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Abstract

This paper deals with the optimal control of a class of positive switched systems. The main feature of this class is that switching
alters only the diagonal entries of the dynamic matrix. The control input is represented by the switching signal itself and the
optimal control problem is that of minimizing a positive linear combination of the final state variable. First, the switched
system is embedded in the class of bilinear systems with control variables living in a simplex, for each time point. The main
result is that the cost is convex with respect to the control variables. This ensures that any Pontryagin solution is optimal.
Algorithms to find the optimal solution are then presented and an example, taken from a simplified model for HIV mutation
mitigation is discussed.
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1 Introduction

This paper is motivated by the recent work [15], where
a drug therapy scheduling problem in HIV infection was
studied, using simplified switched linear system models
of HIV mutation and treatment. An analytic optimal
control solution for a particular class of switched systems
was provided using necessary conditions based on the
Pontryagyn principle. It is well known that a Pontryagin
solution does not yield optimality in general. However,
optimality can be guaranteed if the cost functional is
convex with respect to the control variable.

Optimal control of switched and hybrid systems has been
widely studied [7], [23], [9], [10] and the variational ap-
proach has been developed by [22], [4] and [17]. However,
the authors are unaware of published papers on the opti-
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mal control problem for switched positive linear system.
In particular, in general, such problems are non-convex.

In this note we prove, for a class of switched positive
systems, that the cost functional is indeed convex with
respect to the control variables. Thus, for this class of
systems, we guarantee that any Pontryagin solution is
globally optimal. Such a solution can be found through
iterative algorithms that exploit the convexity of the
cost. Also, by exploiting the concavity of the cost func-
tion with respect to the initial state, a min-max proce-
dure can be implemented to find the worst initial state
for the cost function.

Before proceedingwe introduce some basic notation. The
semiring of nonnegative real numbers is R+. A square
matrix A = [aij ] is said to be Metzler if its off-diagonal
entries are nonnegative, namely aij ≥ 0 for every i ̸= j.
For matrices or vectors, we use x ≫ 0 (x is strictly
positive) to denote that every element of x is positive.

The symbol 1n denotes the n-dimensional vector with all
entries equal to 1. The suffix n will be omitted when the
vector size is clear from the context. The unit simplex,
that is, the convex polytope of the nonnegativem-tuples,



m ∈ N, that sum to 1 will be denoted by:

U .
=
{
α ∈ Rm

+ : 1′α = 1
}
.

For further details on positive systems the reader is re-
ferred to [13].

2 Optimal control problem

Consider the switched positive linear system:

ΣA : ẋ(t) = Aσx(t), x(0) = x0 (1)

where σ : Rn
+ → I = {1, . . . ,m} denotes the mode se-

lection, that in general may be a function of x(t), and
Aσ is a family of n× n matrices. The system (1) is pos-
itive if the non-negative orthant is positively invariant
for any switching signal. Positivity is well known to be
equivalent to all matrices Aσ being Metzler.

System (1) may be motivated as a simplified model of
treatment of HIV infection dynamics (see for example
[15]). In this case, the state x represents the concentra-
tions of various viral mutants in a patient, and σ repre-
sents the selection of a suitable therapy. Alternatively, in
the widespread SIR (or SI, or SIRS) models of epidemi-
ology over a network, in the initial infection phase (also
termed epidemic outbreak, where the concentration of
susceptible individuals is approximately constant), the
dynamics of infected individuals, are linear (see for ex-
ample [21,19]).

For simplicity no constraints or penalty terms are im-
posed on the switching. We consider cost functionals of
the following form:

J := c′x(tf ) (2)

where c is a strictly positive vector, c ≫ 0 and tf > 0 is
fixed.

When dealing with switched systems we can encounter
sliding trajectories, i.e. infinite frequency switching
of σ(t). To include sliding trajectories, we embed the
switched system in the larger class described by

ẋ(t) = A(u(t))x(t) (3)

where matrix A(u) is defined as

A(u) :=

m∑
i=1

Aiui (4)

and u(t) ∈ U , for all t ∈ [0, tf ]0, is the control vector.
The passage from system (3) to system (3) has been

emphasized inmany papers, see e.g. [16] where a different
context is however considered.

