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Abstract. The properties of ferroelectric devices are strongly influenced,
besides crystallographic features, by defects in the material. To study this effect,
a fully coupled electromechanical phase-field model for 2D ferroelectric volume
elements has been developed and implemented in a Finite Element code. Different
kinds of defects were considered: holes, point charges and polarization pinning
in single crystals, as well as grain boundaries in polycrystals, without and with
additional dielectric interphase. The impact of the various types of defects on
the domain configuration and the overall coercive field strength is discussed in
detail. It can be seen that defects lead to nucleation of new domains. Compared
to the energy barrier for switching in an ideal single crystal, the overall coercive
field strength is significantly reduced towards realistic values as they are found
in ferroelectric devices. Also the simulated hysteresis loops show a more realistic
shape in the presence of defects.
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1. Introduction

Piezoelectricity has become very popular in innovative
technologies and has been utilized in a wide range
of industrial applications [1, 2], including sensors,
actuators, resonators, capacitors, transducers, energy
harvesters, non-volatile FeRAM. Most of available
products are based on ferroelectric materials [3, 4, 5, 6,
7] since they exhibit a large piezoelectric effect. One of
the most prominent materials of this class is the Lead
Zirconate Titanate (Pb(Zr1−xTix)O3, PZT), a solid
solution of ferroelectric PbTiO3 and antiferroelectric
PbZrO3, which is available in the form of a poly-
crystal material. Ferroelectric ceramics have been
widely employed as a bulk material, but in recent years
they have been also utilized in the form of thin films
in an increasing number of MEMS applications [8, 9].
including print heads for inkjet printers [10], ultrasonic
transducers for acoustic applications [11] as well as
energy harvesting devices [12].

In general, ferroelectric materials present a
spontaneous electrical polarization below a certain
temperature, namely the Curie temperature TC . This
is associated with a paraelectric-ferroelectric phase
transition, which consists in the separation of the
centers of positive and negative charges. Typically
ferroelectric materials are divided in domains, i.e.
regions with uniform polarization, separated by
interfaces called domain walls. Their appearance is
associated with the minimization of the free energy
when the material undergoes the phase transition
from the high-temperature symmetric phase to the
low-temperature phases. Domains can be reoriented
by applying an external electrical or stress field
which can induce a switching between different
metastable states. The reorientation process leads to
microstructural evolution which is the origin of the
macroscopic non-linear electromechanical behaviour
of ferroelectric materials. The capability to orient
the electrical polarization, randomly distributed in
these materials, into a desired direction is known as
poling process. Poling is fundamental in turning inert
ceramics [13, 14] and thin-film materials [15, 16] into
electromechanically active materials. Therefore it is of
paramount importance, in design and optimization of
piezoelectric devices for industrial applications [17], to
be able to characterize the coercive field strength, i.e.
the magnitude of the electric field required to switch
the global polarization, and the remnant polarization

value, i.e. the residual polarization when a zero electric
field is applied. More in general one is interested in
the whole hysteresis loop of the polarization versus the
applied electric field (PvsE).

Firstly, as evidenced in [18], the shape of the
hysteresis loop is strongly affected by the type of
material considered, whether single- or poly-crystal.
Secondly, a number of contributions [19, 20, 21]
have proven that the occurrence of microstructural
defects such as oxygen vacancies, space charges,
dislocations, grain boundaries and voids arising from
fabrication processes can dramatically change the
material behavior. For instance, they have an impact
on the coercive field strength, which is typically orders
of magnitude higher in a single crystal than in real
ferroelectric ceramics. Moreover, defects might be
responsible for the experimentally observed fatigue and
aging of ferroelectrics [22, 23], i.e. the degradation of
the material during electrical loading or in time even
in the absence of an external loading. The aging
phenomenon results in a pinching of the polarization
hysteresis loop (see figure 1(a)), whereas fatigue leads
to a reduction of the hysteresis cycle (see figure 1(b)).

Figure 1: Hysteresis loops of the polarization versus
the applied electric field for: a) aged and b) fatigued
ferroelectric [23].

The linear theory of piezoelectricity [2] is clearly
not sufficient to predict the polarization distribution in
the material. To understand material properties, one
of the key issues is to develop a modelling capability to
predict the microstructure evolution, the relationship
between microstructure and macroscopic properties,
and the impact of microstructural changes on the
material response to applied fields. There are many
theoretical studies on ferroelectric domain switching
and the related non-linear electromechanical behaviour
[24, 25, 26] and a critical literature review has been
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recently published in [27]. The different approaches
can be classified into three types, based on the scale
of their applicability: macroscopic, mesoscopic and
atomic-level methods.

At the macroscopic scale, several phenomenolog-
ical models have been proposed [28, 29] in which the
total polarization in the material is divided into a re-
versible and an irreversible part, the latter being gov-
erned by some plasticity-like constitutive law.

At the mesoscopic level, on the contrary mi-
cromechanical [30, 31, 32] and phase field models
[33, 34, 35, 36, 37, 38] compute the irreversible part
of polarization by simulating the process of domain
switching.

At the atomic-level, computational models for
ferroelectrics include first-principle methods [39] and
molecular dynamics [40, 41, 42, 43, 44, 45]. Because of
their computational complexity, these techniques can
address small representative volumes in the order of
few tens of nanometers. In the context of a multiscale
modeling approach like in [46, 47], molecular dynamics
can be ideally used to calibrate material parameters for
numerical models at larger scales.

In this work we place ourselves at the meso-
scale and investigate the behaviour of piezo thin
films using the phase-field method (PFM). Since the
seminal contribution by Cahn and Hilliard [48], the
PFM has emerged as one of the preferred tools to
model the evolution of phases and micro-structures
in materials (see [33]). It has been recently applied
to investigate the non-linear response of ferroelectric
single crystals, polycrystals [49, 50, 51] and thin
films [52, 53, 54, 55, 56, 57] and also to address
the interaction between the domain evolution and
microstructural defects [58, 59, 60, 61, 62]. Following
[54, 34, 37, 38], we have developed a numerical tool
based on the Finite Elements (described in Section 3)
with the aim of investigating specific types of defects.
Indeed, in Section 4 we simulate specimens including
voids, charged point defects, regions with polarization
pinning, multigrains with finite dimensional interfaces.
For each of these cases we investigate primarily the
effect on the global hysteresis loop and show how the
response of a perfect crystal is altered towards the
observed behaviour of a realistic thin film.

2. Phase-field model for ferroelectrics

In accordance with the Landau-Devonshire theory of
ferroelectrics [63], the free energy density ψ for a single
crystal is assumed to depend on the polarization P, its
gradient ∇P, the small strain tensor εεε and the electric
displacement D [54, 34, 37, 38]:

ψ(P,∇P, εεε,D) =ψ
L

(P) + ψ
grad

(∇P)

+ ψ
mech

(P, εεε) + ψ
elec

(P,D).
(1)

In what follows, we refer to the free energy density
for lead-titanate (PbTiO3), which is a ferroelectric
material with cubic symmetry, widely discussed in
the literature (see, e.g., [54, 55, 56, 57, 59] and
[34, 61, 51, 64]).

