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ABSTRACT: The performance of existing detailed chemical mechanisms with respect to moderate or intense low-oxygen
dilution (MILD) combustion is not optimal. The use of optimization procedures can therefore be used to quantify and
minimize the uncertainties in chemical mechanisms with respect to available experimental targets in these conditions. This work
puts forth a methodology that improves the performance of chemical kinetics with respect to MILD combustion. The
experimental data used in this paper are from a plug flow reactor, where the ignition delay time for methane and biomass
pyrolysis products in MILD conditions was analyzed. The initial mechanism was then evaluated, and the reactions with the
highest impact factors were used in the optimization process. The combination of parameters that gave the lowest error with
respect to the experimental data was then determined, and the proposed mechanism performance was improved with respect to
the experimental targets.

1. INTRODUCTION

The future energy demand is constantly increasing at the same
time as emission regulations are becoming stricter to reduce
the environmental impact from energy production. One of the
most flexible technologies to produce energy is through
combustion, but to satisfy these criteria, new and more efficient
combustion technologies are needed. Moderate or intense low-
oxygen dilution (MILD) combustion is one such technology.
MILD conditions can be reached by recirculating hot
combustion products back toward the fuel stream, thus
diluting and preheating the fuel. When the temperature of
the fuel stream is above the self-ignition temperature of the fuel
and the maximum temperature increase is less than the self-
ignition temperature of the fuel, MILD conditions are
reached.1 Under these conditions, the temperature peaks are
drastically reduced and, therefore, also the NOx emissions
because of reduced production of thermal NOx in the
combustion process. These conditions also lead to a more
homogeneous temperature distribution, where there is no
visible flame in the combustion zone, which is why such a
regime is often referred to as flameless combustion.2,3 These
aspects ensure both lower emissions and more efficient
combustion, which also allows for unconventional fuels to be
used in an efficient way.

The implementation and development of this technology for
different applications can be drastically improved using
computational fluid dynamics (CFD). CFD is much more
time-efficient and more economical compared to more
traditional trial and error approaches. With CFD, many
different conditions can be tested efficiently to find the
optimal configuration for each application.
However, modeling aspects become critical while simulating

MILD combustion. As a result of the strong mixing between
the fresh reactants and hot combustion products and the lower
temperature in these conditions, the mixing time scale is
reduced at the same time as the chemical time scale is
increased; i.e., these conditions are characterized by low
Dahmköler numbers, with respect to conventional combustion.
This results in a strong interaction between fluid dynamics and
chemistry, thus indicating that a detailed chemical mechanism
should be used. The problem that arises from this is that
existing detailed chemical mechanisms were all developed and
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validated in conventional combustion regimes, while their
performance for MILD combustion conditions is not optimal.
Recently, Tu et al.4 worked on the optimization of global

reaction mechanisms, specifically for MILD combustion.
However, they do mention that the prediction of intermediate
products, such as CO, is not captured well with these global
mechanisms as a result of the absence of radical species, such
as OH.
In Sabia et al.,5 a numerical study showed that existing

detailed chemical mechanisms are not accurately predicting the
so-called negative temperature coefficient (NTC) region,
which is highly influential in MILD conditions. It was also
shown in the study by Sabia et al.6 that, while the general
behavior of a MILD combustion system is predicted with
different detailed mechanisms, the moment of ignition differs
drastically. This quantity is very important to accurately predict
the behavior of MILD regimes, because these conditions rely
on a highly distributed ignition process. Further, the modest
temperature increments in these conditions emphasize the
effects of the uncertainties of the chemical reaction rates, and
the performance of the kinetic models is therefore also highly
uncertain. To improve the proficiency of chemical mechanisms
with respect to MILD combustion, optimization/uncertainty
quantification (UQ) can be used to quantify and minimize the
uncertainties in the existing chemical mechanism. When
uncertainties are prescribed to parameters in the chemical
mechanism, the inherent uncertainty in the mechanism can be
re-evaluated and a more optimal combination of kinetic
parameters can be chosen for the specific conditions. This is
often called backward UQ or the inverse problem.7 This
methodology was applied for the development of the widely
used GRI-Mech 3.0 mechanism,8 applying the so-called
bound-to-bound data collaboration (B2B-DC) approach,9 as
well as for the development of a mechanism for hydrogen10

and syngas combustion.11 There have also been some recent
work on the optimization of a hydrogen combustion
mechanism12 and a joint hydrogen and syngas combustion
mechanism13 using a different methodology described in the
study by Turańyi et al.14

Recently Samu et al.15 used the same approach as in the
study by Turańyi et al.14 to optimize a few reactions with
respect to specific experimental targets, namely, NH2
concentration profiles in ammonia-doped methane flames. A
similar approach was applied for this work, to improve an
existing detailed mechanism performance with respect to
MILD combustion targets, for which there is no existing
literature.