By construction the system (3) includes the system (1)
since ui(t) = 1 (and hence uj(t) = 0, j ̸= i) corresponds
to σ(t) = i. If, for some t, u(t) is not a vertex of the
simplex, then there is no directly equivalent σ(t). Note
however, see e.g. [1], that the set of possible trajectories
of (1) are dense in the set of trajectories generated by
(3). Therefore, extending the concept of valid switching
signals to sliding modes based on the appropriate dif-
ferential inclusions, we consider optimal control of the
system (3). For further details of the related viscous so-
lutions of differential equations and optimal control of
differential inclusions see [2] and [5], respectively. The
role of sliding modes (singular control) in optimization
problems in terms of finite time convergence to the slid-
ing surface is emphasized in [18].

Remark 1 Note that the optimal control for system
(3)-(4) and cost (2) always exists. Indeed, a sufficient
condition for the existence is that the sets of velocities
F (x, u) := {A(u)x; u ∈ U} are convex and that the
vector field is bounded by a affine function of the norm
of the state variable, i.e. ∥A(u)x∥ ≤ α(1+∥x∥) for some
positive scalar α, and for all x ∈ Rn

+ and u ∈ U , see e.g.
Theorem 5.1.1 in [6]. These conditions are satisfied for
our problem and therefore the optimal control exists.

In the literature on optimal control, a great importance
has been given to the analysis of necessary conditions
for optimality. In most cases these necessary conditions
are the starting point to find the optimal solutions, since
direct sufficient conditions (for instance associated with
Hamilton-Jacobi-Bellman equations) are often unprac-
tical. For our control problem, necessary conditions can
be easily found by writing the Hamiltonian function
H(x, u, π) =: π′A(u)x and using a minor extension of
the Pontryagin principle to cope with input-affine form
of this function. As a result we now introduce the defini-
tion of a Pontragyin solution, namely candidate optimal
solutions satisfying the necessary conditions. For further
details see e.g. [6].

Definition 1 A triple uo(t) : [0, tf ] × U , xo(t), πo(t),
that satisfies (for almost all t) the system of equations:

ẋo(t) =

(
m∑
i=1

uo
i (t)Ai

)
xo(t) (5)

−π̇o(t) =

(
m∑
i=1

uo
i (t)A

′
i

)
πo(t) (6)

uo(t) ∈ argmin
u∈U

{πo′(t)

(
m∑
i=1

uiAi

)
xo(t)} (7)

with the boundary conditions xo(0) = x0 and πo(tf ) = c,
is called a Pontryagin solution for the optimal control
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problem.

As noted earlier, in general a Pontryagin solution need
not be optimal, since the conditions expressed by Defi-
nition 1 are only necessary for optimality. We know that
for linear systems and (for instance) quadratic cost, the
Pontryagin solution is also optimal and can be found
through backward integration of a Riccati differential
equation. Two classes of optimal control problems where
any Pontryagin solution is necessarily optimal are dis-
cussed in the following remark.

Remark 2 In some cases, the necessary conditions of
the Pontryagin solution are also sufficient to guarantee
optimality. One is trivially the case when the Pontryagin
solution is unique. The second case is convexity of the
cost functional with respect to the control variable. The
following result can be stated, see [6], Theorem 7.2.1.
Assume that the final state x(tf ) is constrained to belong
to a target set S and define the set of the admissible
controls that steer the system state to the target set, i.e.

Um = {u : [0, tf ] → U , x(tf ) ∈ S}

To be precise Um is the set of measurable and locally
integrable functions taking values in U and such that
x(tf ) ∈ S. If Us is convex and the functional u → c′x(tf )
from Um into R+ is convex, then any Pontryagin solution
gives an optimal input trajectory uo and state trajectory
xo. For our control problem the final state x(tf ) is not
constrained (that is, S is the positive orthant) and Um =
{u : [0, tf ] → U} is a convex set. Our analysis will focus
on the convexity of the functional u → c′x(tf ) from Um

to R+, under an additional assumption on the system
matrices Ai, i = 1, 2, · · · ,m.