The first term in equation (1) denotes the Landau
energy density
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a non-convex functional with minima corresponding
to the spontaneous polarization states (SPS) Ps.
Indeed, an isolated idealized crystal below the Curie
temperature TC has several SPS in which atoms find
a stable equilibrium with microscopic displacements
relative to the lattice. For instance, a tetragonal
ferroelectric has six equivalent SPS along the < 100 >
axes.

Regions of homogeneous polarization are called
domains and are separated by domain walls. In
phase-field models, the domain wall is modelled as a
diffuse interface with a finite thickness, in which the
polarization changes continuously. The second term
ψ

grad
(∇P) in equation (1) favours the formation of

large domains by penalizing the excessive spread of
interfaces and fixes the domain wall thickness. In our
case we admit a simple “isotropic” formulation with

ψ
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The third term in equation (1) refers to mechanical
energy

ψ
mech

(P, εεε) =
1

2
C11

(
e2
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33

)
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+ 2C44
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)
,

(4)

where Cij are the coefficients of the stiffness tensor C
for a material with cubic symmetry, and e = εεε− εεεs is
the elastic strain, with εεεs spontaneous strains caused
by the polarization field

εs11 = Q11P
2
1 +Q12(P 2

2 + P 2
3 ), εs12 = Q44P1P2,

εs22 = Q11P
2
2 +Q12(P 2

1 + P 2
3 ), εs23 = Q44P2P3,

εs33 = Q11P
2
3 +Q12(P 2

1 + P 2
2 ), εs13 = Q44P1P3,

(5)

where Qij are the electrostrictive coefficients. Equa-
tion (5) can be put in a compact tensorial form as
εεεs = Q(P) ·P.

Finally, the last part in eq. (1)

ψ
elec

(P,D) =
1

2κ0
(D−P) · (D−P) (6)
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denotes the electric energy, in which κ0 is the vacuum
permittivity.

2.1. Equilibrium and constitutive equations

Let us consider a solid Ω subjected to surface forces t
on the Γt portion of ∂Ω. In the absence of body forces
and assuming quasi static conditions, the mechanical
equilibrium is governed by the field equations

divσσσ = 0 in Ω, σσσ · n = t on Γt (7)

where σσσ is the Cauchy stress tensor. Additionally,
under the assumption of small perturbations, strain is
measured with the linear tensor εεε and the displacement
field u is restricted by boundary conditions u = ū
on Γu = ∂Ω\Γt. Moreover, having postulated the
free energy in the form of (1), stresses and strains are
associated by the constitutive equation

σσσ =
∂ψ

∂εεε
=
∂ψ

mech

∂εεε
= C : (εεε− εεεs). (8)

A second set of field equations governs the electrical
response of the solid Ω subjected to an imposed electric
potential φ̄ on Γφ ∈ ∂Ω. The quasi-static form of
Maxwell’s equations reads

div D = 0 in Ω, D · n = −ω on Γω, (9)

E = −∇φ in Ω, φ = φ̄ on Γφ, (10)

where E is the electric field vector and ω is the surface
charge density. According to (1), the constitutive
equation relating E and D is

E =
∂ψ

∂D
=
∂ψ

elec

∂D
=

1

κ0
(D−P), (11)

which results in the well known formula

D = κ0E + P. (12)

As in any phase-field method, a crucial point is the
formulation of the evolution equation for the order
parameter P. A typical intuitive derivation is as
follows. Defining the system free energy

Ψ =

∫
Ω

ψ dΩ, (13)

a relaxation towards the equilibrium condition
δΨ/δP = 0 is postulated in the form:

βββ · ∂P

∂t
= −δΨ

δP
, (14)

where βββ is an inverse kinetic tensor related to the
domain wall mobility and δΨ/δP, defined such that

δΨ =
δΨ

δP
· δP +O‖δP‖2

represents the thermodynamic driving force. Under
the assumption that:

δP ·
(

∂ψ

∂∇P
· n
)

= 0 on ∂Γ,

which implies the boundary conditions

∂ψ

∂∇P
· n = 0 on Γξ, P = P̄ on ΓP , (15)

some algebraic manipulations lead to the well-known
time dependent Ginzburg-Landau (TDGL) equation
[65]

βββ · ∂P

∂t
= div

∂ψ

∂∇P
− ∂ψ

∂P
. (16)

It is worth stressing that equation (16), which has
been introduced here in the usual heuristic manner,
can be justified more rigorously from the point of
view of thermodynamics as proposed by Gurtin [66]
and Su and Landis [37]. Their approaches postulate
the existence of internal microstresses ξξξ and internal
microforces πππ accounting for the movement of atoms
within the lattice and respecting the equilibrium
condition

divξξξ + πππ = 0 in Ω. (17)

An application of the second law of thermodynamics
shows that microstresses are work-conjugate of ∇P,
and that microforces can be divided in two contribu-
tions

ξξξ =
∂ψ

∂∇P
, πππ = η − βββ · ∂P

∂t
, η =

∂ψ

∂P
. (18)

Substituting equations (18) into the microforce
equilibrium (17), one obtains again equation (16).

Remark. In the present model, the total polarization
is used as “order parameter”. It is worth stressing that
there are other possible choices [67]. For instance, in
the works of Li et al. [54, 55, 56, 57, 59] and Wang
et al. [34, 52, 50, 51], the spontaneous polarization
is regarded as the order parameter. In such kind
of phase-field models, the spontaneous polarization is
embedded in a background material, for instance in
the paraelectric phase material. For simplicity, the
total polarization P is divided into two components:
the spontaneous polarization Ps and the induced
polarization Pi, assumed linearly proportional to the
electric field [52]

Pi = κ0χeE = κ0(κr − 1)E. (19)

where χe = κr−1 is the electric susceptibility and κr is
the relative permittivity. Consequently, the dielectric
displacement becomes

D = κ0E + (Pi + Ps) = κ0κrE + Ps (20)

3. Finite Elements implementation

The multi-field problem is formulated in terms of the
unknown fields u, φ and P, which are subjected to the
boundary conditions discussed in the previous section

u = ū on Γu, φ = φ̄ on Γφ, P = P̄ on ΓP .
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Their functional spaces, endowed with sufficient
continuity and respecting the boundary conditions in
strong form, are denoted Cu(ū), Cφ(φ̄) and CP (P̄),
respectively. While constitutive equations are again
enforced in a strong form, equilibrium conditions are
imposed in a weak manner using as test functions

