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Abstract—Synthetic biology, through genetic circuit engineer-
ing in biological cells, is paving the way towards the realization of
programmable man-made living devices, able to naturally operate
within normally less accessible domains, i.e., the biological and
the nanoscale. The control of the information processing and ex-
change between these engineered-cell devices, based on molecules
and biochemical reactions, i.e., Molecular Communication (MC),
will be enabling technologies for the emerging paradigm of
the Internet of Bio-Nano Things, with applications ranging
from tissue engineering to bioremediation. In this paper, the
design of genetic circuits to enable MC links between engineered
cells is proposed by stemming from techniques for information
coding, and inspired by recent studies favoring the efficiency of
analog computation over digital in biological cells. In particular,
the design of a joint encoder-modulator for the transmission
of binary-modulated molecule concentration is coupled with a
decoder that computes the a-posteriori log-likelihood ratio of
the information bits from the propagated concentration. These
functionalities are implemented entirely in the biochemical do-
main through activation and repression of genes, and biochemical
reactions, rather than classical electrical circuits. Biochemical
simulations are used to evaluate the proposed design against a
theoretical encoder/decoder implementation taking into account
impairments introduced by diffusion noise.

Index Terms—Molecular communication; synthetic biology;
genetic circuit; parity-check encoding; analog decoding; internet
of bio-nano things; Hill’s function; mass action kinetics; soft bit;
biochemical simulation

I. INTRODUCTION

THE design and characterization of communication sys-
tems based on the exchange of molecules, directly in-

spired by biological processes, is a fast growing field within
the communications and computer network engineering com-
munities, encouraged by the need to interconnect devices
with increasing miniaturization, ubiquity, and biocompatibil-
ity [1,5,44]. In particular, the modeling of natural Molecular
Communication (MC) processes in cells with communication
engineering frameworks and tools is gaining growing interest
in recent years. Significant examples range from the modeling
of bacteria conjugation and electron transfer [33], to the
characterization of signal transduction pathways [22,48] and
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metabolic regulation [42]. The possibility of mimicking or
even directly exploiting and reengineering these biochemi-
cal communication functionalities is opening the road for
the development of systems that will further expand the
Internet of Things concept to cover domains, the biological
and nanoscale, where classical communication solutions show
limitations [2,14]. More precisely, MC-enabled communica-
tions are envisioned at the basis of the access, control, and
collaborative processing of devices with various capabilities,
such as bio-sensing, stimulation or actuation of biochemical
processes [10,21], or even augmentation of the functionalities
of the human body [7].

Despite the current advancements in the communication
theoretic studies, which also stimulated an ongoing stan-
dardization effort [17], unified and coherent technologies
to engineer and optimize systems, devices, and components
capable of molecular communications are currently missing.
Recent literature in MC systems is exploring the possibility of
utilizing engineered cells to realize MC functionalities, where
cells can be abstracted as transmitters and receivers [32]. The
discipline of synthetic biology is providing the engineering
community with novel tools and techniques to tap into cells
and their functionalities for the design, realization, and control
of biological processes [19]. In particular, the theory of genetic
circuits, based on networks of DNA genes linked together
by activation and repression mechanisms that regulate their
expression into proteins, provides basic components and pro-
cesses to design functionalities and behaviors in cells, mostly
bacteria, by following a forward engineering approach [34,54].
The engineering of MC components and systems in cells
through synthetic biology has gained particular interest in
the last couple of years [38], mostly through the manip-
ulation of natural MC processes such as bacterial quorum
sensing. While complete experimental characterization and
standardization of these components are still open challenges,
it is today possible to theoretically study and predict in-
silico the behavior of engineered genetic circuits of great
complexity [34]. In this direction, in [39] the minimal subset
of genetic circuit elements necessary to emit and receive an
analog-modulated MC signal, which propagates between cells
through diffusion, is modeled and analytically characterized.
General guidelines and modeling strategies to design an MC
transceiver with genetic circuits able to receive, process, and
retransmit binary information by utilizing bacteria are included
in [50], based on digital-like genetic circuit functionalities and
M-ary molecule concentration modulation coupled with hard
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threshold detection.
In this paper, we propose the design, simulation, and

characterization of genetic circuits for MC to realize the
encoding of molecular information in a cell, its modulation
through the emission of information-bearing molecules, and
subsequent decoding of the transmitted information, moti-
vated as a natural extension of the aforementioned studies
of genetic circuits to realize MC components to improve
the communication performance of engineered cells. In [25],
classical channel coding schemes have been considered within
the MC realm, and characterized on the basis of their fea-
sibility and performance. Inspired by this work, we detail
here an implementation of the a simple block code scheme,
by utilizing the components and rules of genetic circuit
theory. From a practical application standpoint, a circuit to
encode information, such as that proposed in this paper, would
enhance the reliability of MC channels in scenarios where
these are harnessed to control the propagation of information
messages in biological environments, for applications ranging
from controlled cell patterning for tissue engineering, to amor-
phous computing [9,37,38,47,53,55]. Moreover, our design is
general enough to find application into engineered cell-to-cell
communications that have been demonstrated with cells from
various kingdoms [46].

Despite a trend towards the development of genetic circuits
with digital-like logics [52], recent research suggests that
functions based on analog computation in cells are signifi-
cantly more efficient [43]. Inspired by this recent research, and
based on the seminal work in [15] on soft decoding of block
and convolutional codes with non-linear electrical networks,
we propose to exploit the analog computing functionalities
of genetic circuits to obtain as output the a-posteriori log-
likelihood ratio values (L-values), which provide the relia-
bility of each decoded bit. Soft decoding, implementing the
computation of the logarithm of the a-posteriori probabilities
of the information bits, is realized by analog processing of
a modulated molecule concentration i.e., molecules utilized
in nature for intercellular information exchange, such as in
bacterial quorum sensing. It is worth observing that L-value
computation based on analog filtering in MC literature has
been previously considered in [8,13]. However, our work
is the first to consider a detailed design of transmitter and
receiver based on genetic circuits components, and is based
on modulating information on molecule concentrations rather
than in a deterministic molecule number, which is more
realistic in a biological scenario. In addition, our computation
extends the use of L-values to the calculus of the reliability
of information bits for a block code, while only uncoded
transmission is considered in [8,13]. In our work, to provide
a first proof-of-concept demonstration, we make use of the
simplest block code, namely, a Single Parity-Check (SPC)
code and provide a specific design for block length K = 3 bits,
where the computation of the L-value is implemented through
genetic circuit components, designed and tuned according
to the desired output. Biochemical simulation data of the
resulting genetic circuit demonstrate very close performance
to an electrical network implementation [15] in terms of Mean
Squared Error (MSE) and Bit Error Rate (BER). While partial
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Fig. 1. Pictorial representation of the considered MC scenario.

results of this work were presented in our previous conference
publications [29,30], this paper contains a comprehensive end-
to-end analysis of this system, which includes both encoding
and decoding genetic circuits [27,28]. In this journal paper, we
provide the complete design of the cell-to-cell communication
system and obtain ideal constraints on the genetic circuit
parameters to ensure the validity of a Gaussian approximation
of the noise in the diffusion-based channel, as well as the
steady-state approximation of gene expression. It is worth
observing that, in comparison to the existing models for MC
based on the use of biological circuits such as, for example,
[12,50], the proposed end-to-end system shares the same white
Gaussian noise assumption, i.e., independent noise affecting
the received signal samples, while its main novelty is in the
introduction of memory among bits transmitted in different
intervals and the implementation soft decision decoding at the
receiver.

The rest of the paper is organized as follows. In Sec. II we
introduce the model of the considered MC system, which is
composed of the modulated parity-check encoder, the diffusive
channel that transports the information and adds the noise, and
the biological analog decoder circuit based on the a-posteriori
log-likelihood computation of the first bit of the code block.
In Sec. III we give a brief introduction to genetic circuits, their
main components, and mathematical models. In Sec. IV we
detail the encoder design by describing the necessary genetic
circuit components and the tuning of their parameters. We
detail the design of the required L-value, delay line, and box-
plus operations in Sec. V, Sec. VI, and Sec. VII, respec-
tively. In Sec. VIII we finalize the a-posteriori log-likelihood
computation from the contributions of the previous elements.
The implementation of the genetic circuits in a simulation
environment along with the corresponding numerical results
are presented in Sec. IX. Finally, in Sec. X we conclude the
paper.