We are ready to formulate the main theorem of this note,
dealing with the optimal control problem for system (3)
and cost (2) under the additional assumption below.

Assumption 1 The off-diagonal entries of the Metzler
matrices Ai, i = 1, 2, · · · ,m do not depend on i, i.e.

Ai = Di +M

whereM is a suitable Metzler matrix andDi are diagonal
matrices, i = 1, 2, · · · ,m.

Remark 3 The class of switched positive systems that
satisfy Assumption 1 is relevant to several applications.
At the end of this paper we will write a system, included
in this class, that comes when approximating the dynam-
ics of HIV mitigation under therapy switching. It is as-
sumed that the therapy only affects the diagonal elements
of the matrices, and this simplifying assumption seems to
be good enough to represent the behaviour in a particular
transient of the disease grow. Moreover, this class also
encompasses some epidemiology models (see for example

[21,19]). With some additional assumptions on the in-
teractions, and considering the initial phase of infection,
when trying to slow the spread of a disease, the model
above is appropriate.

Theorem 1 Consider the system (3), the cost (2), and
let Assumption 1 be verified. Then the optimal con-
trol problem admits at least one Pontryagin solution
(uo, xo, πo) and uo(t) is a global optimal control signal
relative to x0. Moreover, the value of the optimal cost
functional is πo′(0)x0.

The theorem above will be proved in the next section.
Its proof requires a result on convexity that is important
in itself and discussed in the following section.

3 Convexity

Given u ∈ Us, system (3) under Assumption 1 can be
rewritten as

ẋ(t) = (M + Λ(t))x(t) (8)

where

Λ(t) =
m∑
i=1

Diui(t) = diag{λ1(t), λ2(t), . . . , λn(t)}

Hence Λ(t) ∈ L, ∀t ≥ 0, where L is a predefined convex
and compact set of diagonal matrices.

Let Φ(Λ, t, t0) be the transition matrix of M +Λ(t), i.e.

d

dt
Φ(Λ, t, t0) = (M +Λ(t))Φ(Λ, t, t0), Φ(Λ, t0, t0) = I

Given tf > 0, and a positive vector c rewrite the cost as

J(Λ, x0) = c′Φ(Λ, tf , t0)x0

We now prove that under the above assumptions that

(i) the cost J(Λ, x0) is a convex function of constant
diagonal matrix functions, i.e. Λ ∈ L
(ii) the functional Λ → J(Λ, x0) fromLp intoR+ is con-
vex, where Lp = {Λ : [0, tf ] → L} is the set of piece-
wise constant diagonal matrix functions taking values
in L.
(iii) the functional Λ → J(Λ, x0) from Lm into R+

is convex, where Lm = {Λ : [0, tf ] → L} is the set
of measurable and locally integrable diagonal matrix
functions taking values in L.

Let us start by stating two technical lemmas.

Lemma 1 For any w ∈ Rn, the function f : Rn → R+

3



defined as

f(z) = ew
′z

is convex.

Proof. The gradient of f(z) is ∂f(z)
∂z = f(z)w′ whereas

the Hessian matrix is f(z)ww′, that is positive semidef-
inite, so implying convexity of f(z). ⋄

Lemma 2 Let fk(z), k = 1, 2, · · · , p be a sequence of
convex functions on a convex domain, and assume that
the sequence converges to a function f(z). Then f(z) is
convex.

Proof. Assume by contradiction that there exist two
points z1 and z2 and 0 < α < 1 such that, denoting by
z = αz1 + (1− α)z2, we have

f(z) > αf(z1) + (1− α)f(z2) (9)

On the other hand, from the convexity assumption,

− fk(z) + αfk(z1) + (1− α)fk(z2) ≥ 0 (10)

for all k. Taking the limit, we have

f(z) ≤ αf(z1) + (1− α)f(z2)

which contradicts (9).

3.1 Convexity of the cost in L

Let us prove convexity in the case of a constant diagonal
matrix functions Λ, i.e. point (i) above.

Lemma 3 The function f(Λ) : L → R+ defined by

f(Λ) = c′e(M+Λ)tfx0 (11)

is convex in Λ.

