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1 Introduction

In cutting plane methods for integer programming, one of the most critical and crucial 
issues is that of generating the “best possible” set of cuts.

An iteration of state-of-the-art cutting plane algorithms, see, for instance, [1,4,3], 
typically consists of a first phase where a large number of cuts is generated 
according to a given criterion (e.g., cut violation) and a second phase where a subset 
of promising cuts is selected according to a cut selection procedure based on 
different cut quality measures. Frequently used measures include, among others, the 
orthogonal distance between the hyperplane associated to the cut and the optimal 
solution of the current relaxation, the cut sparsity, and a measure of parallelism 
between cuts. The latter measure aims at discarding cuts that are similar to those that 
were previously generated and, therefore, favors a form of diversity among the 
cutting planes.

Recently, diversification strategies have also been used at the cut generation stage 
for some families of valid inequalities. In [17], where a mixed-integer program 
(MIP) is proposed to separate rank-1 Chvátal–Gomory cuts, larger bound 
improvements are obtained by dropping the upper bounds on the multipliers. This 
additional freedom produces a beneficial diversification effect when breaking the ties 
between equivalent solutions of the separation problem. In [8], when optimizing 
over the rank-1 Split Closure by solving a MIP with a single parameter via bisection, 
the set of disjunctions is diversified by enforcing their partial orthogonality. In [7], 
the authors apply the lexi-cographic dual simplex method (rather than the standard 
dual one) when reoptimizing the linear programming (LP) relaxations in Gomory’s 
cutting plane algorithm [19]. Their method produces sequences of solutions which 
are further away from each other (in Euclidean distance) than those obtained with 
the standard method and allows to close a larger fraction of the duality gap.

In this paper, we propose a lexicographic multi-objective scheme for cutting plane 
generation in which the cut violation and a suitable measure of diversity between 
cuts are simultaneously optimized. Specifically, we propose a separation problem 
where, among all the maximally violated valid inequalities of a given family, we 
generate a cut that is also undominated and maximally diverse w.r.t. the cuts that 
were pre-viously found. Since new cuts explicitly depend on the previous ones, we 
obtain a coordinated cutting plane generation scheme. The focus in this work is on 
valid inequalities with 0–1 coefficients in the left-hand side and a constant right-hand 
side, which encompasses families of inequalities such as clique and cut set 
inequalities



(see [25] and the references therein) that are valid for many combinatorial optimiza-
tion problems.

The paper is organized as follows. In Sect. 2, we review the main cut quality mea-
sures used in the literature and point out their advantages and disadvantages. In Sect. 3,
we describe our choice of diversity measure and our lexicographic multi-objective
cutting plane generation scheme. In Sect. 4, we address the critical issue of generating
undominated cuts and propose a revised scheme that guarantees the generation of cuts
which are as strong as possible. In Sect. 5, we report computational results obtained
for the separation of stable set and cut set inequalities for, respectively, the max clique
and min Steiner tree problems. We address a pure cutting plane setting for both prob-
lems and also a cut-and-branch one for max clique, comparing the results obtained
with our revised separation scheme to those for the standard separation of maximally
violated cuts which are undominated. Section 6 contains some concluding remarks
and directions for future work.

A preliminary version of this work appeared in [2]. See also the PhD thesis [12]
and its extended abstract [13].

2 Cut quality measures and cut selection procedures

Consider an integer program (IP)

min cx
s.t. Ax ≤ b

x ∈ Z
n+

and the usual dual cutting plane algorithm where the integrality restrictions on x are
dropped and a separation problem is solved to generate a valid inequalityαx ≤ α0, with
α ∈ Z

n and α0 ∈ Z (for the sake of space, we will explicitly mention the case of valid
inequalities αx ≥ α0 only when the direction of the inequality makes a difference).
Let C be the family of valid inequalities under consideration, in short (α, α0) ∈ C.
At each iteration, the current continuous relaxation of the problem, tightened with all
the valid inequalities generated so far, is solved via linear programming. Let x∗ be a
corresponding optimal solution.

Assume that a set of valid inequalities has been generated but not yet introduced
into the relaxation. Let H = {x ∈ R

n : αx = α0} be the hyperplane corresponding to
αx ≤ α0. A typical cut selection procedure works as follows. First, the cutting planes
are sorted w.r.t. a measure of distance from x∗ to H , often the Euclidean distance
from x∗ to its orthogonal projection onto H . Then, the cuts are added, according to
that order, only if they meet a prescribed cut quality measure requirement and if they
are not dominated by the previously added cuts. Recall the usual definition of cut
domination [25]: for an arbitrary polyhedron P ⊆ R

n+, a cut α′x ≤ α′
0 dominates

another cut α′′x ≤ α′′
0 if there exists a scalar u > 0 such that α′ ≥ uα′′ and α′

0 ≤ uα′′
0

and (α′, α′
0) �= (uα′′, uα′′

0 ). A cut in some family C is said to be strong if there is no
other cut in C that dominates it. Conversely, a cut is said to be weak if there is at least
a cut in C by which it is dominated.
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Fig. 1 Illustration of Example 1

2.1 Cut quality measures

The most relevant cut quality measures considered in the literature are based on dis-
tance, angle, and cut sparsity. We briefly recall them, pointing out their main advantages
and disadvantages.

2.1.1 Distance measures

Definition 1 (Cut violation) Given a relaxation P ⊆ R
n+ with an optimal solution

x∗ ∈ P and a cut αx ≤ α0, the cut violation is the quantity αx∗ − α0.