II. A MOLECULAR COMMUNICATION SYSTEM BETWEEN
BIOLOGICAL CELLS WITH PARITY-CHECK CODING

In this paper, we define a biological cell, i.e., cell, as a
finite environment that contains n chemical species {S1, ..., SN }

linked together by chemical reactions [34]. From this defi-
nition, it is possible to characterize a cell according to its
state s(t) = {sn (t)}N

n=1 as a function of the time t, where the
single element si (t) represents the molecular concentration
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of the species Si at time t. The chemical communication
of information about this state, either complete or partial,
to a recipient outside of the cell, e.g., another cell or man-
made device present in the external environment, is a valid
abstraction of an MC system.

With reference to Fig. 1, where different molecular species
are indicated with different shapes, we consider for simplicity
a cell, i.e., Transmitter, that contains only two species,
namely, S1 and S2, whose concentrations define the cell state
at time t, s(t) = (s1(t), s2(t)). The concentration sn (t) can be
approximated as a continuous-time binary variable with value
1 if the nth species is present, and 0 if absent. These variables
contain a portion of information, in bits, on the aforementioned
cell state at time t. If we reasonably assume that the cell is
immersed in a fluidic environment, the simplest MC system
between cells would be based on modulating the release of sig-
naling molecules to the external environment, and would rely
on their diffusion, i.e., Channel, to propagate this information
to one or more recipients at remote locations within the same
fluid [53]. To reduce the complexity, a general trend in nature
is to rely on a limited subset of signaling molecule species
compared to the state-defining species, such as the N-acyl
homoserine lactones (AHL) in Gram-negative bacteria [35]. A
single signaling molecule species is considered for simplicity
in this paper, but this can be easily generalizable to multiple
non-interacting species. Finally, the recipients are other cells,
i.e., Receivers, able to modulate their own state according
to the information about the transmitted cell state carried by
the modulated concentration y(t) of signaling molecules at
different time instants, present at their locations. The rest of
the paper is based on the following assumption:

• The concentrations of the molecular species are considered
homogeneous at any time instant inside and around the cell.
This approximates the behavior of the system when we sam-
ple these molecule concentrations at steady state. Although
this does not hold true for the concentration of the diffusing
molecules from the transmitter to the receiver, we assume
a distance between the transmitter cell and the receiver cell
much larger than the size of the receiver cell itself. Given the
received molecule concentration after diffusion, the longer
the distance, and therefore the propagation time, the more
homogeneous the impulse response is with respect to the
space [23].

In this paper, we propose the design of a system to be
deployed on board of cells where an Encoder module at
the transmitter, and subsequently a Decoder module at the
receiver/s, convert the aforementioned transmitter cell states,
abstracted by information bits, into a-posteriori L-values, or
soft bits at the receiver/s, after their Propagation through the
diffusion channel. In the following, we provide the functional
descriptions of these modules along with their main assump-
tions.

A. Modulated Parity-check Encoder

The aforementioned signaling species is generally released
by natural cells according to a continuous-time molecule

release rate signal, usually abstracted in MC through the com-
mon On-Off-Keying (OOK) modulation scheme [25]. More
precisely, our modulation scheme is based on the following:
• The transmitter encodes, modulates and emits molecules

according to the aforementioned concentrations s(t). Each
molecule emission happens instantaneously at the beginning
of a bit time interval Tb and emits a concentration of Q1
or Q0 [molecules/unit volume] if a bit 1 or 0 is to be
transmitted, respectively. Since in nature cells do not usually
utilize a zero release rate of signaling molecules [38], which
is also in agreement with the evidence of basal expres-
sion rate that characterizes many DNA genes in genetic
circuits [4], including those responsible for the release of the
aforementioned AHL molecules [35], we consider positive
values for Q1 and Q0.
The Brownian motion underlying the diffusion-based prop-

agation of these molecules could lead to noise at reception that
is theoretically modeled by a Poisson distribution [36], which
is prone to consequent errors in understanding the transmitter
cell state. To alleviate this issue, we propose to design a
Parity-Check Encoder that takes as input the concentrations
s(t) and gives as output the encoded bits xi , which are then
modulated into molecule emission symbols xi (t) according
to the aforementioned two-level scheme. The proposed parity
check code allows just for error detection. Nevertheless, it
could be used as basic building block to construct more
complex codes, i.e., Low-Density Parity-Check (LDPC) or
Hamming codes [25], that allow the recipient not only to detect
but also correct errors.

B. Diffusion
As shown in Fig. 1, information is transmitted through

modulated molecule concentrations that reach the destination
through a molecular diffusion process. The motion of each
molecule is described by Brownian random walk where,
assuming independent movement of each molecule, molecular
diffusion can be modeled by the Fick’s laws characterized
by a homogeneous diffusion coefficient D both in space and
time [24]. We make the following assumption:
• The extracellular space is an unbounded fluid medium where

molecules freely diffuse. The distance between the transmit-
ter and the receiver is much longer than the diameter of the
cells, therefore resulting in an approximation of the cells as
points at their respective locations. As a consequence, the
presence of the cells does not interfere with the diffusion of
AHL molecules.

• The received modulated molecule concentrations yi are the
samples of the molecule concentration y(t) at the location
of the engineered cell, considered homogeneous around and
inside the cell. The sampling time t̄i is equal to the expected
time of maximum of each modulated concentration after
propagation.
As a consequence of these assumptions, taking into account

the diffusion channel model [41], the received molecule con-
centration yi has an average that is expressed as follows:

E
[
yi

]
=

Q1/0e−r
2/(4D(t̄i−iTb ))

(4πD(t̄i − iTb ))3/2 = a1/0, (1)
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which can be equal to one of two values, namely, a1 or a0. In
this paper, we assume that these values account for not only the
average contribution of the ith transmitted bit to the received
concentration, but also the average contribution of all the
possible combinations of previous bits, i.e., the InterSymbol
Interference (ISI). D is the diffusion coefficient, and the
time instant t̄i has to result into sampling the propagated
concentration at the so-called Pulse Delay td [24], the time
when the Green’s function of the diffusion equation [26] is at
its maximum, expressed as follows:

t̄i = td + iTb =
r2
r x

6D
+ iTb . (2)

The ith sample yi of the concentration at the receiving cell
can be mathematically written as

yi = a0/1 + ni , (3)

where ni is an additive noise with variance σ2. In what
follows, we assume that the stochastic process ni is described
as an Additive White Gaussian Noise (AWGN). This assump-
tion is justified by the fact that the noise contribution from
the genetic circuits, including those that might be present
at the transmitter, can be modeled according to the steady
state approximation of the Langevin equation (see Appendix
A in [41]), resulting in white Gaussian contributions to each
circuit output [49]. Moreover, for a sufficient number of
emitted molecules and for a sufficiently long time interval
between the samples, the diffusion process is independent
and has a Gaussian noise contribution to the input molecule
concentration [20]. From a quantitative analysis point of view,
a check of the AWGN assumption can be found in [28]
where, starting from the analysis of diffusion processes and
biochemical reactions, the Poisson model and the Gaussian
approximation are compared in the evaluation of BER when
optimal soft-decision decoding is implemented. By means of
computer simulations, it is shown in [28] that similar BER
performance are obtained for both the two cases of noise
by the proposed biologic decoding circuits, thus validating
the commonly adopted white Gaussian assumption for the
noise affecting the received signal in diffusion-based MC
systems. Moreover, it is worth observing that the AWGN
assumption also holds in other nano-scale MC systems, as
demonstrated in [11] for a flow-induced MC system where
molecular transmitter and receiver are placed in chambers and
communicate over a microfluidic channel containing fluid flow.