ũ ∈ Cu(0), φ̃ ∈ Cφ(0), P̃ ∈ CP (0),

where the spaces Cu(0), Cφ(0) and CP (0), collect
functions vanishing on Γu, Γφ and ΓP , respectively.
Multiplying equations (7), (9) and (17) by the
respective test functions, integrating over Ω and
enforcing the boundary equilibrium conditions

σσσ · n = t on Γt, D · n = −ω on Γω,

ξξξ · n = 0 on Γξ,

some standard algebraic manipulations lead to the final
weak form of the equilibrium conditions

find u(x) ∈ Cu(ū) such that, ∀ũ ∈ Cu(0)∫
Ω

σσσ : ε̃εεdΩ−
∫

Γt

t · ũ dΓ = 0; (21)

find φ(x) ∈ Cφ(φ̄) such that, ∀φ̃ ∈ Cφ(0)∫
Ω

D · Ẽ dΩ +

∫
Γω

ω φ̃ dΓ = 0; (22)

find P(x, t) ∈ CP (P̄) such that, ∀P̃ ∈ CP (0)∫
Ω

[(
βββ · ∂P

∂t

)
· P̃ + ξξξ : ∇P̃ + η · P̃

]
dΩ = 0

∀t ∈ [0, T ].

(23)

Adopting Voigt’s notation, we write the constitutive
laws as

{σσσ} = [C] ({εεε} − [Q(P)]{P}) , (24)

{D} = [κκκ]{E}+ {P}, (25)

{ξξξ} = [G]{∇P}, (26)

{η} =
(

[α(P)] + 2[Q(P)]
T

[C][Q(P)]
)
{P}

− 2[Q(P)]
T

[C]{εεε} − {E}.
(27)

A detailed description of all the terms in equations
(24)-(27) is presented in Appendix B for 2D problems.
Equations (21)-(23) can be now expressed in matrix
form as∫

Ω

({ε̃εε}
T

[C]{εεε} − {ε̃εε}
T

[C][Q(P)]{P}) dΩ =∫
Γt

{ũ}
T
{T}dΓ,

(28)

∫
Ω

({Ẽ}
T

[κκκ]{E}+ {Ẽ}
T
{P}) dΩ = −

∫
Γω

φ̃ ω dΓ, (29)∫
Ω

[{P̃}
T

[βββ]{Ṗ}+ {∇P̃}
T

[G]{∇P}

+{P̃}
T

([α(P)] + 2[Q(P)]
T

[C][Q(P)]){P}

−2{P̃}
T

[Q(P)]
T

[C]{εεε} − {P̃}
T
{E}] dΩ = 0,

(30)

where Ṗ = ∂P/∂t.

3.1. Space discretization

We restrict ourselves to 2D problems in which the
polarization and the electric field have only in-plane
components. The space Ω is discretized with six node
triangles. Every node is associated to five degrees of
freedom: two displacement components, one electrical
potential and two polarization components. In each
element the fields are interpolated using quadratic
shape functions for the displacements and the electrical
potential, whereas we select a linear interpolation for
the polarization. This choice is due to the fact that
the polarization is strictly connected to the strain and
to the electric fields, which are the gradients of the
displacements and potential, respectively.

Collecting all the unknowns in the arrays
{U}, {Φ}, {P}, the discretized weak form generates a
system of non-linear equations:

[K
U

]{U}+ [K
UP

(P)]{P} = {F
U
}; (31)

[K
Φ

]{Φ}+ [K
ΦP

(P)]{P} = {F
Φ
}; (32)

[M]{Ṗ}+ ([K
G

] + [K
P

(P)]){P}
+ [K

PU
(P)]{U}+ [K

PΦ
]{Φ} = {0}.

(33)

3.2. Time discretization

We adopt a simple staggered approach for the time
marching integration. Assuming that the state at tn is
known, equations (31)-(32) are imposed at time tn+1

with the following explicit scheme:

[K
U

]{Un+1} = {F
U
} − [K

UP
(Pn)]{Pn}; (34)

[Kφ]{Φn+1} = {Fφ} − [K
ΦP

(Pn)]{Pn}. (35)

The time derivative of the polarization vector is
approximated by finite differences:

{Ṗ} =
{Pn+1 − Pn}

∆t
. (36)

With a forward Euler method, equation (33) becomes:

[M]{Pn+1} =
(
[M]−∆t([K

G
] + [K

P
(Pn)])

)
{Pn}

−∆t
(
[K

PU
(Pn)]{Un+1}+ [K

PΦ
]{Φn+1}

)
,

(37)

in which {Un+1} and {Φn+1} are the solution of
equations (34)-(35).

4. Simulation results

The long term motivation of this investigation is the
simulation of thin films deposited on bulk materials for
MEMS applications. Trying to limit the computational
burden as much as possible, we consider a 2D section
of a thin layer of piezo-material extending indefinitely
in the out-of-plane direction and in the x1 direction.
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Figure 2: Simulation model: a) Boundary conditions; b) Applied electric field

According to [37] we assume a generalized plane strain
condition:

P3 = 0, E3 = 0, ε13 = ε23 = 0, ε33 = ε⊥ (38)

where ε⊥ is the normal spontaneous strain, i.e. the
remnant ε33 strain due to an in-plane spontaneous
polarization when the ferroelectric material transforms
from the cubic phase to the tetragonal phase. E.g., for
the material considered in the present investigation,
(see Appendix A), ε⊥ = −0.0149. With this condition
we guarantee zero out-of-plane stress in the initial
configuration where we assume absence of external
mechanical and electrical loading; on the contrary any
further contribution to the ε33 strain is physically
prevented by the “infinite” extension of the film in the
x3 direction.

Since in this investigation we do not consider
the presence of the substrate, the bottom and top
surfaces are treated as traction free boundaries. On
the contrary, in order to simulate a sufficiently long
extension of the thin film in the x1 direction, a
rectangular strip of PTO material of size L × H is
modelled and suitable periodic boundary conditions
are enforced on the vertical sides:

u1(L/2, x2) = u1(−L/2, x2) + L < ε11 >,

u2(L/2, x2) = u2(−L/2, x2),

φ(L/2, x2) = φ(−L/2, x2),

P1(L/2, x2) = P1(−L/2, x2),

P2(L/2, x2) = P2(−L/2, x2),

(39)

where < ε11 > is an average stretch along the x1

direction which plays a key role in the analyses. In the
presence of a stiff substrate the value of < ε11 > would
be imposed to match that of the substrate itself, since
it is known ([53, 68]) that this has an important impact
on the hystereris loop. However, in the present context
we rather focus on the effect of defects and < ε11 >
is defined in order to guarantee a sort of “stress free”
condition at the vertical borders. The issue of inserting
stress free conditions in periodic bcs has been clarified

in [69] where a generic 3D periodic cell is addressed.
Here, limiting ourselves to 2D problems, we adopt a
choice which appears as a modification of their ASSF
(Adaptive Spherical Stress Free) option and consists in
setting (see eq.(5)):

< ε11 >=< εs11 >= Q11 < P 2
1 > +Q12 < P 2

2 > (40)

Basically we aim at letting the material expand freely
in the x1 direction when the spontaneous “inelastic”
strain εs11 appear. The value of < ε11 > clearly evolves
during the analysis. One may argue that also u2

should be modified consistently in order to account
for < εs12 >. However, its physical meaning is less
evident and, as done in [69], we prefer to disregard the
contribution of off-diagonal components of εεεs.