Definition 2 (Cut depth) Given a relaxation P ⊆ R
n+ with an optimal solution x∗ ∈ P

and a cutαx ≤ α0, the cut depth is the Euclidean distance between x∗ and its orthogonal

projection onto H , namely,
αx∗ − α0

‖α‖2
, where ‖α‖2 =

√∑n
j=1 α2

j .

The cut depth, which appears in [4] and is also referred to as “geometric distance”
in [5] or as “efficacy” in [3] and [1], suffers from a serious drawback. Indeed, as
illustrated in the following example for the max clique problem, it may favor the
selection of strong or weak cuts, depending on the direction of the inequality.

Example 1 Consider the fractional clique polytope for a Petersen graph with 10 ver-
tices, tightened with the stable set inequalities x2 + x6 + x10 ≤ 1 and x2 + x8 + x9 ≤ 1.
In Fig. 1a, the nonedges related to the stable sets involved in the two inequalities are
indicated, respectively, in dark and light gray. The unique optimal solution of maximiz-
ing

∑n
j=1 x j over the polytope is x∗ = ( 1

2 , 0, 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 ). Consider the two
maximally violated stable set inequalities x2 + x5 + x8 + x9 ≤ 1 and x5 + x8 + x9 ≤ 1,
both with a violation of 1

2 . The corresponding nonedges are highlighted in black in
Fig. 1b, c. The first inequality dominates the second one, but it has a smaller cut depth:

Cut Cut violation ‖α‖2 Cut depth

x2 + x5 + x8 + x9 ≤ 1 1
2

√
4 1

2
√

4

x5 + x8 + x9 ≤ 1 1
2

√
3 1

2
√

3



Definition 3 (Cut depth variant) Given a relaxation P ⊆ R
n+ with an optimal solution

x∗ ∈ P and a cut αx ≤ α0, the cut depth variant is the quantity
αx∗ − α0√∑n

j=1:x∗
j �=0 α2

j + 1
.

This measure, proposed in [28], is similar to the cut depth, but the denominator
only depends on the components of α corresponding to nonzero components of x∗.
Although it copes with the issue of favoring dominated cuts when some components of
x∗ are zero (as in Example 1), it does not avoid the drawback when some components
are nonzero but very small.

Example 2 Consider the LP relaxation of a generic 0–1 IP in which we maximize∑n
j=1 x j over some polyhedron P ⊆ R

n+. Let x∗ = (1, 1, 1
100 , 1

100 , 1
100 , 1

100 , 1
100 , 1

100 ,
1
2 ) be an optimal solution and let x1 + x2 ≤ 1 and

∑9
j=1 x j ≤ 1 be two valid

inequalities. Although the first one has a larger cut depth and cut depth variant (see the

following table, where‖α‖′
2 =

√∑n
j=1:x∗

j �=0 α2
j +1), it is dominated by the second one.

Cut Violation ‖α‖2 ‖α‖′
2 Depth Depth Variant

x1 + x2 ≤ 1 1
√

2
√

2 + 1 1√
2

= 0.57 1√
2+1

= 0.41

∑9
j=1 x j ≤ 1 1.56

√
9

√
9 + 1 1.56√

9
= 0.52 1.56√

9+1
= 0.39

As pointed out in [5], cut depth may be unreliable for nonfull-dimensional poly-
hedra. Indeed, for a polyhedron P ⊂ R

n of dimension d < n, a cut that is uniquely
defined in R

d can be represented in R
n with n − d degrees of freedom, with different

Euclidean distances from x∗. To cope with this issue, the hyperplane corresponding
to the cut can be rotated to make it orthogonal to the affine hull of P . For more detail,
the reader is referred to [14] for two alternative measures, namely, “rotated steepness”
and “steepness with bounds”.

2.1.2 Angle measures

Definition 4 (Objective function parallelism) Given a valid inequality αx ≤ α0 and
an objective function cx , the objective function parallelism is defined as the cosine of

the angle between α and c, namely
αc

‖α‖2 ‖ c‖2
.

Given a maximization problem and a cut αx ≤ α0, if the objective function par-
allelism takes its maximum value of 1, we have α = λc, for some λ > 0, and then
cx ≤ α0

λ
. Similarly, for a minimization problem and a cut αx ≥ α0, we have cx ≥ α0

λ
.

Therefore, cuts that are parallel to c directly imply a bound on the objective function.
An important drawback is that, by favoring cuts whose normal vector α is almost
parallel to c, we tend to favor cuts that are parallel to one another.

Definition 5 (Cut parallelism) Given two valid inequalities αx ≤ α0 and α′x ≤ α′
0,

the cut parallelism is defined as the cosine of the angle between α and α′, namely
αα′

‖α‖2 ‖α′‖2
.



Fig. 2 Two valid inequalities
with the same cut depth, but
with (a) a large cut parallelism
and (b) a small cut parallelism.
The polyhedra corresponding to
the relaxations are highlighted in
gray. In (b), the polyhedron of
the relaxation has a smaller
volume than that in (a)

(a) (b)

Figure 2 illustrates the simple geometrical intuition for favoring cuts with a small 
cut parallelism, that is, with large angles between their normal vectors. If we add to 
the feasible region of the current relaxation two cuts αx ≤ α0 and α′x ≤ α′

0 with 
the same cut depth, the larger the angle between α and α′, the tighter the relaxation is 
likely to be.

Cut parallelism is adopted in most state-of-the-art cut selection procedures. As 
remarked in [5], discarding cuts that are close to parallel to previously added ones 
allows to discard duplicates. See [28] for, among others, a computational study on 
how often a cut is discarded because it is almost parallel to or dominated by a previ-
ously generated one. When experimenting with lift-and-project cuts, the authors of [5] 
observe that a larger fraction of the duality gap is closed when generating “cuts that 
improve the polyhedron in diverse directions”. Many papers confirm the effectiveness 
of this measure also for other types of cuts. See, e.g., [1,3,6,28].