C. Soft-bit Analog Decoder

One of the main contributions of this paper is the design of
a genetic circuit that implements a soft-bit analog decoder,
able to compute the a-posteriori log-likelihood ratio L( x̂k )
from a received noisy input signal yi, yi+1, . . . , yi+K modulated
according to block-encoded bits xi, xi+1, . . . , xi+K , where K is
the block size. The sign of this log-likelihood ratio corresponds
to the optimal decision on the transmitted bit, while its
magnitude measures the reliability of this decision. This is
defined as follows [15]:

L( x̂k ) = log
P(xk = 1|yi, yi+1, . . . , yi+K )
P(xk = 0|yi, yi+1, . . . , yi+K )

, (4)

In Fig. 1 it is shown that the kth receiver cell, which contains
the soft-bit analog decoder detailed in the following, provides
a concentration of output molecules equal to the a-posteriori
log-likelihood ratio L( x̂k ) for the kth bit of the transmitted
codeword that gives rise to the modulated concentrations
yi, yi+1, . . . , yi+K of input molecules around the receiving cell
at specific time instants. The proof-of-concept design of the
soft-bit analog decoder presented in this paper is based on the
following assumptions:

• The input molecules of the biological decoding circuit can
be either the same incoming signaling molecules emitted
by the transmitter cell, and able to cross the receiver cell
membrane, therefore resulting in a concentration inside the
cell that is the same as around the cell, or they can be
molecules resulting from a chemical reception process at
the receiver cell [39]. The latter process would be activated
by ligand-receptor binding reception either at the membrane
or inside the cell [39], and result in a concentration of input
molecules of the biological decoder that is proportional to
the concentration of signaling molecules around the cell.

• In the rest of the paper, for the purpose of presenting a proof-
of-concept biological analog decoding circuit, we reference
to the simplest block code scenario that supports analog
decoding [15], namely, the SPC code with block length
K = 3. Moreover, given the complexity of the resulting
genetic circuit, the preliminary design in this paper realizes
only the computation of the a-posteriori log-likelihood ratio
of the first bit of the block. The contribution in this paper can
be extended to more complex block codes by stemming from
our methodology. In fact, parity check is the fundamental
decoding operation at the basis of more complex coding
schemes, such as LDPC.

As a consequence of the aforementioned assumptions, the
formula in (4) to compute the L-value of the first transmitted
bit L( x̂1) becomes [15]:

L( x̂1) = L(y1 |x1) + (L(y2 |x2) � L(y3 |x3)) , (5)

where x2 and x3 represent the remaining channel bits of that
same codeword. L(yi |xi ), i ∈ {1, 2, 3}, gives the conditioned
L-value, which is the L-value of the received concentration
yi conditioned to the transmitted bit xi , and � indicates the
box-plus operation, which is defined as follows:

L(y2 |x2)�L(y3 |x3)=2atanh
(
tanh

(
L(y2 |x2)

2

)
· tanh

(
L(y3 |x3)

2

))
.

(6)
The expression of L(yi |xi ) is derived by considering the

mean concentration values a0 and a1 given in (1), which
correspond to bit 0 and 1, respectively. In contrast to [15],
where a binary antipodal pulse-amplitude modulation scheme
is employed, the resulting detection threshold in our case
is equal to a1+a0

2 . As a consequence, conditional L-value
expression is

L(yi |xi)=log
exp

(
−

(yi−a1)2

2σ2

)
exp

(
−

(yi−a0)2

2σ2

) = (a1−a0)
σ2

[
yi−

(a1+a0)
2

]
, (7)
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where σ2 is the variance of the aforementioned AWGN given
in (3).

Hagenauer et al. implemented (5) with analog Very-Large-
Scale Integration (VLSI) circuits, by exploiting the non-
linearities of a modified Gilbert cell [15]. In the following,
we present an implementation of the same expression by using
genetic circuit elements. As shown in Fig. 2, our biological
analog decoding circuit is composed of three main elements,
namely, the L-value computation, which implements (7), the
box-plus operation, which realizes the expression in (6), and
a delay line (active only when t = lKTb , where Tb is the bit
interval, K is the block size, equal to 3, l = 0, 1, 2, . . .), which
is needed to isolate the result of the first term of the sum
in (5) from the second term, computed at a later time. In the
following, after a brief overview of the main genetic circuit
components, we detail our genetic circuit design.

III. COMPONENTS OF A GENETIC CIRCUIT

A genetic circuit is a network of chemical reactions involv-
ing genes and other molecular species that work together to
implement a specific biological function [34].

A. Gene Expression

As shown in Fig. 3, a gene is composed of an operator
region (OR), a promoter region (PR), and a coding sequence.
Most genes are a stretch of DNA that codes for a protein
molecule, a sequence of amino acids, expressed from the
gene through the fundamental processes of transcription and
translation. Protein expression can be up or down-regulated by
a transcription factor protein In, activator (a) or repressor (b),
respectively. When the gene expresses proteins independently
from transcription factors, it is said to have a constitutive
promoter. Protein expression is based on [34]:

• Transcription is triggered by the enzyme, a specific type of
protein, RNA polymerase (RNAP) that binds to the promoter
region of the considered gene, starting the production of the
messenger RNA (mRNA) molecule. This latter molecule is
used to carry the genetic information encoded in the coding
sequence of the gene to the ribosome, the protein assembly
machinery. The ability of RNAP to bind to a promoter site
can be either enhanced or lowered by other proteins called
transcription factors (activators/repressors).

• Activation happens if activators bind to the operator region
near the promoter site up-regulating the transcription of
the subsequent coding sequence by increasing the RNAP
binding rate. Inducers are small molecules that bind and ac-
tivate activators. There are, in fact, activators and repressors
that, without the respective inducers and corepressors, bind
poorly to the operator region causing no actual change in
the transcription rate.

• Repression is present when repressors obstruct the binding
sites of the promoter region and down-regulate the tran-
scription of the subsequent coding sequence by reducing
RNAP binding rate. Corepressors in prokaryotes, like the E.
coli, are small molecules that bind and activate a repressor
transcription factor [35].

• Translation is performed through the ribosomes, which are
able to recognize and bind to the mRNA molecules by
means of Ribosome Binding Sites (RBSs), special sequences
of nucleotides in the mRNA strand. Once a ribosome binds
to the RBS of an mRNA molecule, it completes the synthesis
of the corresponding protein by assembling together the
component amino acids.
The aforementioned processes of transcription, activation,

repression, and translation for protein synthesis are generally
modeled as a single event by using the so-called Hill func-
tion [4,6]. This widely accepted approximation in biological
circuit modeling is based on the assumption that these pro-
cesses are in a steady state (equilibrium), and that this steady
state is reached in a shorter time interval with respect to the
time scale of the other processes underlying the biological
circuit. For an E. coli bacterium, this time interval is in the
order of seconds [4], which is compatible with our bit time
interval of Tb = 5 s (the reference time for sampling all
the concentrations in the system) in our numerical examples.
In addition, our numerical results found a good agreement
between the performance of our biological circuit design based
on the Hill function, and simulated according to chemical
kinetics on Matlab Simbiology, and an ideal computation of
the L-value using analytical formulas, as detailed in Sec. IX.
According to the Hill function, the rate d[Out]

dt of output
protein, in case of activation, is expressed as

d[Out]
dt

= k ′ + M AX
(

([In]/K )n

1 + ([In]/K )n

)
− kdeg[Out], (8)

where [Out] is the concentration of the output protein Out,
k ′ is the basal rate of production, i.e., gene expression in
the absence of input transcription factors, M AX is a constant
defining the maximum rate value at the output, K is the input
concentration for which the output expression rate is half of
the maximum value, n is the Hill coefficient, and the bracketed
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term is the Hill function, which we define also as the output
production rate. kdeg is the degradation rate of the output
proteins, defined in the following. In this paper, we assume to
have non-leaky promoters, i.e. k ′ = 0, which means that there
is gene expression only when external activating signals are
present [6]. In (8) and hereafter, the square brackets notation
stands for molecule concentration. According to [6], in case
of repression, the rate d[Out]

dt of output protein is

d[Out]
dt

= M AX
(

1
1 + ([In]/K )n

)
− kdeg[Out]. (9)

In general, genes can be regulated by more than one
transcription factor. In such a case, gene expression can be
described by a multi-dimensional Hill function [4] as follows

d[Out]
dt

=

∑
i M AXi ([Ini]/Ki )ni

1 +
∑

i ([Ini]/Ki )mi
− kdeg[Out], (10)

where Ini refers to the ith transcription factor, and ni = mi

if the ith transcription factor is an activator, while ni = 0 and
mi > 0 if it is a repressor.