Rigid body movements of the specimen are iso-
statically prevented. The electrical potential is set
to zero at the bottom and φ = −EappH at the top,
where Eapp is the applied electric field in the vertical
direction, simulating the presence of the electrodes.
All the analyses addressed in this Section start with
a preliminary phase where the specimen is initially
completely polarized in the x1 direction and relaxes
towards an equilibrium configuration with Eapp = 0.
It is worth stressing that this state could differ from
the trivial solution in the presence of defects. In
subsequent phases, the electric field is applied in the
vertical direction and its value is increased or decreased
step by step by ∆E. During each loading step the
electric field is kept constant (see figure 2(b)) until the
polarization field relaxes to a steady state. The first
electrical loading steps tend to polarize the material in
the x2 direction (poling). Then, the classical hysteresis
loop PvsE is simulated. It is worth stressing that
the initial condition P1 = P s and P2 = 0 has been
chosen only for simplicity. Other options, like random
polarization with magnitude between 0 and P s, have
been tested. These lead to different initial relaxed
configurations, but eventually the same macroscopic
hysteresis loop is obtained.
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The material coefficients utilized in the simula-
tions are listed in Appendix A. The selected value
of the gradient coefficient G11 is such that the domain
wall thickness is approximatively 1.5 nm. Assuming
that three quadratic triangular elements are sufficient
to capture the sharp interface, the typical finite ele-
ment mesh size is set to 0.5 nm in all the analyses
performed. With this refinement level, no numerical
artefacts like mesh pinning have been observed.

4.1. Perfect single crystal

As a first example, figure 3 presents the hysteresis loop
computed for a single square crystal of L = H =
20 nm made of PTO without any imperfection. In this
example, the whole domain simultaneously switches
during the electrical loading and the polarization is
homogeneous.

Figure 3: Hysteresis loop for a perfect single crystal.

For a perfect single crystal the value of the
remnant polarization Pr is equal to 0.757 C/m2, i.e. it
coincides the value of the spontaneous polarization P s.
The coercive switching fields are EC90=1.52×108 V/m
and EC180=1.89×108 V/m, for 90◦ and 180◦ switching
processes, respectively.

The computed coercive field strength EC180

is about two orders of magnitude higher than
the experimentally measured coercive fields of real
ferroelectric ceramics [17, 70]. Indeed, the simulated
problem represents an idealized system, whereas real
ferroelectric materials contain numerous imperfections
and are typically polycrystalline with a complicated
grain structure. These mechanisms have a strong
impact on the coercive field strength [18], as
investigated in the subsequent sections.

4.2. Defects in a single crystal

The aim of this section is to study the evolution of
ferroelectric domains and their interaction with some
typical defects or imperfections in the materials. In
particular, the effects on the global PvsE hysteresis
loop are investigated. Since it is extremely difficult
to interpret the experimental observations when all
defects are considered simultaneously, in the following
we will focus sequentially on a single crystal of size
L = H = 20 nm with three different types of defects:
voids of different shape inside the sample; charged
point defects, reflecting for instance the presence of
an oxygen vacancy; pinning of the polarization.

4.2.1. Voids in the material. Let us consider the
examples in figure 4 where a square hole (case a), a
circular hole (case b) and four holes (case c), have been
inserted in the perfect crystal. We set d = 5 nm in case
(a) and R = 2.82 nm in case (b), whereas in the last
case d and R are halved, so as to maintain the total
area of the voids A = 25 nm2 invariant in the three
situations.

The electrical conditions on the hole boundaries
are open-circuited, i.e. D · n = 0, where n is the
outward normal. This is a reasonable approximation
when the medium in the void has a low permittivity
(e.g. air). Figure 5 shows the hysteresis loop and the
domain evolution for case (a). Even with zero applied
electric field, starting from the initial configuration
completely polarized in the horizontal direction, P1 =
P s and P2 = 0, the polarization relaxes towards a
multi-domain configuration (1). In particular, two
domains with vertical but opposite polarization are
nucleated between the hole and the corners. This is
induced by the orientation of the surfaces of the square
void which coincide with the possible orientations
of spontaneous polarization. Therefore, P tends to
orient itself parallel to these surfaces thus satisfying
the boundary condition D · n = 0 in an ideal way.
Then, when a positive vertical electric field is applied,
the polarization vector switches almost totally in the
vertical positive direction (2). It is possible to observe
that small regions of opposite polarization persist near
the void borders. It is worth remarking that even
when Eapp = 0 in the hysteresis loop, the presence of
the void induces multi-domain configurations (3),(5).
In particular, many head to head and tail to tail
90◦ domain walls appear. This is usually considered
to be very unlikely from the physical point of view
since surface charges of equal sign face each other.
However, these domain configurations are enforced
by the periodic boundary conditions. Furthermore,
this evolution of the polarization is qualitatively in
accordance with the results presented in literature
[61, 71].
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Figure 4: Samples with a) a square hole, b) a circle hole and c) four holes.

(a) Hysteresis loop PvsE

(b) Domain evolution

Figure 5: Specimen with a square hole (case a): a)
hysteresis loop and b) contour plots for P2. The arrows
in the domain evolution indicate the orientation of
polarization vector.

Next we consider case (b) with a circular hole
having the same boundary conditions. It can be
appreciated from figure 6 that the shape of hysteresis
loop is quite different with respect to the previous case.

(a) Hysteresis loop PvsE

(b) Domain evolution

Figure 6: Specimen with a circular hole (case b): a)
hysteresis loop and b) contour plots for P2. The arrows
in the domain evolution indicate the orientation of
polarization vector.

Now the void-surface normal is no longer aligned with
the directions of spontaneous polarization. Initially,
four small vertical domains appear in a symmetric
way (1), resulting in a zero macroscopic vertical
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Figure 7: Comparison between the hysteresis loops for
two different values of R in the circle case (b) and the
square case (a).

polarization. Then, the domains get progressively
aligned with the imposed electric field (2),(3) until they
switch almost completely. In the hysteresis loop, when
Eapp = 0 the polarization is almost homogeneous and
aligned in the direction of the applied electric field
(4),(5), with the exception of small regions near the
circular hole.