2.1.3 Cut sparsity

The density of a cut is the number of nonzero components of its normal vector α. Cut
sparsity is important for two main reasons. On the one hand, the introduction of dense 
cuts is sometimes discouraged in cutting plane methods, see, e.g., [8], because they 
lead to denser linear programs that are harder to solve and are possibly affected by 
larger numerical errors. On the other hand, the density of a cut is often related to its 
strength. Indeed, for a given cut violation and a given right-hand side α0, assuming that 
x ≥ 0 and α ≥ 0, undominated cuts of the form αx ≤ α0 are obtained by looking for 
dense cuts, whereas undominated cuts of the form αx ≥ α0 are obtained by looking 
for sparse ones.

2.2 Cut selection procedures

As previously mentioned, in a typical cut selection procedure the candidate cutting 
planes are sorted w.r.t. a distance measure and then considered according to that sorting 
order and added only if the chosen cut quality measures meet some given requirements. 

In [4] and [3], sorting is based on, respectively, cut violation and cut depth, and cuts 
are added only if their parallelism is below 0.999. In [1] and in the solver SCIP, the 
cuts are sorted w.r.t. an aggregate of cut depth, cut parallelism, and objective function



parallelism and then added to the relaxation only if their parallelism is at most 0.5.
Although an aggregate measure without the objective function parallelism leads to
better average results, all three terms are considered in [1], possibly because of the
better performance on some structured problems.

According to the experiments in [14], where different distance measures are com-
pared, the methods based on cut depth perform substantially better than those based
on cut violation. Similar experiments in [28] suggest to sort the cuts w.r.t. an aggre-
gate measure based on variants of cut depth and cut density, and on objective function
parallelism, and to introduce them only if their cut parallelism is at most 0.1.

3 Coordinated cutting plane generation

In this paper, we propose a multi-objective cutting plane generation scheme in which
two cut quality measures are lexicographically optimized in the separation problem.
We consider valid inequalities αx ≤ α0 or αx ≥ α0, where α ∈ {0, 1}n and α0 is a
constant.

3.1 Choice of two suitable cut quality measures

Based on our observations in the previous section, we choose a measure of distance
between the cut that we are about to generate and the optimal solution of the current
relaxation as well as a measure of diversity w.r.t. the cutting planes that were previously
introduced. Objective function parallelism is not considered because it tends to favor
the generation of cuts that are parallel to one another, disfavoring their diversity. We
address cut density and sparsity, which are directly related to cut domination for cuts
with binary left-hand side coefficients and a constant right-hand side, in Sect. 4, where
we propose a revised version of our coordinated cutting plane generation scheme
which produces cuts that are guaranteed to be undominated.

As distance measure, we choose cut violation rather than cut depth. Besides its
linearity, which makes the separation problem easier to solve, this measure does not
suffer from the cut domination issue mentioned in Sect. 2.

As diversity measure between two cutting planes αx ≤ α0 and α′x ≤ α′
0, we adopt

the 1-norm distance between their normal vectors. Note that, when α and α′ are binary
vectors,

∥∥α − α′∥∥
1 = ∑n

j=1 |α j − α′
j | amounts to the Hamming distance between α

and α′. The following example illustrates the relevance of this choice.

Example 3 Consider the fractional clique polytope for the Petersen graph shown in
Fig. 3. The unique optimal solution of maximizing

∑n
j=1 x j over the polytope is

x∗ = ( 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 ), of value 5. If we add the two stable set inequali-
ties x5+x8+x9 ≤ 1 and x2+x8+x9 ≤ 1 (in gray in Fig. 3a) with 1-norm distance equal
to 1, the new optimal solution of the relaxation is x∗ = ( 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 0, 1
2 , 1

2 ),
of value 4.5. If we add the two stable set inequalities x5 + x8 + x9 ≤ 1 and
x4 + x6 + x7 ≤ 1 (in gray and light gray in Fig. 3b), with 1-norm distance equal
to 3, we get a better bound since the new optimal solution of the relaxation is
x∗ = ( 1

2 , 1
2 , 1

2 , 0, 1
2 , 1

2 , 1
2 , 0, 1

2 , 1
2 ), of value 4.
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Fig. 3 Illustration of Example 3: the nodes in gray have value 0, whereas those in white have value 1
2

Assume that αx ≤ α0 is the cut to be generated and α′ ≤ α′
0 is a previously

generated one. A straightforward property of the 1-norm distance between binary
vectors is that

∥∥α − α′∥∥
1 is a linear function of α when α′ is constant. Indeed, such

quantity can be represented as a sum of simple disjunctions taking value 1 − α′
j if

α j = 1 and α′
j if α j = 0. Therefore, we have

n∑

j=1

| α j − α′
j | =

n∑

j=1

α j (1 − α′
j ) +

n∑

j=1

(1 − α j )α
′
j

=
n∑

j=1

α j − 2
n∑

j=1

α jα
′
j +

n∑

j=1

α′
j = (e − 2α′)α + eα′, (1)

where e denotes the all-one vector.
Assume that k cuts have been added to the relaxation. As diversity measure between

a cutting plane αx ≤ α0 that we are about to generate and the whole set of the
previously introduced cuts, we consider the 1-norm distance between the normal vector
α of that cut and a weighted combination ᾱk of the normal vectors of the previously
generated ones. In this work, we define ᾱk as the arithmetic mean of those normal
vectors, namely ᾱk := 1

k

∑k
l 1 αl . Note that Eq. (1) holds for any α′ ∈ [0, 1] and,

therefore, also for ᾱ k . Other ve
=

rsions, including that where the diversity measure only 
considers pairs of successive cuts, i.e., where ᾱ k := αk , turned out to be less effective.