It is possible to convert the differential equations in (8), (9),
and (10) to more practical non-differential expressions by
simply considering the steady state condition. In the steady
state, the degradation rate equals the production rate, yielding
no more temporal variation of the output concentration. By
equating (10) (general case) to zero, the steady state output
concentration [Out]SS is found with the following expression:

[Out]SS =
1

kdeg

∑
i M AXi ([Ini]/Ki )ni

1 +
∑

i ([Ini]/Ki )mi
, (11)

which corresponds exactly to the production rate if kdeg =
1 s−1.

B. Mass Action Chemical Reaction

A mass action chemical reaction is a process that converts
one or more input molecules (reactants) into one or more
output molecules (products). Reactions may proceed in for-
ward or reverse directions, which are characterized by forward
(k f ) and reverse (kr ) reaction rates, respectively. Within the
scope of this paper, we assume unbalanced reactions where
the forward reaction rate is much greater than the reverse rate,
as in [36]. An example of a reaction with two reactant species
and one product species is shown in Fig. 4. In this work, we
will consider the following mass action chemical reactions:
• Transcription Factor Activation Reaction: We consider

two reactant species, a repressor (activator) transcription
factor and its corresponding corepressor (inducer). The
corepressors (inducers) bind to specific sites on the particular
transcription factor proteins and produce a steady state
concentration of complexes (activated transcription factors)
equal to the concentration of transcription factors if the
initial corepressors (inducers) concentration is sufficiently
high. It is generally assumed that a single transcription factor
molecule can bind only one corepressor or inducer.

• Degradation Reaction: We consider complexes and en-
zymes as reactants, and at least two product species. The
reactant complexes are bound by the enzymes and split into
simpler molecular species (the products). The mathematical

Reactants Products

!" !# $
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Fig. 4. Mass action chemical reaction between two generic molecular species
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model for the example of Fig. 4 is expressed through a
reaction rate equation [34] as

d[P]
dt
= k f [R1][R2] − kr [P]. (12)

• Subtraction Operation: We consider two reactants and
one product. The product molecule concentration is the
minimum among the initial reactant concentrations. There-
fore, for the mass conservation law, the concentration of
the remaining reactant (”survivor molecule”) is just the
difference between the two initial concentrations.

• Storage Operation: We consider two reactant species,
one is the ligand, the molecule whose concentration value
needs to be stored, and the other is the receptor protein,
synthesized by a specific gene. The two species react by
binding and producing a concentration of complexes propor-
tional to the concentration of ligands if the initial receptor
concentration is set sufficiently high.

IV. MODULATED ENCODER DESIGN BASED ON GENETIC
CIRCUITS

The proposed modulated encoder design encodes two bits
representing the state of the cell at time t, i.e. s(t) = (s1(t),
s2(t)), with an SPC code characterized by codeword length
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K = 3 bits, and modulates the transmission of the codeword
bits xi with two levels, namely, a0 and a1, for the bit 0 and 1.

The proposed design is realized through three main branch-
ing genetic circuits as shown in Fig. 5. Each branch encodes
and modulates a codeword symbol, among which xp (t) is the
parity check symbol. All the symbols are transmitted using
the same molecular species AHL to reduce the complexity of
communications and the energy expenditures [45]. In order to
gain insight into these processes, in the following we consider
the ith branch, i = 1, 2, that produces xi (t) as reported in
Fig. 6. There are two main types of components in our circuit:
• Gene Expression (rectangular blocks in Fig. 6), where,

as detailed in Sec. III-A, a gene repressed/activated by
some transcription factor species (input) synthesizes proteins
(output) which may subsequently be transcription factors for
other rectangular blocks.

• Mass Action Chemical Reaction (oval blocks in Fig. 6),
which corresponds to either a Degradation Reaction or a
Transcription Factor Activation Reaction, as in Sec. III-B.

A. The Sampling of the Information Signal

The concentrations s1(t) and s2(t) are continuous time
binary variables that carry the information on the state of the
cell over time. In order to send this information to neighboring
cells at time t = t, we must consider s(t = t) which means
we have to freeze the state of the cell at that given instant.
As in digital communication systems, we achieve that by
sampling. At t = t we just inject a sufficiently high number
of corepressors Rxi that, through the Transcription Factor
Activation Reaction, activate the molecular concentration of
input (repressive) transcription factors si (t = t). As a result
we drop the time dependency notation in Fig. 6 after the
sampling operation, with s∗i being the sample of si (t) at time
t̄. The value s∗i is the concentration of the activated species
S∗i obtained from the Transcription Factor Activation Reaction
Si + RSi → S∗i , where we have the particular case in which
R1 ≡ Si , R2 ≡ RSi , and P ≡ S∗i . The subscript i is hereafter
considered to assume either the value 1 (First Channel bit) or
2 (Second Channel bit).

Unlike digital communications with electrical circuits, in the
context of genetic circuits we cannot approximate sampling
operations as instantaneous processes. Even if we consider
the injection of molecules as instantaneous, the degradation
time generally happens at a time scale comparable to the
rest of the biological processes, such as gene expression.
This phenomenon, in the context of digital communication, is
known as the “aperture effect” [16]. For this reason, and also
for the stochasticity of the state of the cell, an issue can arise if
the sampling instant t coincides (or is very close to) a raising or
falling edge of the variable si (t), as illustrated in Fig. 7. In the
first interval (for t ≥ 5 s but before si goes up), RSi molecules
degrade just because of natural degradation since there are no
Si molecules around (xi (t = t) = 0). During the sampling
process, si changes its state causing the residual corepressors
RSi to bind (notice the increased consumption speed since
the corepressors are both sequestered by the reaction with si
and naturally degraded) and produce some complexes S∗i with

si
RSi too close 
s*i

 w/ problem
RSi far enough 
s*i

 OK

60

50

40

30

20

10

0
4.5 5 5.5 6

Time (s)

Co
nc

en
tr

at
io

n 
(m

ol
ec

ul
e/
µm

3 )

Fig. 7. Sampling time t close to a raising edge of the variable si (t ). In the
simulation, the variable si (t ) has been assumed to be a square wave with
high level 50 molecule/µm3 and the injection of the corepressors RSi

has
been considered as an instantaneous event. The case where t = t = 5 s shows
the problem of being too close to the raising edge of si (t ).
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Fig. 9. Functional diagram of the parity check bit production.

concentration s∗i . In the end, s∗i will be different from what
it was supposed to be, as shown by the purple curve in Fig.
7. When sampling, in fact, we aim to have s∗i = si (t = t),
achieved when t is not close to any edge. This issue is taken
into account in the simulation of the modulated encoder, and
it results in a random contribution to the concentration s∗i at
the input of the Gene Expression Circuit as a consequence of
the random parameters φ1 and φ2, as explained in Sec. IX.

B. Production of the Signaling Molecules AHL for the First
and Second Channel Bits

1) Gene Expression Circuit: Once produced, the complexes
S∗i repress the promoter of the gene in the Gene Expression
Circuit block in Fig. 3b. This gene contains two different
coding sequences (operon), therefore encoding for two dif-
ferent output protein species, li and ri . An operon is a
group of coding sequences controlled by the same promoter
and expressing the same protein concentration if their RBSs
have similar binding affinity with the ribosome. A simple
representation is shown in Fig. 8 for the Gene Expression
Circuit block.
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The species li is a transcription factor used to activate
the subsequent LuxI Expression block, and its steady state
concentration [li]SS value ranges between a minimum and
a maximum value (depending on s∗i ) without ever being
zero. A zero [li]SS means, in fact, no activation of the
LuxI Expression, hence no production of signaling molecules
AHL yielding an unwanted OOK modulation. For this reason,
when s∗i is high, the Gene Expression Circuit activity is not
completely repressed but is downscaled with respect to the
maximum value, obtained when s∗i is low. Therefore [li]SS

reports the information on the value of s∗i . The species ri
works as an autoregulator of the gene expression, as detailed
next.