However, the microstructure evolution in figures
5b and 6b reveals that domains nucleate around the
defect core and their extension and importance could
depend on the perimeter of the void rather than its
area. Still considering a single circular defect, we
therefore set R = 3.18 nm in order to force the same
perimeter (2p = 20 nm) as for the square defect. From
figure 7 we can see how the values of the remnant
polarization Pr and the coercive field EC180 for the
“equal perimeter circle” are lower than for the “equal
area circle” and globally more similar to the square
case (a).

Case (c) generates an hysteresis loop (see figure 8)
that is a sort of average of the two previous examples:
it has the same shape as case (b), but the same
value of coercive field EC180 as case (a). The domain
evolution is clearly affected by the interaction between
the different holes in the material.

Finally, figure 9 shows the hysteresis loops for the
three examples in figure 4 with the total area of the
voids as invariant, compared with the perfect single
crystal case.

Despite its very qualitative nature, these examples
highlight the potential effects of voids in the material.
Even if the void area represents only 6.35% of the total
area of the specimen analysed, the reduction of the
strength of the coercive field exceeds 50% in cases (a)

(a) Hysteresis loop PvsE

(b) Domain evolution

Figure 8: Specimen with four holes (case c): a)
hysteresis loop and b) contour plots for P2. The arrows
in the domain evolution indicate the orientation of
polarization vector.

and (c), less in case (b).

4.2.2. Charged point defect. Let us consider now a
sample containing a defect of charge q placed in its
center. Typically, a point charge positioned at x̄ is
described through the Dirac delta function

ρ(x) = qδ(x− x̄) (41)

where ρ is the volume density of the charge, which is
included into the Maxwell’s equation (9) as div D−ρ =
0. In a two-dimensional model, the electric point
charge is a line charge extending to infinity in the x3

direction. Setting q = 5×10−9 C/m and proceeding as
described before, we obtain the hysteresis loop PvsE
and the domain patterns depicted in figure 10.

The presence of the charge reduces both the
strength of the coercive field and the value of the
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Figure 9: Comparison between hysteresis loops for the
three samples in Figure 4 and the perfect crystal.

remnant polarization compared to the case of the
perfect crystal. In a sense, the presence of the charge
promotes and facilitate the nucleation of ferroelectric
domains at the site of the charged defect, as described
in the following. Initially, even for Eapp = 0, a domain
in the negative vertical direction is generated between
the charge and one corner (1). When the electric field
increases, a new domain (2) gets rapidly oriented like
the applied electric field and it starts the 90◦ switching
process. Next the polarization progresses towards a
homogeneous state for high values of Eapp (3), but for
a small area in the vicinity of the charge. When the
electric field decreases to zero, switching is triggered
by the fast reorientation in the x1 direction (4) of a
domain pinned at the point charge. The process then
progresses symmetrically for negative Eapp .

As a validation of the present implementation of
the PFM, we compare our finite element simulations
with results presented by Völker et al. in [62], in
which the numerical analyses have been performed
in COMSOLMultiphysics c©. Here, the material
parameters have been chosen following [46, 62] for
PZT material. Figure 11 shows the comparison of
the coercive field strengths computed in the two
implementations, showing an excellent agreement. It
is worth stressing that for an increasing charge density,
both coercive field strengths, EC90 and EC180, are
reduced significantly. In particular, the coercive field
EC180 is affected more by the defect than EC90 and the
two values converge for high charge values. This could
be possibly explained by noting that the concentrated
charge actually separates the 180◦ switching process in
two 90◦ sub-processes.

(a) Hysteresis loop PvsE

(b) Domain evolution

Figure 10: Specimen with a charge q = 5 × 10−9 C/m
in its center: a) hysteresis loop and b) contour plots
for P2. The arrows in the domain evolution indicate
the orientation of polarization vector.

4.2.3. Polarization pinning. Ferroelectric materials
are subjected to degradation in time even in the
absence of external loading. This phenomenon is
commonly defined as aging. Typically, the most
common reason for aging is the migration of charged
defects, like oxygen vacancies, which stabilize a
given domain configuration, hindering the polarization
reversal when an electric field is applied [22]. The
simplest way to reproduce this situation is to consider
a polarization defect in the form of a region where the
polarization is pinned in one configuration without any
possibility to evolve. Therefore, we simulate a square
sample of area A = 25 nm2, in which the polarization
is oriented in x1 direction (P = (P s; 0)), that is
orthogonal to the applied electric field (figure 12).

The hysteresis loop and the domain patterns
obtained in the presence of this polarization defect is
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Figure 11: Comparison of the values of the coercive
fields computed for several charge densities with the
present model (straight line) vs. those presented in [62]
(dashed line). PZT material.

Figure 12: Sample with a region of area A = 25 nm2

where the polarization is pinned in x1 direction.

shown in figure 13. Initially the polarization is oriented
completely in the horizontal direction (1), as in the case
of a perfect single crystal. Applying a positive electric
field, multidomain configurations (2),(3) are generated,
but when the electric field is removed the specimen
recovers the initial condition with uniform polarization
in x1 direction, resulting in an unpoled state in the
hysteresis loop PvsE. This happens because continuity
at the boundaries of the pinned area drives the system
back into a state of minimum energy with P2 = 0. For
a negative electric field, we observe a similar behaviour
of the hysteresis loop (4),(5), which eventually features
two totally distinct and symmetric cycles.

It is worth stressing note that the shape of the
obtained loop is very similar to the response of an aged
ferroelectric (see figure 1a), thus strongly supporting
the initial guess that aging might be also associated to
polarization pinning.

(a) Hysteresis loop PvsE

(b) Domain evolution

Figure 13: Sample with a pinning area in its center:
a) hysteresis loop and b) contour plots for P2. The
arrows in the domain evolution indicate the orientation
of polarization vector.

Another approach to simulate a pinned polarized
domain would be to consider an electric dipole in the
sample by placing two charge defects with opposite
sign separated by a distance d, inducing an electric
dipole moment p = qd = PA. In order to compare
the two approaches, we consider two charges with
q = 3.75 × 10−9 C/m placed in x = (−2.5; 5) nm and
x = (2.5; 5) nm, respectively. The resulting hysteresis
loop is shown in figure 14 indicating a qualitative
accordance with the first simplified approach, thus
supporting our conclusions. However, the presence of
an electric dipole does not prevent the polarization
to evolve in the vicinity of the dipole itself when
the electric field changes direction. Therefore, we
consider the first approach, although simplistic, more
appropriate to simulate the “aging” condition.
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Figure 14: Hysteresis loop for a sample with an electric
dipole.

4.3. Polycrystalline material

Most ferroelectrics are polycrystals composed of several
grains having different orientations and separated by
grain boundaries. The orientation of the grains
affects the elastic and electrostatic interactions,
whereas the presence of grain boundaries generates
depolarizing fields. Therefore, the multigrain structure
plays an important role in determining the domain
configuration inside the material. We aim at
showing how the multigrain nature of ferroelectric
polycrystalline can impact on their properties, and in
primis on the hysteresis loop.

