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1. INTRODUCTION

Composite and hybrid metal=composite structures are nowadays present not 
only in the aerospace industry, but thanks to continuous performance 
improvement and cost reduction, also many more industrial fields are 
approaching the use of multimaterial structural elements. This requires, in 
turn, extensive use of adhesive bonding and a more and more sophisticated 
capability to simulate and predict the strength of bonded connections where, 
for this purpose, analytical methods are being progressively integrated or
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replaced by finite element analysis (FEA). In engineering applications, it is
well established that fatigue is the root cause of many structural failures. In
the case of bonded joints, fatigue life is related to the initiation and
propagation of defects starting at free edges of joining regions or other
features, such as through-thickness holes. In the case of composite or
metal=composite joints, fatigue can start also from defects at the same loca-
tions cited above, with the difference that the crack may either run into the
adhesive or become a delamination crack. Especially in the case of damage
tolerant or fail safe design, it is necessary to know how cracks, or in general
defects, propagate during the service life of a component. A numerical
method able to reproduce three-dimensional fatigue debonding in structures
is therefore necessary to improve their performances.

The relationship between the applied stress intensity factor and the fatigue
crack growth (FCG) rate of a defect is generally expressed as a power law [1]. In
the case of polymers, adhesives, and composites, the relationship is traditionally
written as a function of the range of strain energy release rate (DG) as

da

dN
¼ BDGd ; ð1Þ

where B and d are parameters depending on the material and load mixity ratio,
and a is the defect length. In this simple form, the presence of a fatigue crack
growth threshold and an upper limit to DG for fracture are not represented
although, when needed, expressions accounting for these limits can be easily
found (see for example [2]). In the same way, the influence of the stress ratio,
R, on the fatigue crack growth rate can be introduced into Eq. (1) by a term
derived from extensions of the Paris law expressed in terms of the range of stress
intensity factor, DK [3].

When a solution for the strain energy release rate as a function of crack
length exists, then the number of cycles to failure comes out from the
numerical integration between the initial crack length (a0) and the final crack
length (af) of the inverse of Eq. (1) ([2,4]).

When a theoretical solution for the strain energy release rate does not
exist, finite element (FE) simulation is commonly used to compute it. The
prediction of crack growth can be then carried out by a stepwise analysis, each
step corresponding to a user-defined crack growth increment and the number
of cycles is obtained by integrating the crack growth rate computed from the
Paris law. To speed up the process, in some finite element software, this pro-
cedure is integrated in special features (for example the �Debonding procedure
in Abaqus1, Dassault Systèmes, Paris, France), where the strain energy release
rate is obtained using the Virtual Crack Closure Technique (VCCT).

An alternative way for dealing with fatigue crack growth problems is
using the cohesive zone model (CZM). This model is commonly used for
the simulation of the quasi-static fracture problems, especially in the case



of interface cracks such as in bonded joints and delamination in composites
([5–7], among others). The possibility to simulate the growth of a crack
without any remeshing requirements and the relatively easy possibility to
manipulate the constitutive law of the cohesive elements makes the cohesive
zone model attractive also for the fatigue crack growth simulation [8–19].
However, differently from VCCT, three-dimensional fatigue debonding=
delamination with CZM is not yet state of art in finite element software.
The aim of this paper is therefore to compare the CZM, developed in
reference [20] for three-dimensional simulation of fatigue crack growth in
mode I loaded assemblies and extended to mixed-mode I=II loaded assem-
blies in [21], with the VCCT model embedded in the software Abaqus (v.
6.11) in order to assess the correspondence of the results in terms of crack
growth prediction and computation time. The comparison has been done
on mode I, mode II, and mixed-mode I=II loaded cracks in bonded assemblies.