2) Gene Expression Circuit Autoregulation and Activation
of the LuxI Expression: The species li is not directly used
as input of the LuxI Expression block because otherwise we
would not be able to control the transmission time, since AHL
molecules would be continuously expressed. Proteins li start
activating LuxI Expression only when they are activated by
some inducers Rli through the Transcription Factor Activation
Reaction. These molecules will be injected only when the first
symbol has to be transmitted on the channel. However, since
[li]SS is a crucial quantity carrying information about s∗i , we
have to maintain this value throughout the activation process
even if it is not known a priori since it depends on the state
of the cell at time t̄. It follows that we are forced to inject
a quite high amount of molecules Rli in order to be sure
that we will not lose the concentration information even when
the Gene Expression Circuit output is maximum (s∗i low).
High Rli concentration, however, leads to errors if during the
binding process the li proteins keep being produced because
the residual Rli molecules will bind to the newly produced li
proteins. As a consequence, the transcription factors r∗i are in
place to completely repress the production of new li .

3) LuxI Expression and Signal Generation: The last block,
LuxI Expression, is a simple gene activated by l∗i and with
LuxI as coding sequence. The parameters of the related
promoter are engineered to give a steady state output concen-
tration ([LuxI]SS = ISS) equal to the value a0 (transmitted
signal for the bit 0) when [l∗i ]

SS assumes its maximum value
(s∗i low), and a1 (transmitted signal for the bit 1) when [l∗i ]

SS

is at its minimum (s∗i high).
Finally, the LuxI enzymes activate the production of the

signaling molecules AHL whose temporal variation is our
transmitted signal xi (t). As in [18], if A is the concentration of
AHL, I (t) the concentration of LuxI as a function of the time

t and ISS its steady-state concentration, we get the following
differential equation:

xi (t) =
dA
dt
= k0I (t) = k0ISS = k0Q0/1, (13)

where k0 = 1 s−1.
4) Induced Degradation of Molecular Species: After trans-

mission of the signal xi (t), enzymes with a degradation rate
(Enzyme-li in Fig.6) are injected to react with and degrade
l∗i . This operation is needed for two reasons. Firstly, LuxI
production by that particular LuxI Expression block has to
be stopped when the following symbol has to be sent on the
channel, since AHL molecules are used for transmission of all
the channel symbols. That way, ISI (at least in transmission)
is mitigated. Additionally, if l∗i complexes are not degraded
before transmission of the ith channel bit of the succes-
sive codeword, InterBlock Interference (IBI) (in transmission)
might occur. IBI occurs also if the enzymes do not degrade.
In both cases ISS would be impaired and a wrong signal xi (t)
would be produced. For the same reason, S∗i complexes have
to be degraded. This is achieved with the EnzymeSi molecules
that are injected only after the parity bit has been encoded and
modulated.

C. Production of the Signaling Molecules AHL for the Parity
Check Bit

The realization of the parity check modulated emission
xp (t) has some differences worth being analyzed separately.
Details on the Parity Check bit are reported in Fig. 9. Here,
the samples s∗1 and s∗2 do not act directly on the Gene
Expression Circuit block but, instead, are processed by the
Biological XOR block to produce the parity check bit xp . The
Biological XOR block realizes the XOR summation between
the information bits s∗1 and s∗2 and it is here designed and
modeled as suggested by Myers in [34]. Once p is produced,
it goes through the same processing as for the first and second
bits, this time to obtain xp (t). Here, the injection times have
to be tuned in order to transmit the parity check symbol only
after the modulated symbols x1(t) and x2(t).

V. GENETIC CIRCUIT FOR L-VALUE COMPUTATION

Fig. 10 reports the sequence of biological operations needed
to compute the L-value L(yi |xi ) given the received noisy
modulated concentration yi .

A. Mass-Action Reaction

The first element in Fig. 10 represents a mass-action
reaction [34] for Subtraction Operation between the input
molecules having concentration yi and the molecules of
species B. The molecule species B has a fixed concentration
equal to a1+a0

2 , which is the quantity to be subtracted from
yi to get L(yi |xi ) according to (7). Once the reaction has
occurred, the remaining concentration of any of the two
molecule species is equal to the value ���yi −

(a1+a0)
2

���, with the
following two possibilities:
• If the input molecules survive, it means that yi −

(a1+a0)
2 > 0

and, therefore, the received noisy concentration yi is above
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the threshold. In this case, the “survivor molecule” concen-
tration value should be interpreted as positive.

• If the molecules of species B survive, it means that yi −
(a1+a0)

2 < 0, and the received noisy concentration yi is
below the threshold. In this case, the “survivor molecule”
concentration value should be interpreted as negative.
In order to distinguish between the two cases, and therefore

propagate the sign through the genetic circuit, two branches
have been introduced in the block diagram, as shown in
Fig. 10. The upper branch is for the positive concentration
and the lower branch is for the negative concentration.

B. Amplifiers with Gain (a1−a0)
σ2

From (7), to complete the calculation of L(yi |xi ), we need
to multiply the difference yi − [B] by the quantity (a1−a0)

σ2 .
For this, we use fixed gain amplifiers with gain (a1−a0)

σ2 .
The amplifier can be realized as proposed in [51], where it
is shown that the transcriptional-output/transcriptional-input
relationship, i.e., the amplifier transfer function, is a linear
amplification whose magnitude depends on the translational
strength of the RBSs sequence in front of a coding sequence
of a protein called hrpS, as in Fig. 11. As shown in the figure,
the genetic amplifier is designed by using the orthogonal
genetic components (hrpR, hrpS and PhrpL), from the hrp
(hypersensitive response and pathogenicity) gene regulatory
module from plant pathogen.
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At the output of each amplifier we have an operon in
place of a single gene, which is needed for the subsequent
processing. These operons, shown in Fig. 10, encode for
the proteins {t2, z3, u2, u3}, while they differ for the last two,
namely, m0, p1 in the upper branch amplifier, and n0, n1 in the
lower branch amplifier. All protein species expressed within
the ith bit time interval will reach the same concentration,
equal to L(yi |xi ). The specific role of each protein will be
detailed in the following.

VI. GENETIC CIRCUIT FOR THE DELAY LINE

By analogy with electrical circuits, a delay line, i.e., the
lower branch with the Delay block in Fig. 2, aids in the
computation of (5), where the conditional L-value of the first
bit of the block L(y1 |x1) needs to be isolated and stored for
the subsequent sum operation once the box-plus operation on
the second and third bits is complete.

By using genetic circuits, delay lines can be realized by
means of receptors as illustrated in Fig. 13, through the
Storage Operation, described in Sec. III.B, at the first bit
interval, where n1 and p1 generated by the amplifiers are the
ligands, and create very stable complexes, i.e., N1 and P1,
with receptors, keeping their concentration values for 2Tb ,
until the box-plus result is ready. For this, we assume that P1
and N1 degrade with very small degradation rate kdeg . This
implements a delay line where the storage function is realized
by the cell itself and the delay is provided by the stability
of the created complexes. On the contrary, the second and the
third bits will be processed by the Box Plus Operation element.

VII. GENETIC CIRCUIT FOR THE BOX-PLUS OPERATION

A description of the genetic circuit blocks and their oper-
ations inside the Box Plus Operation element, whose genetic
circuit is reported in Fig. 14, is given in the following.