2. MATERIALS AND METHODS
The reliability of the optimization procedure increases with the
number of experimental data points considered. However, the
available data from canonical reactors in MILD conditions and for
the range of investigated dilution conditions is quite scarce in the
literature. We therefore considered the 50 available data points from
Sabia et al.16 and Sabia et al.,17 where the ignition delay time for
methane and biomass pyrolysis products in MILD conditions in a
plug flow reactor (PFR) was measured. The combination of two
different fuel compositions, methane and biomass pyrolysis products,
is nevertheless a first step toward the development of a generally
applicable mechanism for MILD combustion.
2.1. Experimental Data. The same experimental facility was used

in both cases, which consists of a 1.4 m long tube with an internal
diameter of 0.01 m, which was enclosed in a heater to reduce heat loss
to the surroundings, and the overall heat transfer coefficient was

estimated in the study by Sabia et al.16 to be 100.4 W m−2 K−1. A
mixture of fuel and air, diluted with nitrogen, was injected at
atmospheric pressure at different C/O or oxygen ratios (Ω)18 and
different inlet temperatures. The use of the oxygen ratio for the
biomass pyrolysis product data was due to the presence of partially
oxidized compounds in the fuel. A more detailed discussion and
description regarding this can be found in the study by either Sabia et
al.17 or Mueller et al.18 The reference composition of the biomass
pyrolysis products was 1% C2H4, 2% C2H6, 10% CH4, 25% CO, and
62% CO2. The nitrogen dilution was 85% for the methane cases and
90% for biomass pyrolysis product cases.

In the experiments, the ignition delay time was calculated as the
ratio between the distance where the temperature was 10 K higher
than the inlet temperature and the velocity. The same definition was
applied in the present work for a direct comparison between the
experimental data and the simulation results. The temperature was
measured along the reactor axis with thermocouples of type N every
0.05 m. The experimental uncertainty was estimated on the basis of
the displacement of the thermocouples and the inlet velocity of the
mixture.16,17

The experimental conditions were simulated using the open-source
software OpenSMOKE++19,20 for non-isothermal and non-adiabatic
conditions. According to Sabia et al.,16 the Reynolds number is higher
than 3000 for the experiments, which verifies the plug flow
assumption in the model.

2.2. Optimization Procedure. To determine the main
parameters for the optimization study, a ranking of the reactions
was conducted on the basis of a so-called impact factor.21 The impact
factor was defined as the absolute value of the local sensitivity
coefficient multiplied with the uncertainty parameter ( f) for the
reaction. This was initially introduced by Warnatz22 as a measure to
know for which reactions more experimental work is necessary. In this
work, it was used instead as an indication of how impactful changing
the kinetic parameters of one reaction would be with respect to the
quantity of interest (QoI). This impact factor has also been referred
to as the “sensitivity uncertainty index”23 as well as “optimization
potential”24,25 in previous studies. The sensitivity coefficient for each
reaction (i) was calculated as a normalized sensitivity to the
temperature with respect to a change in the pre-exponential factor,
i.e., (Ai/T)(dT/dAi),

26 at the exact moment of ignition, for each of
the data points. The use of local rather than global sensitivity analysis
have been discussed in refs 26 and 27, and also in this work, a local
sensitivity analysis was considered sufficient to determine the most
influential reactions with respect to the QoI, i.e., the ignition delay
time. The uncertainty parameter f is defined as f = log10(k0/kmin) =
log10(kmax/k0), where k0 is the standard rate coefficient and kmin and
kmax are the minimum and maximum values of the rate coefficient,
respectively.