2. CZM AND VCCT MODELS FORMULATION

2.1. VCCT

Based on linear elastic fracture mechanics (LEFM), VCCT is a well-known tech-
nique for the evaluation of strain energy release rate (SERR) and mode–mixity
ratio for cracks in homogeneous materials [22–48]. It is based on the equality
between the strain energy released, when a crack is extended by a certain
amount da and the work done by crack tip nodal forces to virtually close it of
the same amount da. Additionally, crack growth self-similarity is invoked. With
the help of this assumption, the samemodel is used for the extraction of reaction
forces and displacements required to close the crack byDa and thus the two step
crack closure method reduces to one step virtual crack closure method (Fig. 1).

In order to calculate the SERR using two-dimensional finite element
models in either plane stress or plane strain conditions, an advancing crack
is considered with an initial crack front at a point l, the point l splits into two
points l1 and l2 forming a new crack front at point i as seen in Fig. 2. If u and
u0 are the displacements in local x-direction and v and v0 are the displace-
ments in the y-direction of the points l1 and l2, respectively, then the strain
energy release rate G, based on VCCT can be evaluated as follows:

GI ¼
1

2tda
Fy v � v0ð Þ;

GII ¼
1

2tda
Fx u� u0ð Þ; ð2Þ

The total energy release rate is G¼GIþGII and

T Out-of-plane width
Da Element length



Fx Force per unit length on node i in x-direction
Fy Force per unit length on node i in y-direction
Du Difference of displacements between nodes l1 and l2
Dv Difference of displacements between nodes l1 and l2

VCCT is implemented in Abaqus1 for both two and three dimensions. In
a two-dimensional problem, the crack is represented as a one-dimensional
discontinuity formed by a line of nodes with the bulk material located on
both sides of the discontinuity. The bulk material is modeled in the form
of two distinct parts joined together by means of a contact pair all along
the discontinuity, having either of the coinciding edges to be a master surface

FIGURE 2 Crack extension of the crack from point l to point i: (a) before and (b) after
extension.

FIGURE 1 Modified crack closure method with single step (one step VCCT).



and the other to be a slave surface. The nodes on the discontinuity share the
same coordinates and play an important role in the definition of pre-cracked
region, the crack front, and the crack path.

The nodes on the discontinuity, which are not bonded and free to move
away from each other, represent the pre-crack region, whereas the nodes
which are bonded and stuck to each other, referred to as bonded nodes,
define the crack propagation path. The point of transition of bonded and
unbonded nodes forms the crack front. It is possible to define a completely
bonded interface; however, at least one node has to be kept initially
unbonded for the identification of the crack front. Normal surface behavior
is specified for the contact pair as with no penetration and bonding is set
as initial condition for the bonded portion of contact pair, while debonding
during analysis is set by a specific card (�DEBOND). The debonding of nodes
follows Eq. (1) by setting the appropriate criterion (�DEBOND, TYPE¼
FATIGUE), where the coefficients B and d are however taken independent
of the mixed-mode ratio.

2.1.1. DIRECT CYCLIC ANALYSIS

Fatigue crack growth is done in Abaqus1 within the Direct Cyclic procedure,
which is a quasi-static analysis using a combination of Fourier series and iter-
ative time integration of nonlinear material behavior by with the modified
Newton method. The elastic stiffness matrix at the beginning of the analysis
step serves as Jacobian for obtaining the stabilized response of an elastic–
plastic structure subjected to constant amplitude cyclic loading. It effectively
provides the cyclic response of the structure directly by neglecting the
pre-stability loading cycles of a transient analysis, which are numerically
quite expensive. The method is based on the development of a displacement
function F(t) which describes the structural response at all moments of time t,
in a loading cycle, within a given time period T. This function is represented
in the following way:

U tð Þ ¼ Uo þ
Xn
k¼1

U s
k sin kxt þ U c

k cos kxt
� �

; ð3Þ

where n represents the number of terms in the Fourier series, x is the angular
frequency, and U0, U

s
k , and Uc

k are the coefficients of displacement corre-
sponding to each degree of freedom. The residual vectors are of the same
form as the displacement function and are represented by