Proof. We first note that f(Λ) in (11) is a well defined
continuous function of Λ. Then recall a useful formula
(Trotter formula) for the exponential of the sum of two
matrices ([8]), ([12]):

e(M+Λ)tf = lim
k→∞

(
e

Mtf
k e

Λtf
k

)k

Therefore, defining the functions

fk(Λ) = c′
(
e

Mtf
k e

Λtf
k

)k

x0

we have fk(Λ) → f(Λ).

Let us consider the generic function fk(Λ). Since e
Mtf

k is

a nonnegative matrix and e
Λtf
k is a diagonal matrix with

elements ξi
.
= e(λiT/k) we have that fk(Λ) is a positive

polynomial in the variables ξi. Formally

fk(Λ) =
∑

k1+k2+...kn=k

αk1,k2,...,kN
ξk1
1 ξk2

2 . . . ξkn
n ,

with all α ≥ 0. On the other hand if we substitute ξi =
e(λitf/k) we get that each monomial can be expressed as

ξk1
1 ξk2

2 . . . ξkn
n = eλ1k1tf/k+λ2k2tf/k+···+λnkntf/k

and therefore it is a convex function of λi in view of
Lemma 1.

The proof follows from the fact that since fk(Λ) →
f(Λ) = J(Λ, x0), and hence J(Λ, x0) is a convex func-
tion of Λ. ⋄

3.2 Convexity of the cost in Lp

We start by considering piecewise constant diagonal
functions Λ.

Lemma 4 Let Λ(t) be piecewise constant function of t

Λ(t) = Λi, ti−1 ≤ t < ti = ti−1 + Ti

i = 1, 2, . . . ,K. Then

J(Λ, x0) = c′
∏
i

e(M+Λi)Tix0 (12)

is convex in the values Λi.

Proof. The proof follows similar lines of argument to
the proof of Lemma 3. We approximate each exponential

e(M+Λi)Ti ≈
(
e

MTi
k e

ΛiTi
k

)k
as before and we notice that we get a polynomial with
positive coefficients in the unknowns ξi,j = eλi,jTi/k,
where λi,j , j = 1, 2, · · · , n are the elements on the di-
agonal of Λi. This polynomial is convex and hence the
limit function is convex as well. ⋄

Remark 4 Note that the convexity results have been pre-
sented in the case in which the intervals [tk−1, tk] are
common to all functions. We can state the same results
in the class in which each function Λ(t) has its own in-
terval partition by considering the “intersection”. Indeed

two piecewise constant functions with switching point t
(1)
k

and t
(2)
k have a common interval partition, precisely that
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achieved by considering all the ordered instants t
(1)
k and

t
(2)
k .

3.3 Convexity of the cost in Ls

We can conclude with the main result, that is achieved
by taking suitable approximations of a measurable and
locally integrable function. The idea of approximation
of an arbitrary function by piecewise constant ones is
certainly not new in control system theory, see e.g. the
book [24].

Theorem 2 Let Λ ∈ Ls. The cost

J(Λ, x0) = c′Φ(Λ, tf , t0)x0

is convex in Ls.

Proof. For any measurable and locally integrable func-
tion f(t) there exists a sequence of continuous functions

fk(t), k = 1, 2, · · · , such that
∫ tf
0

∥f(t)−fk(t)∥dt ≤ ϵk →
0 holds (density Theorem, see e.g. [11]). Moreover, any
continuous function fk(t) can be approximated (again in
the L1 sense) by a sequence of piecewise constant func-
tions fkq(t), q = 1, 2, · · · . Consider now the system dy-
namic matrix Ā(t) = Λ(t) + M for a certain Λ ∈ Ls

and a sequence Āk(t) = Λk(t) +M with Λk continuous
diagonal matrix functions such that∫ tf

0

∥Āk(t)− Ā(t)∥dt ≤ ϵk, lim
k→∞

ϵk = 0

Moreover, for each k, take a sequence Ākq(t) of piecewise
constant matrix functions such that∫ tf