The uncertainty parameters were primarily extracted from the
Baulch database28 for the 20 reactions with the highest absolute value
of the sensitivity coefficients at each data point. However, if the
reaction was not listed in the study by Baulch et al.,28 estimations of
the uncertainty parameter based on data from Manion et al.29 were
made. Considering that, for these reactions, not much data were
available, relatively high uncertainty parameters were assumed, i.e., f ≥
0.5. Although the uncertainty parameter f is a temperature-dependent
parameter, it should be noted that, in this work, only the highest value
for each reaction was considered.

The uncertainty range of the reaction parameters, i.e., the pre-
exponential factor (A), the temperature exponent (β), and the
activation energy (E), were then evaluated through the following
steps: (a) First only A is considered uncertain, which then
corresponds an uncertainty range equal to the extreme curves kmin
and kmax. (b) If either β or E are equal to zero, the range of the second
non-zero parameter can simply be determined with the extreme
points, kmin(Tmax) with kmax(Tmin) and kmax(Tmax) with kmin(Tmin),
where Tmin and Tmax were taken as a large range (300−2500 K) to
ensure a large validity of the mechanism. (c) Otherwise, the range of β
is evaluated by fixing E to its nominal value as well as letting A be
unknown. Then, using the extreme points defined by the temperature
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range and the maximum and minimum rate coefficient curves, the
maximum and minimum β values can be found. The range of A
determined in this step is not considered, because the range
determined in step a is used for this parameter. (d) Finally, the
range of E is determined similarly as for β in step c, using the extreme
points. However, this time, β is fixed to its nominal value and A is still
considered unknown. Again, the range of A determined in this step is
not considered.
An example of this procedure can be seen in Figure 1, where the

extreme curves for the rate coefficient for reaction CH4 + H = H2 +
CH3 are plotted as well as the base curve k0 and the kmin and kmax
curves.

This approach is similar to what is described in the study by Nagy
et al.,31 but they recommend using a range for β of ±2 of the base
value. This range was found to be too large for the above-mentioned
reaction, which is why this new approach is proposed.
This space of parameters was then sampled using latin hypercube

sampling (LHS), which were used to create surrogate models with the
help of the Matlab toolbox ooDACE,32,33 which uses the so-called
Kriging interpolation method.34 A surrogate model in this aspect
refers to a simplified model of the full system for a faster estimation of
the model output. One surrogate model was created with respect to
each experimental point to reduce interpolation errors with respect to
either inlet temperature, C/O ratio, or Ω value. Only some of the
initial samples created with LHS were used for the surrogate building,
while the rest were used to evaluate the fitting error of the surrogate
models, with respect to the total set of samples. Then, rather than
adding other random samples to reduce the fitting error, the samples
that showed the highest fitting error were added to the surrogate
building process in an iterative way until the maximum fitting error
reached a converged value strictly lower than 10%. This so-called
adaptive sampling procedure reduces the number of samples needed
for building the surrogates as well as the size of the initial sample pool
needed, including both samples used for building the surrogates and
the samples used for evaluating the fitting error. To ensure a good
estimation of the fitting error, the total sample pool was at least twice
the size of the number of final samples used to build the surrogate
models. It should be noted that the size of the sample pool could not
be determined a priori; instead, a sufficiently large number of samples
was included. For the cases evaluated in this work, a set of 600
samples was initially created and used for the surrogate building and
the fitting error evaluation.
The final surrogate models were then used to evaluate several

thousands of combinations of the uncertain parameters, to find the
optimal combinations of values with respect to the experimental data.
However, to ensure that a specific combination of parameters allowed
the rate coefficient to stay within its uncertainty limits, an a posteriori

evaluation of the kinetic parameter combinations was performed and
only the combinations that gave k values within the uncertainty limits
were considered.

The use of surrogate models rather than evaluating each possible
parameter combination through simulations can drastically reduce the
computational costs, considering both storage and calculation time,
and is widely adopted in the field of UQ.10,11,13,35−37

As a final step, a least squared fit was evaluated, considering the
discrepancy between the surrogate model predictions and the
experimental data points

S d M X( ( ))
n

n n
2∑= −

(1)

where S is the sum of the square of the residual between the
experimental data (d) and model prediction (M), in each point n. The
combination of the uncertain parameters X that showed the lowest S
can therefore be considered the optimal set of kinetic parameter
values for the experimental targets used in this work.