A. Gene Expression Circuit

To implement the calculation of the expression in (6), it is
necessary to compute the hyperbolic tangent and its inverse,
which are basic functions for the box-plus operation. For this,
by stemming from the multi-dimensional Hill function model
defined in (10), having (8) as one-dimensional special case,
our design consists of an upper gene regulated by repression
and two lower genes regulated by activation, as shown in Fig.
14. In particular, for the one-dimensional case we optimize the
parameters n and K in (8) to provide the relation between the
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rate of output protein Out and the input transcription factor
In as close as possible to a hyperbolic tangent. If we optimize
in the mean-squared error (MSE) sense by setting M AX=1
and varying both n and Kp values by 0.1 steps, we find that
the minimum MSE is achieved for n = 2 and K = 1 in (8),
expressed as follows:

d[Out]
dt

=
[In]2

1 + [In]2 � tanh
(

[In]
2

)
(14)

Since the expression in (8) contains also the term
−kdeg[Out], based on the aforementioned assumption of
steady state in the sampling of the molecule concentration
values in the designed genetic circuit, we obtain the following:

d[Out]
dt

=
[In]2

1 + [In]2 − kdeg[Out] = 0 ⇒

⇒ [Out] =
1

kdeg

[In]2

1 + [In]2 �
1

kdeg
tanh

(
[In]

2

)
,

which results in [Out] = d[Out]
dt in the case when kdeg = 1.

B. The Logarithmic Function

The expression in (6) includes also the inverse hyperbolic
tangent function, which we realize by stemming from the
following trigonometric identity:

2 atanh(d) = log
(

1 + d
1 − d

)
= log(|1 + d |) − log(|1 − d |). (15)

By applying (15), we rewrite the inverse hyperbolic tangent in
terms of logarithms. This operation is made by the two log(·)
blocks in Fig. 14, where the parameter d in (15) becomes
d = tanh

(
L(y2 |x2)

2

)
tanh

(
L(y3 |x3)

2

)
, thus resulting in the same

expression as in (6).
While the implementation of the arguments 1+ d and 1− d

is detailed in Sec. VII-C, here we focus on the realization of
the logarithmic function. As shown in Fig. 14, since molecule
concentrations cannot assume negative values, two different
genetic circuit blocks are used to approximate the logarithmic
function for either input > 1 or input < 1, detailed next.

1) Logarithm approximation for input greater than 1:
From (15), since d > 0, which is exactly our case since
concentrations are positive, the argument (1+d) of the first log
is always greater than 1. In Fig. 14, the block that realizes this
operation is the upper log(·) block that takes A0 molecules as
input and gives P molecules as output, where, as detailed in the
following, the concentration [A0] = 1+ d. For this, we use an
activated gene as modeled by the Hill function in (8), where
[In] = [A0] and [Out] = [P]. In order to approximate the
logarithmic function with the Hill function, first, we realize a
horizontal shift of our Hill function by means of a mass action
reaction for Subtraction Operation between the input protein
A0 and the protein M , which is set to a concentration equal to
1. This gives the difference [A0]out = [A0]in −1, as explained
in Sec. III. The concentration [A0]out is then fed into the
log(·) block. Second, after an MSE optimization to match the
designed genetic circuit block with the positive logarithmic
function, we identify the following parameter values: n = 1,
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K = 2 and M AX = 2. In this minimization, we took into
account that 1 < [In] = [A0] = |1+d | < 2, without considering
the shift, since d = tanh

(
L(y2 |x2)

2

)
tanh

(
L(y3 |x3)

2

)
. A compar-

ison between the two functions is shown in Fig. 15(a), where
we observe that a very good approximation of the logarithmic
function is achieved for input values [In] ∈ [1, 2].

2) Logarithm approximation for input smaller than 1: The
argument (1 − d) of the second log in (15) is always smaller
than 1. Hence, the second log(·) block in Fig. 14 has to
approximate the absolute value of the negative part of the
logarithm. We realize this through the complementary Hill
function of a repressed gene. An MSE optimization to match
the gene expression with the negative logarithmic function is
realized by setting n = 1, Kp = 0.05 and M AX = | log(10−3) |,
where 10−3 represents the supposed minimum value that the
argument [In] can assume, as shown in Fig. 15(b). However,
for values close to 1, there is a small but non negligible
error. In order to alleviate this problem we design a control
in the expression of the output protein P (see Fig. 14) with
two, in place of just one, different repressive transcription
factors, MT and MD . This approach results in a bivariate Hill
function [4] that describes the rate of output protein production
as a function of [MT ] and [MD] as follows:

d[P]
dt
=H ([MT ], [MD]) =

β1 + β2

1 +
(

[MT ]
k1

)n1
+

(
[MD ]
k2

)n2
, (16)

where βi , i = 1, 2, are the maximum expressions in absence
of the repressors, while ni and ki are the Hill coefficient and
Hill constant related to the corresponding operator region,
respectively, as sketched in Fig. 16. Although the bivariate
Hill function in (16) is valid for any combination of the
inputs [MT ] and [MD], as explained in Sec. VII-C, in our
genetic circuit design these will always have the same value,
resulting in the final behavior of the gene expression [P] versus
[MT ] = [MD] shown in Fig. 17(a), where it is compared
to the desired curve of the logarithmic function. The MSE
optimal parameters to achieve this behavior are n1 = n = 1,
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Fig. 17. Comparison showing good agreement between (a) a logarithmic
function and a complementary bi-variate Hill Function with n1 = n = 1, β1 +
β2 = MAX = | log(10−3) |, k1 = K = 0.05, n2 = 20 and k2 = 0.7, and (b)
a linear function and a Hill function with MAX = 100, K = 92 and n = 1
for [I n] ε [0, 10], respectively.

β1 + β2 = M AX = | log(10−3) |, k1 = K = 0.05, n2 = 20 and
k2 = 0.7.

C. Details on the Box-plus Operation

The design in Fig. 14 realized with the components de-
scribed above, and leading to the box-plus operation described
in (6), is detailed next. The upper Gene Expression Circuit
takes as input two repressive transcription factors, namely, the
molecules T2, whose concentration value is L(y2 |x2), stored at
the second bit interval Tb according to the Storage Operation
process described in Sec. III, and the molecules Z3, whose
concentration value is L(y3 |x3), similarly stored at the third
bit interval Tb . T2 and Z3 are the complexes resulting from the
proteins t2 and z3, respectively. Since this gene is an operon
containing the coding sequences of the proteins A0, T0, and
D0, the output concentrations will result from (16) by setting
β1 + β2 = 1, n1 = n2 = ng and k1 = k2 = kg , meaning that
the operator regions for the two transcription factors have the
same characteristics, expressed as

d[A0]
dt
= H ([T2], [Z3]) =

1

1 +
(

[T2]
kg

)ng

+

(
[Z3]
kg

)ng
. (17)

By analyzing the expression in (17), we observe that it
resembles the following product:

H̃ ([T2], [Z3]) =
1

1 +
(

[T2]
kg

)ng
·

1

1 +
(

[Z3]
kg

)ng

=
1

1 +
(

[T2]
kg

)ng

+

(
[Z3]
kg

)ng

+

(
[T2][Z3]

k2
g

)ng
, (18)

except for the css term at the denominator
(

[T2][Z3]
k2
g

)ng

. At
the same time, the considerations made for the Hill function
in Section VII-A can be extended to the complementary Hill
function. Again, using the same notation as in (14), for K = 1
and n = 2, we obtain

d[Out]
dt

=
1

1 + [In]2 � 1 − tanh
(

[In]
2

)
. (19)

This means that 1
1+[T2]2 � 1 − tanh

(
[T2]

2

)
and 1

1+[Z3]2 �

1− tanh
(

[Z3]
2

)
, therefore H̃ ([T2], [Z3]) � (1− tanh

(
[T2]

2

)
)(1−

tanh
(

[Z3]
2

)
) when kg = 1 and ng = 2. If then we consider the

error between H and H̃ negligible, our gene controlled by two
different repressors gives as output something very similar to
(1 − tanh

(
[T2]

2

)
)(1 − tanh

(
[Z3]

2

)
).

By expanding the presented product d[A0]
dt = H ([T2], [Z3]) =

1− tanh
(

[T2]
2

)
− tanh

(
[Z3]

2

)
+ tanh

(
[T2]

2

)
tanh

(
[Z3]

2

)
, we realize

that, in steady state, [A0] contains the desired quantity. In
conclusion, for retrieving tanh

(
[T2]

2

)
tanh

(
[Z3]

2

)
, we just need

to subtract the quantity 1− tanh
(

[T2]
2

)
− tanh

(
[Z3]

2

)
to [A0]. To

do that, we exploit the other two Gene Expression Circuits,
as shown in Fig. 14, which have both a promoter regulated
by an activator. These circuits take as input the molecules U2
and U3, output complexes of a Storage Operation on u2 and
u3 at the second and third bit interval, respectively. U2 and U3
have concentration values L(y2 |x2) and L(y3 |x3), respectively.
Both these Gene Expression Circuits give as output (operons)
the molecules A0,T0, D0 whose concentrations are related to
the input through the Hill function in (14).