0

∥Ākq(t)− Āk(t)∥dt ≤ ϵkq, lim
q→∞

ϵkq = 0, ∀k

It follows that∫ tf

0

∥Ākq(t)− Ā(t)∥dt ≤

≤
∫ tf

0

∥Ākq(t)− Āk(t) + Āk(t)− Ā(t)∥dt ≤

≤
∫ tf

0

∥Ākq(t)− Ā(t)∥dt+
∫ tf

0

∥Ākq(t)− Āk(t)∥dt ≤

≤ ϵkq + ϵk, lim
k→∞

= 0, lim
q→∞

ϵkq = 0, ∀k

Denote now by x(tf ) and xkq(tf ) the solution corre-
sponding to Ā(t) and Ākq(t), with initial condition x0,
namely

x(tf ) = x0 +

∫ tf

0

Ā(t)x(t)dt

xkq(tf ) = x0 +

∫ tf

0

Ākq(t)xkq(t)dt

Denote by µ(t) = ∥xkq(t) − x(t)∥ and note that x(t)
is bounded in [0, tf ], i.e. ∥x(t)∥ ≤ ξ and Ākq(t), k =
1, 2, · · · , q = 1, 2, · · · are bounded as well, i.e. ∥Ākq(t)∥ ≤
α, for each k and q. Adding and subtracting Ākq(t)x(t),
we get

µ(tf )≤
∫ tf

0

∥Ākq(t)− Ā(t)∥∥x(t)∥dt+
∫ tf

0

∥Ākq(t)∥µ(t)dt

≤ (ϵk + ϵkq)tfξ + α

∫ tf

0

µ(t)dt

Notice that µ(0) = 0. Therefore, in view of Gronwall’s
lemma

µ(tf ) ≤ (ϵk + ϵkq)
tfξ

α
(eαtf − 1)

so that µ(tf ) tends to zero for both k and q going to
infinity. This proves continuity of x(tf ) for Λ ∈ Ls.

As for convexity, assume by contradiction assume that
Λ ∈ Ls,

Λ(t) = αΛ1(t) + (1− α)Λ2(t)

with Λi ∈ Ls, i = 1, 2, is such that

c′Φ(Λ, t, t0)x0 > αc′Φ(Λ1, t, t0)x0+(1−α)Φ(Λ2, t, t0)x0

for some 0 < α < 1. On the other hand each of the
terms appearing in this expression can be approximated
by sequences of piecewise constant functions, i.e.

Λk,q(t) = αΛkq
1 (t) + (1− α)Λkq

2 (t)

with Λk,q → 0, Λk,q
i → 0, i = 1, 2, for k and q going

to infinity. Thanks to the convexity result (Lemma 4) it
follows

c′Φ(Λ̄kq, t, t0)x0 ≤ αc′Φ(Λ̄kq
1 , t, t0)x0+(1−α)Φ(Λ̄kq

2 , t, t0)x0

and this leads to a contradiction. ⋄

3.4 Proof of Theorem 1

The optimal control does exist, as noted in Remark 1.
Let an optimal triple be xo, uo, πo. This triple is a Pon-
tryagin solution, as defined in Definition 1. Indeed, the
Hamiltonian function associated with system (3) and the
linear cost (2) is

H(x, u, π) = π(t)′
m∑
i=1

uiAix(t)

and π̇(t) = −
(
∂H
∂x

)′
= −

∑m
i=1 ui(t)A

′
iπ(t), ẋ(t) =(

∂H
∂π

)′
=

∑m
i=1 ui(t)Aix(t), with π(tf ) = c and
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x(0) = x0. The transversal conditions are satisfied and
for all u ∈ U :

H(xo, uo, πo) ≤ H(xo, u, πo).

In view of the Pontryagin principle, the triple (xo, πo, uo)
satisfies the necessary conditions for optimality. Theo-
rem 2 states the convexity of the cost with respect to the
functions λi(t), diagonal entries of Λ(t) =

∑m
i=1 Diui(t).

