.23	19/09/2028	49.72
3	20/10/2013	40.28	20/09/2028	49.21
4	15/03/2014	54.03	19/09/2028	49.72
5	08/08/2014	26.26	16/10/2028	49.99
6	01/01/2015	62.39	18/09/2028	49.62
7	27/05/2015	36.33	19/09/2028	49.10
8	20/10/2015	72.66	19/09/2028	50.33
9	14/03/2016	46.80	08/04/2028	49.56
10	07/08/2016	50.06	19/09/2028	49.83
11	01/01/2017	49.99	19/09/2028	49.03
12	27/05/2017	49.11	08/04/2028	49.04
13	20/10/2017	45.03	08/04/2028	46.25
14	15/03/2018	49.55	18/09/2028	49.82

N Re-entry		Av [m/c]	Re-entry epoch	IVIIIIIIIIIII			
N	manoeuvre [date]		[date]	perigee [km]			
15	08/08/2018	116.7488	18/10/2028	50.08			
16	01/01/2019	114.23	14/10/2019	49.37			
17	27/05/2019	119.89	09/11/2019	48.42			
18	20/10/2019	89.40	17/10/2028	49.99			
19	14/03/2020	100.26	22/04/2020	49.99			
20	07/08/2020	101.48	02/10/2020	47.89			
21	01/01/2021	83.48	19/09/2028	49.65			
22	27/05/2021	120.02	13/09/2026	48.68			

Results

			Family 3	28	Ν	Re-entry manoeuvre [date]	Δv [m/s]	Re-entry epoch [date]	Minimum perigee [km]
			Δv between 1	7 and 70 m/s	23	20/10/2021	33.38	18/09/2028	48.24
					24	15/03/2022	22.38	18/09/2028	45.53
	140 _[25	08/08/2022	61.83	08/04/2028	49.84
					20	01/01/2023	17.51	19/09/2028	46.46
	120				27	27/05/2023	16.97	18/09/2028	49.71
				Ν	28	20/10/2023	17.92	18/09/2028	46.13
	100				29	14/03/2024	17.68	19/09/2028	45.28
/s]				⊢	30	07/08/2024	68.04	18/09/2028	49.94
<u></u>	80-		Y		31	01/01/2025	29.79	08/04/2028	48.81
ity		T T	↓ ↓		• 32	27/05/2025	48.71	18/09/2028	39.33
8	60	A			33	20/10/2025	33.13	18/09/2028	28.31
∆ V€	40 - 20 -					13,03,2020	25.03	15/05/2020	45.05
	0└── 4000	5000 6000	7000 8000 Fime [MJD2000]	9000 100	00 110	000			
		/01/2013	/03/2018 /05/2021	03/2026	08/2028				
		01	15	15/	07/				
	28/04/201	.7		BCM 2017	- Coloml	00		52 POLITECNIC	O MILANO 1863

CMPASS erc

INTEGRAL mission

Results

N	Re-entry	Av [m/c]	Re-entry epoch	Minimum
IN	manoeuvre [date]		[date]	perigee [km]
35	08/08/2026	116.78	20/04/2027	48.88
36	01/01/2027	106.77	22/04/2027	48.40
37	27/05/2027	95.43	02/10/2027	48.14
38	20/10/2027	95.60	12/03/2028	49.83
39	14/03/2028	85.58	08/04/2028	48.47
40	07/08/2028	78.04	18/09/2028	48.78

Results

Results

Results

Low eccentricity conditions Manoeuvre performed on 08/08/2014 Re-entry in 2028

The manoeuvre tends to further

 \rightarrow the following long term

decrease e

2*ω [deg]

210

200

Results

Results

Results

0.95

Re-entry manoeuvre

Example: manoeuvre performed on 08/08/2014

Re-entry manoeuvre

CMPASS erc

Preliminary mission design

Moon effect only <u>Double averaged</u> potential

Optimised solution

Moon + Sun + J2:

<u>Single averaged</u> dynamics + global optimisation

Re-entry manoeuvre

XMM newton mission

Graveyard disposal

- Time window for starting the disposal manoeuvre [2013/01/01 to 2035/01/01].
- Max Δv available for the manoeuvre 81 m/s