In the FEM modelling discussed in Section 3 the
polarization vector, as well as the displacements and
the potential, is continuous across elements, following
[50, 51]. This common choice has some important
consequences. When the interface between grains
has “zero” thickness (section 4.3.1), P is continuous
across grains, which might be criticized from a physical
point of view. On the contrary, in section 4.3.2 we
simulate interfaces between grains with finite thickness
and consider them as “amorphous” linear dielectrics
where a discontinuity of polarization across the grain
boundaries can develop.

4.3.1. Effect of grain orientations. In order to
evaluate only the effects of grain orientation, we
analyse the configuration depicted in figure 15(a),
where the specimen of size L = H = 100 nm contains
now 12 grains randomly oriented with boundaries of
zero thickness. More precisely, the grain boundaries
are simply 1D hypersurfaces where the crystal axes
change orientation, but besides this geometrical effect
they are not equipped with any additional physical
properties.

Figure 15: a) Polycrystalline sample and b) schematic
crystallographic orientation of the grains.

The energy density introduced in section 2 has
been defined for a single grain. In the presence of
multiple grains, the free energy is expressed in the local
reference system of each grain, which is described by
three Euler angles, while the polarization, the strain
and the electric field are backrotated to the global
system by means of the rotation tensor R as P =

R ·PG, εεε = R
T · εεεG ·R and E = R · EG [49, 72, 51],

where the superscript G denotes the global fields. In
the 2D case, the crystallographic orientation of each
grain is only allowed around the out-of-plane axis by
an angle 0 ≤ θ ≤ π (see figure 15(b)). The rotation
tensor is hence associated to the matrix

[R] =

[
cos θ sin θ
− sin θ cos θ

]
(42)

Figure 16 shows the hysteresis loop and the do-
main evolution for the simulated polycrystalline ferro-
electric. The boundary conditions and the simulation
procedure are the same described previously. From
the domain patterns, it is possible to observe that
the polarization evolves continuously across the grains,
though the orientation of the grains affects this evolu-
tion and makes the homogeneous state almost impos-
sible to reach. It can be also remarked that, from the
macroscopic point of view, the shape of the hysteresis
loop is similar to the case of the perfect single crystal.
However, the coercive field value EC180 is one order
of magnitude smaller for the polycrystalline material.
This difference is due to the fact that domain switching
is easier when the crystallographic axes in the grains
deviate from the direction of the applied electric field.

4.3.2. Effect of grain boundaries. For a complete
description of the polycrystalline ferroelectric, we
consider also the presence of amorphous grain
boundaries with finite dimensions. Here, the
polarization vector does not evolve according to the
TDGL equation, but is assumed equal to

P = κ0(κr − 1)E (43)
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where κr is the relative permittivity. Consequently, the
dielectric displacement becomes

D = κ0E + P = κ0κrE (44)

It is worth stressing that this approach apparently
contrasts with [50, 51] where P = 0 in the grain
boundaries. However the difference is due to the fact
that here we consider as order parameter of the PFM
the total polarization and not only the spontaneous
polarization (see the comments in section 2.1).

Let us now focus on the polycrystalline ferroelec-
tric specimen in figure 17, which now includes grain
boundaries of thickness d = 1 nm and κr = 66 [50, 51].

The simulated hysteresis loop and the domain
patterns are plotted in figure 18. The values of the
obtained electric coercive fields are EC90 = 0.6×107

and EC180 = 1.3×107. The large decrement is
attributed to the presence of the finite thickness
linear dielectric grain boundaries with a comparably
low permittivity, which weakens the interaction of
polarization across them. They have a shielding effect
allowing the grains to switch more independently, as
shown in the domain evolution, in which a variety of
vortex-type polarization patterns can be observed as
discussed in [73, 74, 75].

Each grain switches approximatively at its own
coercive field intensity, according to its orientation with
respect to external electric field. On the contrary, in
the previous case, all grains switch at the same time
due to polarization coupling across grain boundaries.
When a positive electric field is applied, the domains
switch partially in the vertical direction. However,
even for large values of Eapp , the local polarizations
are not fully oriented in the imposed direction (2),(4)
due to the random orientation of the grains. When
Eapp = 0, the random distribution of the grains and
the presence of grain boundaries induce a reduction
of the macroscopic remnant polarization Pr, which is
equal to 0.29 C/m2.

It should be noted that the shape of PvsE in fig-
ure 18 is in close accordance with experimental obser-
vations (see, e.g., [18, 17]), validating qualitatively our
representation of polycrystalline ferroelectrics.

5. Conclusion

Defects have an essential impact on the nucleation and
evolution of domains in ferroelectric materials. In this
way they strongly influence the overall properties of
ferroelectric devices. It is the aim of this study to
understand this effect. To this end, a fully coupled
electromechanical phase-field model with polarization
as the order parameter governed by the Ginzburg-
Landau equation has been implemented in an in-house
Finite Element code. The code has been verified

against results in literature. As the material, Lead-
Titanate (PTO) and Lead-Zirconate/Titanate (PZT)
were chosen with the material parameters taken from
literature. It is known that the coercive field strength
obtained from single domain phase-field simulations is
far beyond what is observed in experiments with real
devices.

To investigate the impact of defects on the overall
ferroelectric hysteresis behavior of single crystals, three
types of defects have been investigated: (1) holes of
different shape, (2) charged point defects, (3) pinning
of the polarization. Furthermore, two types of grain
boundaries as a kind of defect in a polycrystal have
been considered, namely either as a purely geometrical
feature of change in crystal orientation or as an
additional dielectric phase between ferroelectric grains.
To study the effect of defects, a 2D volume element
under plane strain condition and periodic boundary
conditions at the sides was subjected to complete
poling and repoling cycle by a vertical electric field.
The finite element mesh was refined to a degree that
no artificial mesh pinning of the domains could occur.

For the holes, we assumed for simplicity an
impermeable boundary condition at their surface. This
is known to be a reasonable approximation for flaws
of non-infinite diameter. Because of the strong effect
of this electric boundary condition, holes showed a
severe influence on the domain configuration in their
neighborhood, even without applied electric field.
In addition, the overall coercive field strength of
the volume element was significantly reduced, since
the presence of such a defect makes easier domain
nucleation possible.

A charged point defect leads to the nucleation
of new domains in a single crystal even without
any external excitation. Our study showed how the
coercive field strength of the volume element for 90-
and 180-degree switching is gradually decreased as the
amount of the charge is increased.

To simulate domain pinning, the polarization in
a part in the center of the simulated single crystal
was fixed. Due to the strong effect of polarization
coupling the overall hysteresis was severely affected.
A strictly pinched hysteresis occurred resembling the
hysteresis shape in aged devices. This finding supports
understandings that polarization pinning is a possible
source for aging in ferroelectric devices.