Hence the cost is convex with respect to the control vari-
able u ∈ Us. This fact is sufficient, see [6, Theorem 5.1.1],
to guarantee optimality. 2

Remark 5 For almost all t, the scalar function v(x, t) =
πo(t)′x satisfies:

0 = ∂v
∂t (x

o(t), t) + minu H
(
xo(t), u, ∂v

∂x (x
o(t), t)′

)
with the boundary condition

v(xo(tf ), tf ) = πo(tf )
′xo(tf ) = c′xo(tf )

Based on the convexity result, this is enough to guarantee
that any Pontryagin solution is also optimal

Note that if uo(t) lies at one of the vertices of U , then an
admissible switching signal (i.e. signals σ(t) ∈ {1, 2...m}
for almost all t), σo(t) can be constructed as follows:

ẋo(t) =Aσo(t,x0)x
o(t)

−π̇o(t) =A′
σo(t,x0)

πo(t)

σo(t, x0) = argmin
i∈I

{πo′(t)Aix
o(t)}

with the boundary conditions xo(0) = x0, π
o(tf ) = c,

and J(x0, x
o, σo) = πo′(0)x0.

3.5 Extensions

The proof of convexity has been carried out by looking
at the so-calledMayer problem for switched positive sys-
tems, i.e. a problem where the cost is a function of the
final state only. The same result can be proved for the
more general cost function

J(x0) = c′x(tf ) +

∫ tf

0

d′x(t)dt (13)

where d is a nonnegative vector. Indeed, the optimal con-
trol problem for system (3) and cost (13) can be trans-
formed in the optimal control problem for cost (3) and
cost (2) by taking the extended system

ξ̇ = Ā(u)ξ, Ā(u) =

[
A(u) 0

d′ 0

]
, ξ(0) =

[
x0

0

]

and the extended cost

J = c̄′ξ(tf ), c̄′ =
[
c′ 1

]
Notice that the assumption on diagonal switching, i.e.
Assumption 1, is met with for Ā(u) as well, since d does
not depends on u.

Following a similar rationale we can also establish an
extension of the presented theory for switched systems
affected by a constant input, i.e.

ẋ = A(u)x+ b

where b is a nonnegative vector. This system can be
rewritten as

ξ̇ = Ā(u)ξ, Ā(u) =

[
A(u) b

0 0

]
, ξ(0) =

[
x0

0

]

and the cost

J = c̄′ξ(tf ), c̄′ =
[
c′ 0

]
Again the new Ā(u) satisfies Assumption (1) if A(u)
does.

4 Algorithm and application to optimal therapy
scheduling

In this section we provide a computational scheme for the
optimal control and consider the application example in
[15].

4.1 Algorithm

The convexity property allows the use of different types
of algorithms to find the solution of

min
u∈Us

J(u), J(u) = c′x(tf )

Computations can be cast in discrete-time, by taking,
as in the previous section, a subdivision of the interval
[0, tf ] into N intervals T1, T2, · · · , TN . The control vari-
able may be approximated as piecewise constant, i.e.

u(t) =



ū1 t ∈ [0, T1)

ū2 t ∈ [T1, T1 + T2)
...

...

ūN t ∈ [
∑N−1

i=1 Ti, tf )
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The discretized control is denoted by ū taking values in
the cartesian products of U , denoted by Ū . Hence the
problem is to find

min
u∈Ū

c′
1∏

i=N

e(M+Diūi)Tix0

Letting

J(ū) = c′
1∏

i=N

e(M+Diūi)Tix0 (14)

the constrained optimization problem can be solved us-
ing the standard Matlab function fmincon.m or an it
ad hoc algorithm based on a projected (sub)gradient
method. Notice indeed that Ū is a convex set and that
J(ū) is a convex function of ū, see Theorem 2. As for the
gradient method, the standard scheme is given by the
sequence (k indicates the iteration index)

ū[k+1] = ProjŪ

(
ū[k] − αg[k]

)
(15)

where α is a speed factor (possibly varying with k),
ProjŪ is the projection on Ū and g[k] is the gradient of
J(ū) evaluated at ū = ū[k]. The gradient of J(ū) is a
N -dimensional row vector and the jth entry gj can be
computed in a simple way from (14). Indeed, simple cal-
culations show that

gj = c′
j+1∏
i=N

e(M+Diūi)TiΦj(Tj)

1∏
i=j−1

e(M+Diūi)Tix0

where Φj(t) =
∂e(M+Djūj)t

∂uj
. It follows that

Φ̇j(t) = (M +Dj ūj)Φj(t) +Dje
(M+Dj ūj)t (16)

and therefore

Φj(t) =

∫ t

0

e(M+Dj ūj)(t−τ)Dje
(M+Dj ūj)τdτ

Alternatively, it can then be shown that

Φj(Tj) =
(
0 I
)
e

(
M +Dj ūj 0

Dj M +Dj ūj

)
Tj (

I

0

)

from which gj can be calculated. Notice that numerical
algorithms might be further enhanced by explicit com-
putation of the Hessian matrix using similar techniques.