From Section V-B, [u2] = [t2] and [u3] = [z3], and conse-
quently [U2] = [T2] and [U3] = [Z3]. The output concentrations
of the two genes will be [U2]n

K n+[U2]n =
[T2]n

K n+[T2]n � tanh
(

[T2]
2

)
and [U3]n

K n+[U3]n =
[Z3]n

K n+[Z3]n � tanh
(

[Z3]
2

)
for Kp = 1 and

n = 2. Since the output species are the same for all genes,
their concentrations sum up leading to

[A0] = [T0] = [D0] = 1 − tanh
(

[T2]
2

)
− tanh

(
[Z3]

2

)
+ tanh

(
[T2]

2

)
tanh

(
[Z3]

2

)
+ tanh

(
[T2]

2

)
+ tanh

(
[Z3]

2

)
= 1 + tanh

(
[T2]

2

)
tanh

(
[Z3]

2

)
, (20)

which is exactly the argument of the first log in (15). Note
that the expression on the left hand side should be a temporal
derivative that has the same value of the concentration itself,
according to our steady state assumption.

To obtain the argument of the second log in (15), we
use the molecules T0 and D0, which end up producing two
transcription factors with identical concentrations as input to
the log(·). This results in the better fit of the Hill function
to the logarithmic function detailed in (16) and shown in
Fig. 17(a). From now on, we focus on protein T0 since D0
goes through the same processing.

At the output of the Gene Expression Circuits, T0 reacts
with the molecule MT having concentration 2. In this way, at
the end of the reaction we obtain the desired value [MT ] =
2 − (1 + tanh

(
[T2]

2

)
tanh

(
[Z3]

2

)
) = 1 − tanh

(
[T2]

2

)
tanh

(
[Z3]

2

)
.

In the end, we are going to use A0 as the input to the upper
log(·) block, and MT , MD as the inputs to the lower log(·)
block.

The two log(·) blocks should have as output the same
molecules P, since from (15) the second log is preceded by
a minus sign that reverses its actual sign (negative because
1 − d < 1). Ideally, i.e., by neglecting the approximations, at
the output of the log(·) blocks we have
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Fig. 18. Scheme of the chemical reactions and gene that compute the sign
of the box-plus expression.

[P] = log
(
1 + tanh

(
[T2]

2

)
tanh

(
[Z3]

2

))
− log

(
1 − tanh

(
[T2]

2

)
tanh

(
[Z3]

2

))
= 2 atanh

(
tanh

(
[T2]

2

)
tanh

(
[Z3]

2

))
= 2 atanh

(�����
tanh

(
L(y2 |x2)

2

)
tanh

(
L(y3 |x3)

2

) �����

)
, (21)

which is exactly the magnitude, or absolute value | · |, of the
desired box-plus operation expressed in (6).

D. Sign of the Box-plus

The Sign of the Box-plus block in Fig. 14 has the specific
purpose of computing the sign of the box-plus operation
expressed in (6). The sign of the box-plus is negative only
when L(y2 |x2) and L(y3 |x3) have opposite signs, which means
that both n0 and m0 proteins are expressed. These proteins
bind into the complex Sb , leading to production of the sign
protein S through the Threshold Circuit. The latter is a simple
gene circuit with a very steep response that gives a high
output whenever there is input. If the protein S is present,
it reacts with the log(·) block output protein P through a
ligand-receptor binding, creating a complex that binds to a
Linearized Gene Circuit, detailed next, with n1 as output
(negative protein). If the protein S is not present, the protein P
alone binds to another Linearized Gene Circuit that expresses
the protein p1 (positive protein). In Fig. 14, at the output of
the Linearized Gene Circuits, the complexes N1 and P1 are
shown. They result from a Storage Operation on n1 and p1,
respectively, at the third bit interval Tb .

The aforementioned Linearized Gene Circuits, whose bio-
logical schematic is shown in Fig. 18, are obtained through
promoters with a linear response in a given interval [0, δ]. For
this, we need to set M AX � δ, K� δ and n= 1, where M AX ,
K and n are defined in Sec. III. For example, if we set δ = 10,
M AX = 100 and K = 92, we obtain a good approximation,
see Fig. 17(b).

VIII. GENETIC CIRCUIT FOR THE SUM OPERATION TO
COMPUTE L( x̂1)

To obtain the complete expression of a-posteriori log-
likelihood ratio (L-value) L( x̂1) in (6), as shown in Fig. 19 we
sum the output of the biological L-value computation from the
first received modulated concentration, i.e., L(y1 |x1), which
is stored in the concentration of the Biological Delay Line
complexes containing N1 or P1 as described in Sec. VI, with

&(!#@)Delay
(K − 1)<=

[G#]	JK	 L# = &($#|!#)

Box	Plus	Operation

[G#]	JK	 L# =
&($-|!-)�&($1|!1)

Fig. 19. Arithmetic sum to compute the a-posteriori L-value.

7.3 SimBiology Implementation and Simulation Results of the
Biological Decoder 83
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the result of the box-plus operation after the Sign Inversion
Block, as described in Sec. VII-D, in terms of N1 or P1, whose
concentration is equal to the expression in (6). For this, we
assume that the output molecules N1 or P1 from the Sign
Inversion Block react with the same receptors utilized in the
Biological Delay Line, thus forming N1 or P1 complexes.

In the following, N1 is the negative complex and P1 is
the positive complex. We assume that N1 complexes and P1
complexes react with each other. If L(y1 |x1) and L(y2 |x2) �
L(y3 |x3) are of different species, at the end of the reaction,
we are left with the positive P1 or negative N1 complex,
whose concentration is the a-posteriori L-value L( x̂1) (Sub-
traction Operation). On the contrary, in the case L(y1 |x1) and
L(y2 |x2) � L(y3 |x3) are of the same species, we assume that
they will not react, and their concentrations will sum, leading
to the desired result.

IX. SIMBIOLOGY IMPLEMENTATION AND NUMERICAL
RESULTS

The scheme in Fig. 5 has been replicated in Simbiology,
a Matlab package for simulation of biological networks,
with the result reported in Fig. 20. All the concentration
values expressed in the following are intended as normalized
with respect to the average number of intracellular signaling
molecules, typically equal to 1000 molecules per cell [3]. In
the case of an E. coli bacterium, a usual chassis in synthetic
biology, this corresponds to a concentration of 1 molecule/µm3

in a volume V � 10µm3 [35]. From Fig. 20 it is possible to
distinguish three main blocks [31]:
• The Rectangular Blocks represent the species involved in

the reaction network and their concentrations. The only
exception are the green blocks phi1 and phi2 that are
constant parameters with random value, as explained in the
following.

• The Circular Blocks represent generic chemical reactions
stemming from the simple Degradation and Transcription
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TABLE I
(A) PARAMETERS OF THE GENE EXPRESSION CIRCUIT BLOCK, (B)

PARAMETERS OF THE LUXI EXPRESSION BLOCK

(A) Gene Expression Circuit (B) LuxI Expression

Reaction Rate MAXG

1+
(
u∗1
kG

)nG
+

(
r∗1

k1G

)nG MAXL (l∗1/kL )nL

1+(l∗1/kL )nL

M AXG/L 6 22
kG/L 40 1
nG/L 5 3
k1G 1 −

Factor Activation Reactions to the more complex Repression
and Activation of Gene Expression.

• The Square Blocks represent events, value assignments or
mathematical rules.

The rectangular blue blocks S1 and S2 on the left side of
Fig. 20 have concentrations x1 and x2 defined by continuous
time Square Waves with high level xi = 50, i = 1, 2, in order
to simulate the binary nature of the concentrations s1(t) and
s2(t) that continuously define the state of the cell. The Square
Wave is characterized by a random initial phase (φ1 and φ2
for s1 and s2, respectively) so as to model the random state
of the cell when the coding process begins.