Concerning polycrystals, we have simulated them
first with the grain boundaries having the only
property to be hypersurfaces separating areas of
different orientation of the crystal axes in different
grains. The resulting hysteresis of the volume element
was of a more or less rectangular shape as in the single
crystal, however the coercive field strength was reduced
by an order of magnitude. The rectangular shape is due
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to the strong polarization coupling between grains in
this case, which triggers switching in all grains once it
has been initiated in the first grain which was easiest
to switch.

Finally, thin additional purely dielectric phases
were introduced at the grain boundaries. These
grain boundary phases led to a certain shielding and,
thus, a decoupling of the domains in neighboring
grains. As a result, instead of the more or less
simultaneous switching of the domains in all grains
in the previous case, now the grains rather switched
more independently one after the other. The switching
of the domains in a grain now mainly depends on
the orientation of the crystal axes of this grain with
respect to the external electric field in the first place.
As a result a more rounded hysteresis loop with many
small switching steps and a small overall coercive field
strength is observed which reflects in a realistic way
experimental observations.

This study shows that understanding the proper-
ties of ferroelectric devices requires looking not only
at crystallographic features but also at defects. When
the crystallographic properties are known, phase-field
modeling is an appropriate approach to simulate the
effect of defects on the overall material properties as
they are encountered in ferroelectric devices.

(a) Hysteresis loop PvsE

(b) Domain evolution

Figure 16: Polycrystalline ferroelectric with misori-
ented grains and zero thickness grain boundaries: a)
hysteresis loop and b) contour plots for P2. The arrows
in the domains denote the orientation of polarization
vector.
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Figure 17: Polycrystalline ferroelectric with grain
boundaries.

(a) Hysteresis loop PvsE

(b) Domain evolution

Figure 18: Polycrystalline ferroelectric with dielectric
grain boundaries of thickness 1 nm and κr=66: a)
hysteresis loop and b) contour plots for P2. The arrows
in the domain evolution indicate the orientation of
polarization vector.
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Appendix A. Energy coefficients

The material coefficients for PbTiO3 utilized in the
simulations are taken from the work of Haun [76] and
are listed in table A1. The spontaneous polarization
magnitude P s = |Ps| at room temperature is equal
to 0.757 C/m2 and the normal spontaneous strain
is: ε⊥ = −0.0149. Following previous works (see
for instance [57, 34]), the gradient coefficient G11 is
taken proportional to a reference value G110 = 1.73 ·
10−10 C−2m3J. In particular, in our simulations we
have chosen G11 = 0.6G110. The corresponding wall
thickness is about 1.5 nm.

Coefficient Value Unit
α1 -0.1725 (aJ)(nm)(aC)−2

α11 -0.073 (aJ)(nm)5(aC)−4

α12 0.75 (aJ)(nm)5(aC)−4

α111 0.26 (aJ)(nm)9(aC)−6

α112 0.61 (aJ)(nm)9(aC)−6

G11 0.1038 (aJ)(nm)3(aC)−2

C11 174 (aJ)(nm)−3

C12 79 (aJ)(nm)−3

C44 111 (aJ)(nm)−3

Q11 0.089 (nm)4(aC)−2

Q12 -0.026 (nm)4(aC)−2

Q44 0.0338 (nm)4(aC)−2

Table A1: Values of material coefficients for PbTiO3.
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Appendix B. 2D description

We rewrite constitutive equations (24)-(27) under the plane-strain assumption (38), and using Voigt’s notation.
The stress {σσσ} depends on elastic strains

σ11

σ22

σ33

σ12

 =


C11 C12 C12 0
C12 C11 C12 0
C12 C12 C11 0
0 0 0 C44





ε11

ε22

ε33

2ε12

−


εs11

εs22

εs33

2εs12


 (B.1)

where the spontaneous strain {εεεs}, according to (5), is a function of the polarization components:
σ11

σ22

σ33

σ12

 =


C11 C12 C12 0
C12 C11 C12 0
C12 C12 C11 0
0 0 0 C44





ε11

ε22

ε33

2ε12

−

Q11P1 Q12P2

Q12P1 Q11P2

Q12P1 Q12P2

Q44P2 Q44P1

{ P1

P2

} (B.2)

We then write the expressions of the electric displacement vector {D}:{
D1

D2

}
=

[
κ0 0
0 κ0

] {
E1

E2

}
+

{
P1

P2

}
(B.3)

of the microstress {ξξξ}:
ξ11

ξ22

ξ12

ξ21

 =


G11 0 0 0

0 G11 0 0
0 0 G11 0
0 0 0 G11




P1,1

P2,2

P2,1

P1,2

 (B.4)

and finally of the microforce {η}:

{
η1

η2

}
=


2α1 + 4α11P

2
1 + 2α12P

2
2

+6α111P
4
1 + α112[4P 2

1P
2
2 + 2P 4

2 ]
0

0
2α1 + 4α11P

2
2 + 2α12P

2
1

+6α111P
4
2 + α112[4P 2

1P
2
2 + 2P 4

1 ]


{
P1

P2

}

− 2

[
Q11P1 Q12P1 Q12P1 Q44P2

Q12P2 Q11P2 Q12P2 Q44P1

] 
σ11

σ22

σ33

σ12

−
{
E1

E2

} (B.5)

where the matrix [α(P)] contains the contribution of the Landau energy (2).
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Hinterstein, and Jürgen Rödel. High-temperature poling
of ferroelectrics. Journal of Applied Physics, 104(2):1–6,
2008.

[14] Ming Cheng Chure, Long Wu, Bing Huei Chen, Wei Ze
Li, Wei Kuo Liu, and Menq Jion Wu. Effect of
poling conditions on the dielectric and piezoelectric
characteristics of PZT ceramics. In Joint Conference
of the 2009 Symposium on Piezoelectricity, Acoustic
Waves, and Device Applications, SPAWDA 2009
and 2009 China Symposium on Frequency Control
Technology, pages 317–320, 2009.

[15] Takeshi Kobayashi, Yasuhiro Suzuki, Natsumi Makimoto,
Hiroshi Funakubo, and Ryutaro Maeda. Influence
of pulse poling on the piezoelectric property of
Pb(Zr0.52,Ti0.48)O3 thin films. AIP Advances, 4(11):0–
7, 2014.

[16] Z. X. Li, X. L. Liu, W. J. Chen, X. Y. Zhang, Ying Wang,
W. M. Xiong, and Yue Zheng. Switchable diode effect
in ferroelectric thin film: High dependence on poling
process and temperature. AIP Advances, 4(12):0–11,
2014.

[17] Dragan Damjanovic. Hysteresis in piezoelectric and
ferroelectric materials. In The Science of Hysteresis,
volume 3, chapter 4, pages 337–465. Academic Press,
2005.