3.2 Multi-objective separation problem

In many problems, such as max clique (see also Examples 1 and 3) and min Steiner 
tree, the standard separation problem aiming at maximizing the cut violation admits 
multiple optimal solutions. We exploit this property and, among all the maximally 
violated cuts of a given family, we look for a cut that is also maximally diverse w.r.t.
the previously generated cuts with coefficients (α1, α0

1), . . . , (αk, α0
k ). For cuts of the 

form αx ≤ α0, the new separation problem can be stated as the following lexicographic 
bi-objective optimization problem:



max
∥∥α − ᾱk

∥∥
1

s.t. α = argmax{αx∗ − α0}
(α, α0) ∈ C,

which is equivalent to the following single objective problem:

max αx∗ − α0 + ε
∥∥α − ᾱk

∥∥
1

s.t. (α, α0) ∈ C

for a finite, small enough, ε > 0 (see below).
According to (1) with ᾱk replacing α′, the objective function becomes αx∗ − α0 +

ε(e − 2ᾱk)α + εeᾱk . By collecting α and dropping the constant terms, we have the
Coordinated Separation problem:

max (x∗ + ε(e − 2ᾱk))α

s.t. (α, α0) ∈ C.
(2)

The effect of the 1-norm diversity is of adding, to each coefficient x∗
j of α j , a

term which is strictly positive if ᾱk
j < 1

2 and strictly negative if ᾱk
j > 1

2 . Thus, the
generation of a cut with α j = 1 is favored for components that have value 1 in less
than half of the previous k cuts, and disfavored otherwise.

For cuts of the form αx ≥ α0, for which the cut violation is α0 − αx∗, we
maximize α0 − αx∗ + ε

∥∥α − ᾱk
∥∥

1 = α0 − αx∗ + ε(e − 2ᾱk)α + εeᾱk . In this case,
the coordinated separation problem, stated as a minimization problem, becomes:

min (x∗ − ε(e − 2ᾱk))α

s.t. (α, α0) ∈ C,
(3)

where the effect of the 1-norm diversity is the same as in the previous case.
Let us now comment on the choice of an appropriate value for ε. Given two functions

f1, f2 : R
n → R, the value of ε must be such that, when optimizing f1 + ε f2, we

obtain a solution which is optimal for f1 and which, among all such solutions, is also
optimal for f2. Let �2 be the difference between the maximum and minimum of f2
and let δ1 be the smallest variation between any two values that f1 can take. A simple
sufficient condition is ε�2 < δ1, see for instance [27]. In our case, �2 is finite and
amounts to 2n. Note that f1 = αx∗ because α0 is a constant and can be dropped.
Since α takes discrete values, the image of f1 is a finite set and a finite δ1 exists.
Although finding the exact value of δ1 may be difficult, any lower bound yields a valid
value for ε. For rational polyhedra, x∗ ∈ Q

n and δ1 can be bounded from below by the
reciprocal of any multiple of all the denominators of the components of x∗. See the
Appendix for more details on how we choose the value of ε and on how we proceed
to avoid numerical errors.

In the case of cuts with 0–1 coefficients, our coordinated cutting plane generation
scheme exploits the linearity of the 1-norm diversity function and the existence of
a finite ε. The approach can be extended to cuts with general integer coefficients at
the cost of introducing extra variables (both binary and continuous) accounting for a



reformulation of the absolute value (see [29] for the standard one). An appropriate value
for ε requires both �2 and δ1 to be finite. For cuts with continuous or general integer
coefficents, a value for �2 is usually easy to find if we assume that the coefficients are
bounded, because this implies the boundedness of the range of the 1-norm distance.
For cuts with general integer coefficients, the value for δ1 is clearly finite as it is
equivalent to that for the 0–1 case. Unfortunately, for continuous coefficients this
value is not bounded and hence we cannot cast our lexicographic separation problem
as in (2) or (3). A possible extension of our approach to this case amounts to solving
the coordinated separation problem in two steps, first maximizing the cut violation
and then maximizing the cut diversity subject to a constraint on the cut violation.

4 Revised separation for undominated cuts

In this section, we show how our coordinated separation problem can be modified to
guarantee the generation of undominated cuts.

We shall say that a cut αx ≤ α0 is maximal (αx ≥ α0 is minimal) if it becomes
invalid when any component of α is increased from 0 to 1 (decreased from 1 to 0).
Since α ∈ {0, 1}n and α0 is a constant, the maximality (minimality) of α is necessary
and sufficient to have a cut that is not dominated by other cuts of the same family.

4.1 Revised standard separation problem

When solving the standard separation problem, if x∗ > 0 any maximally violated cut
of the form αx ≤ α0 is maximal. This is because if, given a cut, another valid inequality
can be obtained by setting any α j = 0 to 1, then the cut violation αx∗ − α0 can be
strictly increased. Similarly, when x∗ > 0, any maximally violated cut of the form
αx ≥ α0 is minimal. In the general case where x∗ might contain at least a component
x∗

j = 0, the cut violation will be unmodified by setting either α j = 0 or α j = 1, thus
allowing for the generation of dominated cuts.