4.2 Saddle point problem

The optimal cost, i.e. minΛ∈Ls J(Λ, x0), is a concave
function of x0, see [14], [3]. Then taking x0 ∈ A for some
predefined set of initial states, it may also be of interest
to find a saddle point solution of the min-max problem

min
u∈Us

max
x0∈A

J(x0, u)

i.e. a solution u∗, x∗
0 such that J(x0, u

∗) ≤ J(x∗
0, u

∗) ≤
J(x∗

0, u) for any x0 ∈ A and any u ∈ Us. In this regard,
taking again the above discretization of u, we are able
to write the computational scheme

ū[k+1] =ProjŪ

(
ū[k] − αg[k]

)
(17)

x̄
[k+1]
0 =ProjA

(
x̄
[k]
0 + αh[k]

)
(18)

where ProjA is the projection on A, h[k] is the gradient
of J(x0, u) with respect to x0 at the k-th iteration. The
vector h can be easily computed thanks to the linearity of
J(x0, u) with respect to x0, as h = c′

∏1
i=N e(M+Diūi)Ti .

4.3 HIV mitigation

Under several simplifying assumptions, [15], the drug
treatment scheduling problem of HIV infection can be
cast as as an optimal control problem for an autonomous
positive switched systems of the form

ẋ(t) =
(
Rσ(t) − δV I

)
x(t) + µMux(t) (19)

where Mu := [mij ] and Rσ(t) := diag{ρi,σ(t)}. ρi,σ(t) is
the replication rate for viral genotype (i) and therapy
combination σ; µ represents the mutation rate, δV is the
viral clearance and mi,j ∈ {0, 1} represents the genetic
connections between genotypes, that is, mi,j = 1 if and
only if it is possible for genotype j to mutate into geno-
type i.

As a specific example, we consider a systemwith 4 states,
and two treatment options,m = 2, of the following struc-
ture

Aσ =


λ1 0 0 0

0 λ2σ 0 0

0 0 λ3σ 0

0 0 0 λ4

+ µ


0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

 (20)

With the additional assumption

λ21 > 0, λ22 < 0, λ31 < 0, λ32 > 0, λ21−λ22+λ31−λ32 = 0
(21)
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we have previously been able to give an explicit form for
the optimal control of this specific problem [15].

Notice that this 4 variant model is a significant simplifi-
cation, more amenable to analysis, of complex mutation
dynamics in real HIV behaviour.

Define k1 = argmin{x2(0), x3(0)}, k2 = argmin{c2, c3},
T1 = argmint≥0 : [0 1 − 1 0]eAk1

tx(0) = 0, T2 =

argmaxt≤tf
: [0 1 − 1 0]e−Ak2

(t−tf )c = 0, and

α = (λ32 − λ22)(λ32 − λ22 + λ21 − λ31)
−1.

Notice that, thanks to the definition of k1, k2 and the
monotonicity conditions of x2(t) − x3(t), π2(t) − π3(t),
solutions of (5), (6), the time instants T1 and T2 are
well defined and unique. Clearly, by definition x2(T1) =
x3(T1) and π2(T2) = π3(T2). Moreover, from (21), α ∈
(0, 1).

Recall the main result for the four variant model for the
case T1 ≤ T2 (Long horizon case), (see [15]):

Theorem 3 Consider the system (3), (20) with (21)
and cost (2) and assume that T1 ≤ T2. Then, the op-
timal control is given by u1(t) = 2 − k1, t ∈ [0, T1]
and u1(t) = 2 − k2, t ∈ [T2, tf ]. For t ∈ [T1, T2], the
optimal control is given by u1(t) = α, i.e. the trajec-
tory along the plane x2 = x3, with dynamical matrix
Aα = αA1 + (1− α)A2.