Re-entry Max Δe , min h_p orbits

Graveyard Limited Δe , Δi orbits

XMM newton mission

Graveyard disposal

- Time window for starting the disposal manoeuvre [2013/01/01 to 2035/01/01].
- Max Δv available for the manoeuvre 81 m/s

Example graveyard maneuver performed on 20/04/2016

CONCLUSIONS

Conclusions

- Effect of luni-solar perturbations and the Earth's oblateness on the stability of highly elliptical orbits
- Natural orbital dynamics can be exploited and enhanced
- INTEGRAL is the demonstration in Space!

esa		Sche SCI (this lit	edule: All exe hedule st is also availa	Integra Sch cuted Currer for revo	al Targ edulin ht revolution olution , click <u>here</u> t	get and g Info (1799) Fu n 1799	d rmatio	n Revolu	tion 179	99 to 1 7	99	Show show pf
INTEGRAL REVOLUTION	INTEGRAL REVOLUTION	Rev	Start time (UTC)	End time (UTC)	Exp. time (s)	Target	Ra (J2000)	Dec (J2000)	Pattern	PI	Proposal	Observation N
1700	(000	1799	2017-03-30 10:11:09	2017-03-30 13:52:56	12600	Gal. Bulge region	17:45:36.00	-28:56:00.0	<u>HEX</u>	Erik Kuulkers	<u>1420001</u>	1420001 / P 0009
1799	1809	1799	2017-03-30 14:11:52	2017-03-30 14:45:12	2000	Galactic Center	17:36:47.26	-31:25:52.3	<u>5x5</u> Seq	Joern Wilms	<u>1420009</u>	1420009 / 0001
		1799	2017-03-30 15:06:03	2017-03-31 05:48:09	50000	Galactic Center	17:35:00.58	-32:37:41.9	<u>5x5</u> <u>Seq</u>	Joern Wilms	<u>1420009</u>	1420009 / 0005
INTEGRAL CURRENT TARGET	INTEGRAL CURRENT TARGET	1799	2017-03-31 06:08:30	2017-03-31 09:50:16	12600	Galaxy (I=0, b=0)	17:41:53.52	-29:13:22.8	<u>HEX</u>	Rashid Sunyaev	<u>1420021</u>	1420021 / 0009
Coloctio Contor	Clowing	1799	2017-03-31 10:50:17	2017-03-31 11:52:13	3600	Galaxy (I=0, b=-30)	19:58:20.40	-40:46:37.2	<u>HEX</u>	Rashid Sunyaev	<u>1420021</u>	1420021 / 0010
Galactic Center	Slewing	1799	2017-03-31 12:27:37	2017-03-31 15:05:31	9000	Galaxy (I=0, b=-30)	19:58:20.40	-40:46:37.2	HEX	Rashid Sunyaev	1420021	1420021 / 0010
		1799	2017-03-31 15:33:09	2017-03-31 19:14:56	12600	Galaxy (I=0, b=0)	17:47:59.52	-30:08:27.6	<u>HEX</u>	Rashid Sunyaev	<u>1420021</u>	1420021 / 0011
		1799	2017-03-31 19:42:29	2017-03-31 23:24:15	12600	Galaxy (l=0, b=-30)	20:06:37.68	-41:09:50.4	<u>HEX</u>	Rashid Sunyaev	<u>1420021</u>	1420021 / 0012

Conclusions

ReDSHIFT – H2020

- Compute maps for the whole LEO to GEO environment
- Stability maps
- Disposal design for current and future s/c
- Online software
- See effect on global debris population

COMPASS- ERC

- Develop automatic optimiser that exploit natural dynamics
- Study planetary protection requirements/uncertainties
- To be applied to debris cloud fragmentation, re-entry prediction, multi-moon mission, highly perturbed orbits (e.g. around asteroids)

Luni-solar perturbations for missions design in highly elliptical orbits

Camilla Colombo Barcelona Mathematical Days, 28 April 2017