A way to generate undominated cuts for any (unrestricted) x∗ is the following one.
Maximal cuts of the form αx ≤ α0 can be obtained by looking for maximally violated
cuts with a maximum number of nonzero components of α. This can be achieved by
modifying the standard separation problem as follows:

max αx∗ − α0 + ε ‖α‖1
s.t. (α, α0) ∈ C,

for an appropriate ε > 0, usually larger than that used in the coordinated separation
problem. By collecting α, dropping the constant term, and rewriting ‖α‖1 as eα, we
have the Revised Standard Separation problem:

max (x∗ + εe)α
s.t. (α, α0) ∈ C,

(4)



where the only difference w.r.t. the standard one is that x∗ is substituted with x∗ + εe.
For cuts of the form αx ≥ α0, we maximize α0 − αx∗ − ε ‖α‖1, thus discarding,
among all the maximally violated cuts, those that are not minimal. This amounts to
minimizing (x∗ + εe)α.

A similar technique is used in [23] when separating cut set inequalities for the min
Steiner tree problem. In [23] however, ε is taken as a fixed value, with no guarantee of
respecting the lexicographic priority between αx∗−α0 and ‖α‖1. Thus, the separation
problem may not yield a violated cut even if such a cut exists.

4.2 Revised coordinated cut separation problem

In the coordinated separation problem, it may happen that, among all the cuts which
are maximally violated and also maximally diverse w.r.t. the previous cuts, none is
undominated.

Example 4 Consider a generic 0–1 IP where the cut x1 + x2 ≤ 1 has been added to
the relaxation and x∗ = (0, 1

2 , 1
2 , 1

2 ) is the current optimal solution. Consider the two
valid inequalities x2 + x3 + x4 ≤ 1 and x1 + x2 + x3 + x4 ≤ 1, which have both
a violation of 1

2 but a diversity w.r.t. the previous cut of, respectively, 3 and 2. The
coordinated separation problem yields the first inequality, which is dominated by the
second one.

To enforce the generation of undominated (maximal) cuts of the form αx ≤ α0,
we include the extra term 2ε ‖α‖1 in the coordinated separation problem. Note that
undominated cuts are obtained when adding γ ε ‖α‖1 for any γ > 1. Here, we take
γ = 2, which is the smallest integer value satisfying the condition. We obtain:

max αx∗ − α0 + ε
∥∥α − ᾱk

∥∥
1 + 2ε ‖α‖1

s.t. (α, α0) ∈ C.

The objective function can be rewritten as αx∗ − α0 + ε(3e − 2ᾱk)α + εeᾱk . After
collecting α and dropping the constant terms, we obtain the Revised (max) Coordinated
Separation problem:

max (x∗ + ε(3e − 2ᾱk))α

s.t. (α, α0) ∈ C.
(5)

Since x∗ ≥ 0 and 0 ≤ ᾱk ≤ 1, all the components of ε(3 − 2ᾱk
j ) take values in

[ε, 3ε] and all the objective function coefficients x̂ j := x∗
j + ε(3 − 2ᾱk

j ) are strictly
positive. Thus (5) is guaranteed to yield undominated (maximal) cuts.

Similarly, for cuts of the form αx ≥ α0, we subtract the term 2ε ‖α‖1. The objective
function of the minimization problem becomes αx∗ − α0 − ε(−e − 2ᾱk)α − εeᾱk ,
and the corresponding Revised (min) Coordinated Separation problem is:

min (x∗ + ε(e + 2ᾱk))α

s.t. (α, α0) ∈ C,
(6)

where all the coefficients x̂ j := x∗
j + ε(1 + 2ᾱk

j ) are strictly positive.



It is worth pointing out that our revised coordinated separation problem amounts to
the standard one when adopting the objective function coefficient vector x̂ instead of
x∗. Since x̂ is nonnegative if x∗ is nonnegative, any algorithm for standard separation
which is applicable to objective functions with nonnegative coefficients can also be
used to solve the revised coordinated separation problem. This is the case of stable set
and cut set inequalities, which we consider in Sect. 5.

The substitution of x∗ with x̂ in the separation problem suggests some similarities
with stabilization techniques used in column generation where dual multipliers are
appropriately modified in the pricing subproblem, see, e.g., [15], and with the in-out
search strategy for cutting plane methods [9,18].

Finally, let us emphasize that, unlike in previous approaches where cut diversity
and cut strength are only implicitly favored with heuristic techniques, as in [17], in our
revised coordinated separation scheme we precisely optimize a cut diversity measure
over all the maximally violated cuts, with the guarantee of generating an inequality
which is always undominated.

5 Computational experiments

We assess the impact of our coordinated cutting plane scheme when separating stable
set and cut set inequalities for, respectively, the max clique and min Steiner tree
problems. For max clique, given a graph G = (V, E), we consider the following LP
relaxation:

min
xi ≥0,i∈V

{∑

i∈V

xi :
∑

i∈S

xi ≤ 1 for S ∈ S
}

, (7)

where S is the collection of all the stable sets of G. When only maximal stable sets are
considered, the corresponding inequalities are facet defining. Solving (7) is equivalent
to computing the so-called fractional coloring number of G. The separation problem
amounts to finding a maximum weight stable set of G with weights x∗

i .
For the min Steiner tree problem, given a graph G = (V, E) with a subset T ⊂ V of

terminals and a cost function c : E → R
+, we adopt the directed formulation [10,11],

which is tighter than the undirected one. Let G ′ = (V, A) be the directed version of G
containing a pair of arcs (i, j) and ( j, i) for each edge {i, j} ∈ E , with the same cost
as {i, j}. Let r ∈ T be an arbitrary root node. We have the following LP relaxation:

min
0≤xi j ≤1,(i, j)∈A

⎧
⎨
⎩

∑

(i, j)∈A

ci j xi j :
∑

(i, j)∈δ+(S)

xi j ≥ 1 for S ⊂ V

s.t. r ∈ S and V \S ∩ T �= ∅

⎫
⎬
⎭,

which is based on the so-called s − t (for s = r ) cut set inequalities. The separation 
problem amounts to finding an s − t cut set in G ′ of minimum total cost, for s = r
and for each terminal t ∈ T \{r}, where the values x∗

i j  are used as arc capacities. 
The problem is polynomially solvable for nonnegative arc capacities (as a max flow



problem), which is the case of both the revised standard and the revised coordinated
separation problems.