It should be noted that nonlinear optimization problems, such as
this, could consists of several local minima of the objective function S,
and finding the global minimum is difficult. However, using the
approach described in this paper ensures that each viable combination
within the predetermined uncertainty range was evaluated and
compared against each other and, therefore, allows the determination
of the optimum out of all of the evaluated parameter combinations.

The primary purpose of the present paper is to show the feasibility
of the presented approach, demonstrating it for the MILD
combustion of methane and biomass pyrolysis products under high
dilution conditions.

3. RESULTS AND DISCUSSION
An initial set of simulations with eigth different, well-known,
detailed chemical mechanisms showed that the POLIMI C1−
C330 mechanism gave the smallest average error with respect
to the experimental targets. The average error was calculated as
the absolute difference between the experimental value and the
simulation estimation, for each experimental point, divided by
the experimental value in that point. In Table 1, the different

mechanisms used can be seen with reference, number of
species, number of reactions, and average deviation from the
experimental data. The simulation results are presented in
Figures 2−7 in so-called Arrhenius plots, where the ignition
delay time is presented in the logarithmic scale on the y axis
and the x axis is represented by 1000 divided by the inlet
temperature of the mixture. For the methane cases, the C/O
ratio spans from 0.025 to 0.2, i.e., fuel-lean conditions, and for
the biomass pyrolysis product cases, Ω is equal to 0.9 and 1,
i.e., fuel-rich and stoichiometric conditions. This ensures that
the experimental data overall cover a large range of conditions.

Figure 1. Rate coefficient for reaction CH4 + H = H2 + CH3, where
the solid line corresponds to the nominal curve from the POLIMI
C1−C330 mechanism and the dashed lines correspond to the extreme
curves kmin and kmax, while the dashed curves with stars correspond to
the extreme curves for the temperature exponent β and the dashed
curves with squares correspond to the extreme curves for the
activation energy E, derived from the approach described in the text.

Table 1. List of Chemical Mechanism Used in This Work
with Reference, Number of Species, Number of Reactions,
and Average Absolute Deviation from Experimental Data16

mechanism reference
number of
species

number of
reactions

average absolute
deviation (%)

Aramco1.3 38 124 766 50.06
Aramco2.0 39 502 2716 43.97
Galway 40 293 1593 44.19
GRI2.11 41 49 279 67.53
GRI3.0 8 53 325 67.86
POLIMI 30 107 2642 39.66
San Diego 42 57 268 77.86
Zhukov 43 549 2518 66.57
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The impact factor analysis resulted in a set of 42 different
reactions, which occurred in the top 20 most sensitive
reactions for at least one of the simulated conditions. The
average impact factor for these reactions can be seen in Figure
8, where they are also ranked on the basis of this value.
To reduce the number of parameters evaluated in this study,

an initial evaluation of the top five reactions was performed, to
determine if the prior uncertainty range for each reaction was
enough to cover the complete range of the experimental
uncertainty. This was performed by evaluating the individual
uncertainty of each reaction, propagated with respect to the

experimental data. If the prior uncertainty range for a specific
reaction was not sufficient enough, that reaction was not
considered in the optimization process.
This study showed that reactions R229 (O2 + CH3 = O +

CH3O) and R513 (CH3OO = CH2O + OH) had very small
impact on the prediction of the ignition delay time, especially
for the biomass pyrolysis product cases, even though their
global impact factor ranking was high. Reactions R1 (O2 + H =
O + OH), R271 (HO2 + CH3 = OH + CH3O), and R405
(CH4 + H = H2 + CH3) on the other hand showed large prior
uncertainty ranges on the ignition delay time predictions with

Figure 2. Ignition delay time for methane at different inlet
temperatures for C/O = 0.025. Experimental data are represented
by points, while simulation results for the different mechanisms are
presented by colored lines.

Figure 3. Ignition delay time for methane at different inlet
temperatures for C/O = 0.075. Experimental data are represented
by points, while simulation results for the different mechanisms are
presented by colored lines.

Figure 4. Ignition delay time for methane at different inlet
temperatures for C/O = 0.1. Experimental data are represented by
points, while simulation results for the different mechanisms are
presented by colored lines.

Figure 5. Ignition delay time for methane at different inlet
temperatures for C/O = 0.2. Experimental data are represented by
points, while simulation results for the different mechanisms are
presented by colored lines.