The main Circular Blocks are highlighted inside dashed
boxes. The Circular Block inside the dashed box Gene Ex-
pression Circuit simulates a repressed gene expression, where
the transcription and translation processes are seen as one
step process mathematically described by the Hill function, as
detailed in Sec. III-A. The main parameters that characterize
this Circular Block in First Channel Bit are reported in Table
I.A. The Circular Block inside the dashed box LuxI Expression
models the activated LuxI Expression in Figs. 6 and 9 and
the related parameters are shown in Table I.B. Notation is
the same as in Sec. III-A except for the subscripts G and
L used to distinguish the Gene Expression Circuit and LuxI
Expression parameters, respectively. Since the promoter of
the Gene Expression Circuit is repressed by two different
transcription factors, S∗1 and r∗1, it is modeled by a multi-
dimensional Hill function, as in (10). The promoter of the
LuxI Expression is instead activated by just one transcription
factor species l∗1, hence the Reaction Rate is defined by the
one-dimensional Hill function as in (8).

The parameters of the Gene Expression Circuit have been
chosen considering s1(t) = 50 when the species S1 is present.
As in Fig. 22(a), even if s1(t) = 50 at the sampling time
(s∗1 = 50), assuming [r∗1]SS = 0, the gene is not completely
repressed hence, in steady state, [l1]SS (and likewise [l∗1]SS for
the Transcription Factor Activation Reaction) will be different
from zero and able to activate the subsequent LuxI Expression.

The parameters of the LuxI Expression have been engi-
neered to give a steady state output k0ISS = a0 = M AXL = 22
when [l∗1]SS = 6 = M AXG (which, in turn, means s∗1 = 0)
and k0ISS = Q1 � 20 when [l∗1]SS � 2 (obtained when
s∗1 = 50), as in Fig. 22(b). While a thorough discussion is left
to future work, these values allow for an optimal Gaussian
approximation of the molecule counting noise in a diffusion-
based channel [40].
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ε [−20, 7] dB, which show
a good agreement between the performance of the simulated biological circuit
and an exact L-value computation using analytical formulas.

Finally, as explained in Sec. IV-B2, r∗1 has to strongly
repress the promoter of the Gene Expression Circuit. Since
[r∗1]SS ≡ [l∗1]SS , a small value for k1G has to be chosen in
order to get an efficient repression even when [r∗1]SS is small
(s∗1 high). The result for k1G = 1 is observable in Fig. 22(a).
In order to have a quite strong repression, whatever the value
of s∗1, we need [r∗1]SS ≥ 2 and this is guaranteed since, even
in the case of maximum gene expression input s∗1 = 50, the
output of the operon (Fig. 8) would be [r∗1]SS ≡ [l∗1]SS � 2.

Simulation curves as function of time are reported in Fig.
21. For a better visual result, only the main species S1, S2
and LuxI with concentrations s1(t), s2(t) and I (t), respec-
tively, are shown. Notice that, from Eq. (13), I (t) and xi (t)
are directly related, hence I (t) behavior over time gives us
information about the transmitted symbols.
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The sampling of s1(t) and s2(t) occurs at t = t = 5 s. In that
instant, the state of the cell (s1(t = t), s2(t = t)) = (50, 50) so
the parity check bit should be 0. Looking at the variable LuxI
in Fig. 21, we realize the information has been encoded and
modulated correctly. The encoding process begins at t = 10 s,
using the 5 s time gap to degrade any possible residual LuxI
molecules from the previous codeword. The bit time interval is
set to Tb = 5 s in order to get the steady state expression of the
LuxI Expression block, i.e. Q0 = 22 when s∗i = 0 and Q1 � 20
when s∗i = 50 (i = 1, 2). Observing the LuxI concentration in
t = 15 s, t = 20 s and t = 25 s, we get the modulated channel
symbols (Q1,Q1,Q0) corresponding to the encoded bits (110),
consistently with what we desired to transmit.

To test the performance of the proposed genetic circuit
design, we implemented the block diagram in Fig. 2 in the
Matlab SimBiology environment, generalized to compute the
L-value for each of the three bits. The value of the bit interval
has been tuned such that all the genetic circuits achieve the
steady state condition, approximated by the condition that
all the output concentrations should be above 99 % of their
ideal steady state value. The AWGN is generated by randn
and summed to the transmitted channel bits according to
the assumptions in Sec. II-C to get the received modulated
concentrations yi . The sequence of yi is then passed as input
to our code, which computes an estimate of L( x̂k ), k = 1, 2, 3,
after the third bit time interval of each codeword.

To have a comparison between the theoretical performance
achieved by the ideal L-value computation and that given by
our circuit, we run Monte Carlo simulations to measure the
BER versus signal-to-noise ratio Es

N0
= 1

2σ2 . These results,
shown in Fig. 23, are obtained by deciding on the received
bit according to the L-value sign, i.e., Maximum A-Posteriori
detection. The number of transmitted codewords N used to test
the performance is variable and depends on the Es/N0 value.
It has been chosen as a trade-off between computational time
and reliability of the estimate. The number of codewords for
BER calculation varies from N = 100 codewords at Es/N0 =

−20 dB to N = 3 · 106 at Es/N0 = 7 dB.
It is also of interest to analyze the error of our genetic

circuit in terms of L-values. We calculated L( x̂k ) for 90
transmitted channel bits, belonging to N = 30 different

codewords, impaired by Gaussian noise with variance σ2, and
we measured the MSE with respect to the L-values provided
by our genetic circuit for σ2 ε [10−1, 5], as reported in Fig. 24.
A higher error for smaller noise values can be observed, since
high values of log-likelihood ratios are obtained leading to
tanh(L(yi |xi )) � 1. From (21), this results into very large
output values of the logarithmic function which are not well
approximated by our genetic circuit elements. In any case,
even when the MSE for the L-values is large, the performance
of our circuit in terms of BER are very close to those resulting
from an electrical circuit implementation [15].

Finally, it is important to notice that according to the ideal
time bit interval Tb = 5 s, chosen to ensure the steady state
expression of the LuxI Expression block according to the
parameters in Table I, results in an overall bit-rate of the
communication system of 0.2 bps (or 2/3*0.2 = 0.13 bps, if
we exclude parity bits). While outside of the scope of this
paper, the low-level design of our biological circuits would
proceed by choosing the biological circuit components that
are in agreement with the constraints given in our theoretical
analysis. We anticipate that this will mainly depend on the
time for the Hill function of each gene to reach the needed
steady state of protein concentration starting from the state
at the previous time interval (bit time interval or sampling
interval depending on its location in the circuit), as expressed
in (11). This can range from seconds to minutes or even hours,
depending on the particular gene, and the slowest gene to reach
the needed steady state could constitute the rate limiting step
of the overall communication system, and have most of the
influence in the choice of the optimal Tb .

X. CONCLUSION

In this paper, inspired by recent studies favoring the effi-
ciency of analog computation over digital one in biological
cells, we proposed the design and simulation of a biological
modulated parity-check encoder and of the associated analog
decoder for molecular communication in a biological cell.
The design is based on the genetic engineering of genetic
circuits, realized entirely in the biochemical domain by using
activation and repression of gene expression, and reactions of
molecular species. Genetic circuits have been first designed
by using concepts provided by synthetic biology and then
simulated using SimBiology, which provides programmatic
tools to model, simulate, and analyze dynamic systems. The
modulated parity-check encoder is able to read and encode
the molecular information through serialization of a naturally
parallel information. Encoder and decoder presented in this
paper are intended as a proof-of-concept design methodology
for utilizing genetic circuit components to design functionali-
ties in the MC domain, with potential use in the engineering
of future devices for the Internet of Things in biological
environments. For this reason, the main focus has been devoted
to the analysis of the analog decoder by considering only
a single transmitter-receiver system, leaving a more realistic
study with multiple transmitter and receiver cells to future
work. Biochemical simulation data of the resulting genetic
circuit demonstrate very close performance to an electrical
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network implementation in terms of BER, and low MSE with
respect to the L-values computed with electrical circuits for
channels in conditions of relatively high noise.
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