5.1 Results

The main focus of this paper is on a pure cutting plane setting, but we also consider a
cut-and-branch one. In the pure cutting plane setting, we compare the results obtained
with the revised coordinated separation and the revised standard separation for max
clique and min Steiner tree. In the cut-and-branch setting, we compare for max clique
the overall performance of the cut-and-branch method when cuts are generated (only
at the root node) either according to the revised standard or the revised coordinated
separation schemes. In both settings, the cutting plane algorithms are stopped when
no more violated inequalities are found, thus closing the same fraction of the duality
gap.

The algorithms are implemented in C++ using the ILOG CPLEX Concert Library,
compiled with GNU-g++-4.3. The graphs are represented via theadjacency_list
structure available in the Boost Graph Library. The experiments are carried out on a
Dell PowerEdge Quad Core Xeon 2.0 Ghz, with 4 GB of RAM. All the LP relax-
ations are solved with CPLEX 12.2 using the dual simplex method. For the sake of
reproducibility and comparability, we disable preprocessing by adopting the parameter
settings PreInd=0, AdvInd=0, and Reduce=0.

5.1.1 Pure cutting plane setting

In the tables reporting the results for max clique and min Steiner tree, we consider the
following figures:

– Time: total computing time (in seconds) spent for solving the relaxation and sep-
aration problems.

– Rnds: total number of cutting plane rounds.
– Cuts: total number of generated cuts.
– Dupl: number of duplicated cuts which are discarded (only for min Steiner tree,

see below).
– Cond: arithmetic mean of the condition number of the optimal basis matrices of

the last 20 linear programming relaxations. We use the CPLEX 12.2 function
getQuality(IloCplex::ExactKappa). The average mitigates the nat-
ural oscillations of the number.

– ReIt: arithmetic mean of the number of dual simplex iterations carried out to
reoptimize the LP relaxations.

– ReT: arithmetic mean of the computing time (in seconds) needed to reoptimize
the LP relaxations.

– SepTime: arithmetic mean of the computing time (in seconds) taken to solve the
separation problem.

The figures corresponding to the best cutting plane generation scheme are high-
lighted in bold. For comparison purposes, in the last line of each table we also report



the percentage aggregate saving for each figure when adopting our coordinated cutting 
plane generation scheme, evaluated over all the instances. Specifically, for each figure 
and for each instance we compute the ratio between the values obtained with revised 
coordinated separation and revised standard separation, and return the geometric mean 
of those ratios (using a shifted geometric mean with a shift of 0.01 for the computing 
time). The aggregate saving for each figure amounts to one minus the geometric mean.

For max clique, we consider a subset of the instances from the second DIMACS 
implementation challenge on max clique, graph coloring, and satisfiability [22]. The 
initial relaxation only contains the bounds on the variables. We formulate the revised 
standard and revised coordinated separation problems adopting a simple 0–1 IP with 
a constraint for each nonedge of the graph and solve them with CPLEX. To handle as 
precisely as possible the small differences among the objective function coefficients 
which are due to the parameter ε, we set NumericalEmphasis=1, EpAGap=0, 
EpGap=0, EpInt=0, and EpOpt=1e-09, to have the tightest precision on 
absolute and relative duality gap, integrality gap, and reduced cost tolerance.

The results for max clique are reported in Table 1. On average, our coordinated 
cutting plane generation scheme allows to save 37 % of the computing time, to generate 
23 % less cuts, and to obtain relaxations with an average condition number that is 
reduced by 47 % w.r.t. the revised standard scheme. Note that the average computing 
time needed to solve our coordinated separation problems not only does not exceed 
that for the revised standard one, but is also slightly smaller, by 3 % on average. Since 
with coordinated cutting plane generation we introduce 23 % less cuts, which are only 
1 % denser (we do not report the density figure due to lack of space), the LP relaxations 
are substantially smaller than those obtained with the revised standard separation. This 
is likely to determine the substantial reduction in the average number of iterations and 
computing time needed for the reoptimizations by, respectively, 30 and 24 %.

Note that our cutting plane method requires a higher computing time only for 5 
instances out of 24. According to Table 1, the improvement with coordinated cutting 
plane generation can be as large as on instance c-fat500-10. In that case, the 
algorithm terminates in less than 20 s (as opposed to 70.53 s), generates 128 cuts 
(instead of 413), and yields a final relaxation with a condition number that is smaller 
by more than 3 orders of magnitude.

For min Steiner tree, we consider five data sets taken from the SteinLib [24], 
namely B, C, D, I640, and PUC. Cut coordination is achieved by considering the cut 
diversity w.r.t. all the cuts that were previously generated, also within the same round, 
independently of the terminal. Other options where cut diversity only considers cuts 
generated when separating w.r.t. the same terminal yielded not as good results. We 
solve the two separation problems with the Boost Graph Library implementation of the 
O(|V | |A|2) Edmonds–Karp algorithm [16]. The root node r is chosen as the terminal 
with the largest degree. We observe that this choice allows to close a larger fraction 
of the duality gap, regardless of the cutting plane algorithm that is adopted. For each 
instance, we derive an initial pool of inequalities by solving, for each pair of source 
s = r and terminal t , a min s − t cut set problem with unit capacity on every arc that 
is still uncovered. Cuts are generated in rounds by solving a separation problem for 
each terminal (except for the root node). Since a cut set can be found more than once
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during a cutting plane iteration as the solution to separation problems for different
terminals, we only add nonduplicate cuts.