Figure 6. Ignition delay time for biomass pyrolysis products at
different inlet temperatures for Ω = 0.9. Experimental data are
represented by points, while simulation results for the different
mechanisms are presented by colored lines.

Figure 7. Ignition delay time for biomass pyrolysis products at
different inlet temperatures for Ω = 1.0. Experimental data are
represented by points, while simulation results for the different
mechanisms are presented by colored lines.
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respect to all of the experimental data. The complete
evaluation of these reactions can be seen in the Supporting
Information.
Reaction R1 (O2 + H = O + OH) is indeed very influential

in the ignition process because it is a branching reaction, which
creates two highly reactive radicals (O and OH), and although
the uncertainty parameter for this reaction is quite low, i.e., f =
0.2, even small changes to the kinetic parameters have a large
impact on the prediction of the ignition delay time.
Reaction R271 (HO2 + CH3 = OH + CH3O) is an oxidation

route for methyl, and it is also highly influential for the ignition
delay time in MILD conditions, which is discussed in the study
of Sabia et al.16 This reaction consists only of a value for the

pre-exponential factor A, while the other Arrhenius parameters
are zero. The uncertainty parameter f for this reaction is
therefore very high, i.e., f = 1, and, hence, also the impact
factor.
Reaction R405 (CH4 + H = H2 + CH3) is a propagation

reaction, which creates the methyl radical, already mentioned
before to be highly influential for the ignition delay time in
MILD conditions.
The nominal parameter value as well as the minimum and

maximum values for these three reaction can be found in Table
2.

Surrogate models was thereafter built based on these seven
parameters, and a large number of valid parameter
combinations, namely, 544 480, was evaluated to find the
optimal combination.
As mentioned, the criteria for determining the overall

optimal mechanism was performed by evaluating the sum of
the square of the residual for each surrogate model/
experimental point. The performance of this optimized
mechanism, with respect to the nominal POLIMI C1−C330
mechanism, can be seen in Figures 9−14.
The corresponding parameters for the optimized mechanism

are presented in Table 3 as well as the sum of squared residuals
(S), calculated using eq 1. For comparison, the nominal
POLIMI C1−C330 mechanism parameters are also presented
in Table 3, together with its calculated sum of squared residual.

Figure 8. Average impact factor for the 42 reactions, which occurred
in the top 20 most sensitive reactions for at least one simulated
condition. The reactions are presented in descending order based on
this averaged impact factor.

Table 2. Uncertain Parameters for Considered Reactions
with Nominal Values from the POLIMI C1−C330
Mechanism and Prior Uncertainty Range of Each
Parametera

kinetic parameter nominal value minimum value maximum value

R1 (O2 + H = O + OH)
AR1 9.6 × 1011 6.1 × 1011 1.5 × 1012

βR1 −0.2 −0.6 0.2
ER1 16625 16001 17249

R271 (HO2 + CH3 = OH + CH3O)
AR271 6.00 × 109 6.00 × 108 6.00 × 1010

R405 (CH4 + H = H2 + CH3)
AR405 3.0 × 104 1.2 × 104 7.5 × 104

βR405 2.0 1.13 2.87
ER405 10000 8752 11248

aThe units of the different kinetic parameters are as follows: A (s cm3

mol), β, and E (cal/mol).

Figure 9. Comparison between the nominal (green) and optimized
(blue) POLIMI C1−C330 mechanism for methane at C/O = 0.025.
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To ensure that the performance of the optimized mechanism
did not diminish for conventional conditions, a validation
against the ignition delay time for methane in conventional
conditions was also performed. This validation showed that the
optimized mechanism gave improved predictions also for
conventional conditions, with respect to the nominal POLIMI
mechanism. This validation can be found in the Supporting
Information.