[18] Gang Liu, Shujun Zhang, Wenhua Jiang, and Wenwu Cao.
Losses in ferroelectric materials. Materials Science and
Engineering R: Reports, 89:1–48, 2015.

[19] Venkatraman Gopalan, Volkmar Dierolf, and David A.
Scrymgeour. Defect-Domain Wall Interactions in
Trigonal Ferroelectrics. Annual Review of Materials
Research, 37(1):449–489, 2007.

[20] Peng Gao, Christopher T. Nelson, Jacob R. Jokisaari,
Seung Hyub Baek, Chung Wung Bark, Yi Zhang,
Enge Wang, Darrell G. Schlom, Chang Beom Eom,
and Xiaoqing Pan. Revealing the role of defects in
ferroelectric switching with atomic resolution. Nature
Communications, 2(1):591–596, 2011.

[21] Duo Liu. Microstructural Defects in Ferroelectrics
and Their Scientific Implications. In M. Lallart,
editor, Ferroelectrics - Characterization and Modeling,
chapter 6, pages 97–114. InTech, 2011.

[22] Doru C. Lupascu. Fatigue in Ferroelectric Ceramic and
Related Issues. Number 61. Springer Series in Materials
Science, 2004.

[23] Yuri A. Genenko, Julia Glaum, Michael J. Hoffmann,
and Karsten Albe. Mechanisms of aging and fatigue
in ferroelectrics. Materials Science and Engineering
B: Solid-State Materials for Advanced Technology,
192(C):52–82, 2015.

[24] M Kamlah. Ferroelectric and ferroelastic piezoceramics
- modeling of electromechanical hysteresis phenomena.
Continuum Mechanics and Thermodynamics, 13(4):219–
268, 2001.

[25] Chad M. Landis. Non-linear constitutive modeling of
ferroelectrics. Current Opinion in Solid State and
Materials Science, 8(1):59–69, 2004.

[26] B. Laskewitz and Marc Kamlah. Finite Element implemen-
tation of nonlinear constitutive models for piezoceramic
materials. Journal of Mechanics of Materials and Struc-
tures, 5(1):19–45, 2010.

[27] Daining Fang, Faxin Li, Bin Liu, Yihui Zhang, Jiawang
Hong, and Xianghua Guo. Advances in Developing
Electromechanically Coupled Computational Methods
for Piezoelectrics/Ferroelectrics at Multiscale. Applied
Mechanics Reviews, 65(6):060802, 2013.

[28] Marc Kamlah and Charalampos Tsakmakis. Phenomeno-
logical modeling of the non-linear electro-mechanical
coupling in ferroelectrics. International Journal of
Solids and Structures, 36(5):669–695, 1999.

[29] V. Mehling, Ch Tsakmakis, and D. Gross. Phenomeno-
logical model for the macroscopical material behavior
of ferroelectric ceramics. Journal of the Mechanics and
Physics of Solids, 55(10):2106–2141, 2007.

[30] J. E. Huber. Micromechanical modelling of ferroelectrics.
Current Opinion in Solid State and Materials Science,
9(3):100–106, 2005.

[31] W. Tang, D. N. Fang, and J. Y. Li. Two-scale
micromechanics-based probabilistic modeling of domain
switching in ferroelectric ceramics. Journal of the
Mechanics and Physics of Solids, 57(10):1683–1701,
2009.

[32] R. Jayendiran, M. Ganapathi, and T. Ben Zineb. Finite
element analysis of switching domains using ferroelectric
and ferroelastic micromechanical model for single crystal
piezoceramics. Ceramics International, 42(9):11224–
11238, 2016.

[33] L. Q. Chen. Phase -Field Models for Microstructure
Evolution. Annual Review of Materials Research,
32(1):113–140, 2002.

[34] Jie Wang, San Qiang Shi, L. Q. Chen, Yulan Li,
and Tong Yi Zhang. Phase-field simulations of
ferroelectric/ferroelastic polarization switching. Acta
Materialia, 52(3):749–764, 2004.

[35] W. Zhang and K. Bhattacharya. A computational model



Phase-field modeling of domain evolution in ferroelectric materials in the presence of defects 19

of ferroelectric domains. Part I: Model formulation and
domain switching. Acta Materialia, 53(1):185–198, 2005.

[36] W. Zhang and K. Bhattacharya. A computational model
of ferroelectric domains. Part II: Grain boundaries and
defect pinning. Acta Materialia, 53(1):199–209, 2005.

[37] Yu Su and C. M. Landis. Continuum thermodynamics of
ferroelectric domain evolution: Theory, finite element
implementation, and application to domain wall pinning.
Journal of the Mechanics and Physics of Solids,
55(2):280–305, 2007.

[38] D. Schrade, R. Müller, B. X. Xu, and D. Gross. Domain
evolution in ferroelectric materials: A continuum phase
field model and finite element implementation. Com-
puter Methods in Applied Mechanics and Engineering,
196(41-44):4365–4374, 2007.

[39] Ronald E. Cohen. Origin of ferroelectricity in perovskite
oxides. Nature, 358(6382):136–138, 1992.

[40] T Shimada, K Wakahara, Y Umeno, and T Kitamura.
Shell model potential for PbTiO 3 and its applicability
to surfaces and domain walls. Journal of Physics:
Condensed Matter, 20(32):325225, 2008.

[41] Xiaowei Zeng and R. E. Cohen. Thermo-electromechanical
response of a ferroelectric perovskite from molecular dy-
namics simulations. Applied Physics Letters, 99(14):97–
100, 2011.

[42] Oliver Gindele, Anna Kimmel, Markys G. Cain, and
Dorothy Duffy. Shell Model force field for Lead Zirconate
Titanate Pb(Zr 1 x Ti x )O 3. The Journal of Physical
Chemistry C, 119(31):17784–17789, 2015.

[43] M. Graf, M. Sepliarsky, R. Machado, and M.G. Stachiotti.
Dielectric and piezoelectric properties of BiFeO3 from
molecular dynamics simulations. Solid State Communi-
cations, 218:10–13, 2015.

[44] Ruijuan Xu, Shi Liu, Ilya Grinberg, J Karthik, Anoop R
Damodaran, Andrew M Rappe, and Lane W Martin.
Ferroelectric polarization reversal via successive ferroe-
lastic transitions. Nature materials, 14(1):79–86, 2015.

[45] Jun Wang, Yao Gen Shen, Fan Song, Fu Jiu Ke, Yi Long
Bai, and Chun Sheng Lu. Effects of oxygen vacancies on
polarization stability of barium titanate. Science China:
Physics, Mechanics and Astronomy, 59(3):1–4, 2016.

[46] Benjamin Völker, P. Marton, C. Elässer, and Marc Kamlah.
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