In [15], the above theorem (as well as other results rel-
ative to all other cases) has been proven with the ad-
ditional assumption that µ > 0, by showing that the
necessary (Pontryagin) conditions are satisfied and that
only one Pontragyn solution can be found for the prob-
lem. From Theorem 2 we know that, given the convexity
of the cost, the necessary conditions are also sufficient
to guarantee optimality. This optimality applies even in
cases of non-strict convexity (e.g. the pure diagonal case,
µ = 0). In this case there are infinitely many Pontryagin
solutions, all of which achieve the same cost.

4.4 Simulation results

Here we show some simulation results for the optimal
control of (3), (20) with cost (2). The parameters, taken
from [15] to which the reader is referred to for additional
details, are as follows: µ = 10−4, λ1 = −0.19, λ21 =
λ32 = 0.03, λ31 = λ22 = −0.19, λ4 = 0.03 so that
α = 0.5. In all simulations the final time is tf = 50 and
we take an asymmetric initial state, x0 = [103 5 0 10−5]
so that k1 = 2 and T1 = 12.29.

We have compared the interior point method in the Mat-
lab routine fmincon.m and an ad hoc developed algo-
rithm based on the projected gradient method (15), with
optimally varying speed, see [20]. In the first simulation

the linear cost is chosen with c = [1 1 1 1], and hence
k2 is undefined and T2 = tf . In the second simulation
c = [1 5 1 1]. It follows that k2 = 2 and T2 = 42.69. In
the third simulation c = [1 1 5 1] so that k2 = 1 and
T2 = 42.69. As expected, the results using both algo-
rithms are identical apart from minor differences due to
numerical issues. In Figure 4.4 the optimal control u is
shown for the three cases of different terminal cost vec-
tor. These results are of course in accordance with The-
orem 3.

As for the min-max optimal control problem, algorithm
(17), (18) has been applied for several different choices
of c. As a result, the saddle point solution is found to
be given by (x∗

0, u
∗) where x∗

0 = [0 0 0 1]′ and u∗ coin-
ciding with the optimal control function associated with
x∗
0, that means u1(t) = u2(t) = 0.5 for t ∈ [0, T2] and

u1(t) = 2− k2, u2(t) = |1− k2|, t ∈ [T2, tf ].

Finally, we have slightly perturbed one parameter of the
system in order to violate (21), i.e. λ21−λ22+λ31−λ32 =
0. In particular we have set λ21 = 0.07. In this case The-
orem 3 is no longer valid and the optimal solution, even
in the long horizon case, cannot be easily computed in
closed-form. Figure 4.4 shows the results using the nu-
merical algorithms of Section 4.1. Although there ap-
pears to remain a sliding mode optimal solution, in this
case, the equivalent control is no longer constant in time.
Note however, that the results here do not prove that in
general the asymmetric case also exhibits sliding mode
solutions.
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time
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c = [ 1 1 1 1 ]
c = [ 1 5 1 1 ]
c = [ 1 1 5 1 ]

Figure 1. Optimal control variable - symmetric case

5 Conclusions

In this paper we have examined the optimal control prob-
lem for a class of linear switched positive systems. In
this class, only the diagonal entries of the dynamical ma-
trices associated with the modes are permitted to vary
as a function of the switching signal. This assumption,
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Figure 2. Optimal control variable - asymmetric case

relevant in some biological and epidemiological applica-
tions, is shown to guarantee the important property of
convexity of the cost function with respect to the diago-
nal entries of the dynamical matrices. In turn, this also
guarantees that any Pontryagin solution is also optimal.
This fact opens the way to the use efficient computa-
tional methods to find the optimal control. Concavity of
the optimal cost with respect to the initial state also al-
lows efficient computation of a saddle point solution of
the relevant min-max optimal control problem. The re-
sults are verified through simulations in a 4-dimensional
switched system representing in a simplified way the ef-
fect of a therapy scheduling on HIV mutation.
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