4. CONCLUSION
Existing detailed chemical mechanisms are not accurate in
predicting non-conventional combustion, such as MILD
combustion. There is therefore a need to quantify and
minimize the uncertainties in the mechanism with respect to
these conditions. This work puts forth a methodology based on
UQ of selected kinetic parameters chosen based on an impact
factor ranking that gives major improvements in the prediction
of the ignition delay time for MILD combustion. A new
strategy for evaluating the physical limits of the kinetic
parameters has also been developed within this work. The
evaluation in this work was based on experimental data of the
ignition delay time of methane and biomass pyrolysis products
in MILD conditions in a PFR, extracted from Sabia et al.16 and
Sabia et al.17

The three most impactful reactions were reactions R1 (O2 +
H = O + OH), R271 (HO2 + CH3 = OH + CH3O), and R405
(CH4 + H = H2 + CH3). The kinetic parameters from these
three reactions were considered uncertain within their physical
limits, and the following conclusions can be made based on

Figure 10. Comparison between the nominal (green) and optimized
(blue) POLIMI C1−C330 mechanism for methane at C/O = 0.075.

Figure 11. Comparison between the nominal (green) and optimized
(blue) POLIMI C1−C330 mechanism for methane at C/O = 0.1.

Figure 12. Comparison between the nominal (green) and optimized
(blue) POLIMI C1−C330 mechanism for methane at C/O = 0.2.

Figure 13. Comparison between the nominal (green) and optimized
(blue) POLIMI C1−C330 mechanism for biomass pyrolysis products
at Ω = 0.9.

Figure 14. Comparison between the nominal (green) and optimized
(blue) POLIMI C1−C330 mechanism for biomass pyrolysis products
at Ω = 1.0.

Table 3. Resulting Parameter Combinations for Reactions
R1 (O2 + H = O + OH), R271 (HO2 + CH3 = OH + CH3O),
and R405 (CH4 + H = H2 + CH3) That for Each Evaluation
Gave the Least Squared Error Sa

kinetic parameter nominal value optimized value

AR1 9.6 × 1011 6.1 × 1011

βR1 −0.2 −0.2
ER1 16625 16556
AR271 6.0 × 109 2.56 × 1010

AR405 3.0 × 104 7.54 × 104

βR405 2 2
ER405 10000 10139
S 2.03 × 10−3 4.99 × 10−4

aThe units of the different kinetic parameters are as follows: A (s cm3

mol), β, and E (cal/mol).
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results from the optimization process: (1) The parameter
combination that gave the least squared fit, presented in Table
3, showed slight improvements for the methane cases,
especially for high inlet temperatures and for the C/O = 0.2
case, where the optimized mechanism showed improvements
for all inlet temperatures. (2) For the biomass pyrolysis
product cases, quite drastic improvements could be noticed, in
both the slope and the ignition delay time predictions. (3) As
seen in Table 3, the pre-exponential factor and activation
energy for reaction R1 (O2 + H = O + OH) should be
decreased slightly, while the temperature exponent should be
kept the same value. (4) The pre-exponential factor for
reaction R271 (HO2 + CH3 = OH + CH3O) should be
increased by almost a factor of 2. (5) For reaction R405 (CH4
+ H = H2 + CH3), the pre-exponential factor should be
increased by a factor of 2.5, while the temperature exponent
should be kept to its nominal value and the activation energy
should be reduced slightly. (6) Finally, a validation against the
ignition delay time for methane−air mixtures in conventional
conditions showed an improved performance also for these
conditions.
The approach used in this paper has proven to be very

successful on this set of data, and we plan to apply this
methodology to a wider range of experimental targets, to
confirm its potential. However, it should be noted that
experimental data for MILD combustion in these kinds of
systems, i.e., canonical reactors, are not so abundant.
Moreover, the prediction of the ignition delay time is of
major importance in MILD conditions; because it relies on a
distributed ignition process, the use of these data as an initial
step for the optimization based on MILD combustion was
therefore warranted.
To further improve the mechanism, additional reactions

could also be added to the optimization process. However, as
seen in this work, using only these three reactions, quite
significant improvements could be achieved. This work was
therefore considered concluded, but in future work, the aspect
of increasing the number of reactions will be evaluated to see if
the performance could be improved further.
The aspect of combining mechanism reduction with UQ will

also be explored in future work. This will make the mechanism
applicable for large-scale simulations, and at the same time, the
performance will be improved through the use of UQ.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.energy-
fuels.8b01022.