Table 2 reports the results obtained for min Steiner tree. Coordinated cutting plane
generation yields, on average, a substantial reduction in the number of rounds and cuts,
by 16 % in both cases, in the number of duplicate cuts, by 33 %, and in the condition
number, by 20 %. When focusing on the nonduplicated cuts which are actually added
to the LP relaxation, their number is reduced by 8 % (rather than 16 %), but this figure
is not reported in the tables for a matter of space. Moreover, those cuts are also 1 %
denser, on average, than those obtained with the revised standard separation problem.
Therefore, although the LP relaxations that we solve with coordinated cut generation
are smaller than those obtained with the revised standard separation, their size is not
reduced as much as for max clique. This is likely to justify the reduction of only 2 %
of the average time spent to reoptimize the LP relaxations. Note also that the average
separation time is increased, on average, by 14 %. This could be because the vector of
capacities x̂ is less sparse and more diversified yielding max flow problems which are
more difficult to solve. Nevertheless, since the number of rounds is largely reduced
the total computing time is only increased by 7 % on average.

According to Table 2, coordinated cutting plane generation can be as effective as
on instance b15, where the number of rounds is only 6 instead of 12 and the number
of cuts is 243 instead of 452, with only 97 duplicates instead of 296. Note that the
number of rounds, cuts, and duplicates only increases for, respectively, 7, 8, and 8
instances out of the 64, while all those figures are simultaneously improved on the
other 51 instances.

Finally, for both problems we have also experimented with a variant of our approach
where the cut diversity is enforced w.r.t. the average of only the previously generated
cuts that are binding at the solution of the current LP relaxation. Since only n inequal-
ities suffice to describe the vertex of the relaxation corresponding to its solution,
this variant may seem interesting. Overall, though, we obtain substantially inferior
improvements compared to the case where all the cuts are considered. This is likely
due to the fact that all the inequalities that we generate are facet defining. Indeed, this
guarantees that no previously introduced cuts can be dominated by a combination of
the new ones. Since a cut which is nonbinding at a current iteration may be binding in
a future one, we should favor the generation of a cut which is diverse not only from
the cuts which are currently binding at the LP optimal solution, but also w.r.t. those
that might (or will) be binding in the future iterations. This is precisely what we obtain
by enforcing the 1-norm diversity w.r.t. the average of all the previous cuts when also
including those that are currently nonbinding.

5.1.2 Cut-and-branch setting

To evaluate the potential of our coordinated cutting plane generation scheme when
solving an optimization problem to optimality, we also experiment with a cut-and-
branch algorithm for max clique. At the root node, we run a cutting plane algorithm
using either the revised standard or revised coordinated separation problem until the
relaxation is solved to optimality. Then, we solve the unrelaxed problem to optimal-
ity with branch-and-bound, using CPLEX. Our initial LP relaxation contains all the
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nonedge inequalities (that is, the stable set inequalities of cardinality 2), introduced as
lazy cuts which are added by CPLEX only if violated. Thus, all the stable set inequal-
ities that we introduce act as cutting planes which tighten the original formulation.
Note that a similar cut-and-branch approach is not applicable to min Steiner tree in
the xi j variable space. Indeed, since any correct formulation for this problem requires
all the s − t cut set inequalities, a branch-and-cut approach is needed.

Since, in these experiments, we aim at computational efficiency, rather than gener-
ating the stable set inequalities with CPLEX, we use Cliquer-1.21 [26], which is
among the most efficient exact solvers for the max weight clique problem on sparse
graphs. It is based on a combinatorial branch-and-bound, and is used, for instance,
in state-of-the-art solvers for the graph coloring problem [20,21]. We solve the max
weight stable set separation problem by looking for a max weight clique on the com-
plement graph. At each iteration, the separation problem is solved to optimality and a
single cut is added.

We consider a set of instances taken from the second DIMACS implementation
challenge on max clique, graph coloring, and satisfiability [22]. A time limit of 1 h
(3,600 s) is set for both cutting plane generation at the root node and for the subsequent
branch-and-bound application.

In Table 3, for each instance and for both the revised standard and revised
coordinated generation scheme, we report: the number of cuts generated (Cuts), the
corresponding computing time at the root node (Root time), the number of branch-
and-bound nodes (B&B nodes), and the overall computing time (Total time).

As far as the root node is concerned, the results are in line with those of the pure
cutting plane setting and show on average, a reduction of 13 % in the number of cuts
and of 22 % in the computing time. As to the overall results, we observe a substantial
reduction of 54 % in the number of branch-and-bound nodes and of 24 % in the total
computing time. The number of cuts and total computing time are simultaneously
reduced on 13 instances out of 19 and, for the other 6 instances, at least one of the two
figures is improved. Finally, the number of branch-and-bound nodes is reduced for 7
instances out of the 10 that are not solved to optimality at the root node.

6 Concluding remarks

We have proposed a new cutting plane generation scheme in which, among all the
maximally violated valid inequalities of a given family, we generate one that is also
undominated and maximally diverse w.r.t. the cuts that were previously found. For
inequalities with binary left-hand-side coefficients and a constant right-hand side, our
revised coordinated separation problem is equivalent to the standard separation prob-
lem of finding a maximally violated cut with different objective function coefficients.
Computational results obtained in a pure cutting plane setting when separating stable
set and cut set inequalities for the max clique and min Steiner tree problems indicate
that we can close the same fraction of the duality gap in a considerably smaller number
of cuts or rounds, obtaining a final LP relaxation which is numerically more stable. For
max clique instances, the computing time is also substantially reduced. Experiments



Table 3 Comparison between revised standard separation and revised coordinated separation on max
clique instances in a cut-and-branch setting

Revised standard separation Revised coordinated separation

Cuts Root time B&B nodes Total time Cuts Root time B&B nodes Total time

C125.9 200 0.49 24,244 25.27 180 0.37 33,702 26.35

gen200_p0.9_44 1,093 14.63 2,161 40.09 992 13.61 813 32.51

gen200_p0.9_55 310 2.29 0 4.69 311 2.24 0 4.6

hamming10-2 1,524 12.96 0 28.53 1,524 14.31 0 29.24

hamming10-4 1,133 3,785.52 16,132 11,207.9 795 2,034.75 24,633 7,701.49

hamming8-2 369 0.54 0 1.13 320 0.45 0 0.93

hamming8-4 258 2.89 0 6.77 137 1.19 0 3.54

keller4 521 15.23 89,529 213.55 408 9.75 102,579 205.45

MANN_a27 428 1.11 42,268 20.81 436 1.17 14,774 11.39

MANN_a45 1,175 13.91 289,485 490.4 1,175 13.94 289,485 490.01

san200_0.7_1 217 1.21 0 2.73 165 0.64 0 1.57

san200_0.7_2 1,258 71.60 759 150.31 1,211 60.62 319 125.8

san200_0.9_1 190 0.24 0 0.58 154 0.16 0 0.39

san200_0.9_2 263 0.75 0 1.59 217 0.46 0 1.01

san200_0.9_3 739 4.21 4,676 20.01 687 3.97 1,239 11.57

san400_0.7_1 1,844 712.79 0 1,436.08 1,639 537.47 0 1,081.88

san400_0.7_2 3,313 1,232.96 70,023 4,410 3,551 1,453.15 1,919 3,001.58

san400_0.7_3 6,436 3,661.14 106,201 10,921.16 6,145 3,678.22 52,200 10,964.50

san400_0.9_1 752 27.03 0 54.86 658 19.81 0 40.35

Aggr. saving % 13 22 54 24

in a cut-and-branch setting for max clique indicate the potential of our scheme also 
when solving a problem to optimality.

Future developments include the investigation of alternative diversity measures 
and of different ways to enforce diversity when dealing with several families of cuts 
(diversity within each family or w.r.t. all the previously generated cuts), as well as the 
extension of the proposed approach to the case of inequalities with general integer 
coefficients.
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improve the quality of the paper.

Appendix

For the sake of completeness and reproducibility, we describe how we select an appro-
priate value for the parameter ε, as well as how we proceed to avoid numerical issues. 

As stated in Sect. 3, when lexicographically optimizing f1, f2 : R
n → R by 

optimizing f1 + ε f2, we select ε so as to satisfy the condition ε�2 < δ1, where



�2 is the difference between the maximum and minimum of f2 and δ1 is the smallest
variation between any two values of f1. For rational polyhedra where x∗ ∈ Q

n , δ1 can
be bounded from below by the reciprocal of any multiple of all the denominators of the
components of x∗. On a computer, where x∗ is usually represented as a floating point
number, if p denotes the position of the least significant digit among all the components
of x∗, then 10−p is a valid lower bound on δ1. Since only the first few digits are usually
numerically significant, in our computational experiments we truncate the components
of x∗ to the 3rd decimal digit, thus bounding δ1 from below by 10−3.

As to the specific values for ε, for the revised standard separation problem where
f2 = eα takes values in [0, n] we choose ε = 10−3

n . In the revised coordinated
separation problem, depending on the direction of the cut, we have either f2 =
(3e − 2ᾱk)α or f2 = (e + 2ᾱk)α, both taking values in [0, 3n]. Therefore, we choose
ε = 10−3

3n .
For problems with a large number of variables n, the parameter ε in the revised

coordinated cutting plane generation scheme may be quite small. Since in the aggregate
vector x̂ the information concerning the cut diversity is entirely contained in the
least significative digits, x̂ must be handled with appropriate numerical precision. We
proceed as follows. First, when truncating x∗ with a precision of 10−3 we round it down
for max clique and up for min Steiner tree. This amounts to slightly underestimating
the violation of the cuts that we generate, thus avoiding the introduction of cuts which
might appear to be violated only due to numerical issues. We also discard any cut with
a violation smaller than 10−3. Remember that, in our revised coordinated separation
problem, the cut diversity is multiplied by ε = 10−3

3n , where n is the number of nodes
for max clique and of arcs for min Steiner tree. For the two problems, the smallest ε

is obtained for the largest instances with, respectively, 500 and 10,000 variables, and
amounts to 10−3

1,500 = 6.6̄ 10−7 and 10−3

30,000 = 3.3̄ 10−8, respectively. Note that for the

revised standard case we have a larger ε = 10−3

n which amounts to 10−3

1,500 = 2 10−6

for max clique and to 10−3

30,000 = 2 10−7 for min Steiner tree. Then, we construct x̂ by
adding the diversity term multiplied by ε. The final vector x̂ is then truncated with a
precision of 10−8 for max clique problem and of 10−9 for min Steiner tree, so as to
guarantee that at least one significant digit is preserved to represent the cut diversity in
the revised coordinated separation problem. Finally, we turn x̂ into an integer vector,
multiplying it by 108 for max clique and by 109 for min Steiner tree.
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