Prior uncertainty range evaluation and validation against
conventional conditions (PDF)

■ AUTHOR INFORMATION
Corresponding Authors
*E-mail: magnus.furst@ulb.ac.be.
*E-mail: alessandro.parente@ulb.ac.be.
ORCID
Magnus Fürst: 0000-0003-1921-8635
Marco Lubrano Lavadera: 0000-0003-2173-4997
Alessio Frassoldati: 0000-0003-0264-438X
Alessandro Parente: 0000-0002-7260-7026

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work has been carried out in the framework of the Short
Term Scientific Mission Program of SMARTCATs COST
Action (CM1404, www.smartcats.eu), supported by COST
(European Cooperation in Science and Technology, www.cost.
eu), and has received funding from the European Union’s
Horizon 2020 Research and Innovation Program under the
Marie Skłodowska-Curie Grant Agreement 643134.

■ REFERENCES
(1) Cavaliere, A.; de Joannon, M. Prog. Energy Combust. Sci. 2004,
30, 329−366.
(2) Wang, F.; Mi, J.; Li, P. Energy Fuels 2013, 27, 3488−3498.
(3) Evans, M. J.; Medwell, P. R.; Wu, H.; Stagni, A.; Ihme, M. Proc.
Combust. Inst. 2017, 36, 4297−4304.
(4) Tu, Y.; Yang, W.; Liu, H. Energy Fuels 2017, 31, 10144−10157.
(5) Sabia, P.; de Joannon, M.; Picarelli, A.; Chinnici, A.; Ragucci, R.
Fuel 2012, 91, 238−245.
(6) Sabia, P.; Sorrentino, G.; Chinnici, A.; Cavaliere, A.; Ragucci, R.
Energy Fuels 2015, 29, 1978−1986.
(7) Wang, H.; Sheen, D. A. Prog. Energy Combust. Sci. 2015, 47, 1−
31.
(8) Smith, G. P.; Golden, D. M.; Frenklach, M.; Moriarty, N. W.;
Eiteneer, B.; Goldenberg, M.; Bowman, C. T.; Hanson, R. K.; Song,
S.; Gardiner, W. C. J.; Lissianski, V. V.; Qin, Z. GRI-Mech 3.0; http://
combustion.berkeley.edu/gri-mech/.
(9) Frenklach, M.; Packard, A.; Seiler, P. Prediction uncertainty from
models and data. Proceedings of the 2002 American Control Conference
(IEEE Catal. No.CH37301) 2002, 5, 4135−4140.
(10) You, X.; Packard, A.; Frenklach, M. Int. J. Chem. Kinet. 2012,
44, 101−116.
(11) Slavinskaya, N. A.; Abbasi, M.; Starcke, J. H.; Whitside, R.;
Mirzayeva, A.; Riedel, U.; Li, W.; Oreluk, J.; Hegde, A.; Packard, A.;
Frenklach, M.; Gerasimov, G.; Shatalov, O. Energy Fuels 2017, 31,
2274−2297.
(12) Varga, T.; Nagy, T.; Olm, C.; Zseĺy, I.; Paĺvölgyi, R.; Valko,́ É.;
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(27) Zad́or, J.; Zseĺy, I. G.; Turańyi, T.; Ratto, M.; Tarantola, S.;
Saltelli, A. J. Phys. Chem. A 2005, 109, 9795−9807.
(28) Baulch, D. L.; Bowman, C. T.; Cobos, C. J.; Cox, R. A.; Just, T.;
Kerr, J. A.; Pilling, M. J.; Stocker, D.; Troe, J.; Tsang, W.; Walker, R.
W.; Warnatz, J. J. Phys. Chem. Ref. Data 2005, 34, 757−1397.
(29) Manion, J. A.; Huie, R. E.; Levin, R. D.; Burgess, D. R., Jr.;
Orkin, V. L.; Tsang, W.; McGivern, W. S.; Hudgens, J. W.; Knyazev,
V. D.; Atkinson, D. B.; Chai, E.; Tereza, A. M.; Lin, C.-Y.; Allison, T.
C.; Mallard, W. G.; Westley, F.; Herron, J. T.; Hampson, R. F.;
Frizzell, D. H. NIST Chemical Kinetics Database; National Institute of
Standards and Technology (NIST): Gaithersburg, MD, 2015; http://
kinetics.nist.gov/.
(30) Ranzi, E.; Frassoldati, A.; Grana, R.; Cuoci, A.; Faravelli, T.;
Kelley, A. P.; Law, C. K. Prog. Energy Combust. Sci. 2012, 38, 468−
501.
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