R tð Þ ¼ Ro þ
Xn
k¼1

Rs
k sin kxt þ Rc

k cos kxt
� �

; ð4Þ



where Ro, R
s
k, and Rc

k have the same correspondence with the displacement
coefficients U0, U

s
k , and Uc

k , respectively, and this vector R(t) is tracked for
each instance of time in the loading cycle by using element to element
calculations. The integration of this function R(t) over the entire cycle yield
the following Fourier coefficients

R0 ¼
2

T

Z T

0

R tð Þdt;

Rs
k ¼

2

T

Z T

0

R tð Þ sin kxtdt; ð5Þ

Rs
k ¼

2

T

Z T

0

R tð Þ cos kxtdt:

These coefficients correspond to the displacement coefficients and are then
compared with the tolerance defined in the step to achieve convergence.
If the tolerance is met, convergence is achieved and the solution is obtained
for that loading cycle. However, when these residuals are larger than the
tolerance parameters then correction parameter ck is evaluated in which
corrections to the displacement coefficients c0, c

s
k, and cck are made in the

following way:

U
iþ1ð Þ

0 ¼ U
ið Þ

0 þ c
iþ1ð Þ
0 ;

U
c iþ1ð Þ
k ¼ U

c ið Þ
k þ c

c iþ1ð Þ
k ; ð6Þ

U
s iþ1ð Þ
k ¼ U

s ið Þ
k þ c

s iþ1ð Þ
k :

The updated displacement coefficients are used in the next iteration to obtain
displacements at each instant in time. This process is repeated until conver-
gence is obtained. Each pass through the complete load cycle can therefore
be thought of as a single iteration of the solution to the nonlinear problem.

2.2. Cohesive Zone Model

Although different and complicated shapes of the cohesive law are proposed in
the literature, the triangular one (Fig. 3) is taken as it is often good enough to
describe crack growth behavior. In that case, damage starts once the tripping
stress rijmax (i, j¼ 1, 2) has been attained, decreasing progressively the element
stiffness Kij. However, the model ‘‘as is’’ does not incorporate subcritical damage



accumulation, i.e., cyclic damage is not possible below d0ij and does not
accumulate beyond the first cycle above. The model for 3D cyclic cohesive
damage formulated by some of the authors in reference [21] is reported in the
following. In this model, the concept proposed in reference [12] is retained,
while fundamental differences with respect to that work concern: (i) the damage
D is related directly to its effect on stiffness and not to the ratio between the
energy dissipated during the damage process and the cohesive energy and then,
in turn, to the stiffness; (ii) the process zone size ACZ is defined as the sum of Ae

of the cohesive elements for which the difference in opening between the
maximum and minimum load of the fatigue cycle, Dd¼ dmax� dmin, is higher
than a threshold value Ddth; therefore, it is evaluated by FEA during the simula-
tion and not derived from a theoretical model; (iii) the strain energy release rate
is calculated using the contour integral method over the cohesive process zone
and it is implemented as a user-defined field subroutine (USDFLD) in Abaqus
acting on standard cohesive elements, instead of a user element.

Considering a representative surface element (represented in the
simulation by a cohesive element section pertaining to one integration point,
Fig. 4) with a nominal surface equal to Ae, the accumulated damage can be
related to the damaged area due to micro voids or crack (Ad):

D ¼ Ad

Ae
: ð7Þ

In reference [12], D is related to the ratio between the energy dissipated
during the damage process and the cohesive energy (C22 in Fig. 3) and then,
in turn, to the stiffness. In the present model instead, D acts directly on stiff-
ness, alike in [49]. Referring to a mode I loading case, when the opening is
relatively small the cohesive element behaves linearly; this happens until a
given value of displacement, d22,0 (or equivalently until a certain value of

FIGURE 3 Example of a triangular cohesive law.



stress r22,0). This initial step is characterized by a stiffness K22,0, that remains
constant until d22,0. Beyond this limit the stiffness is progressively reduced by
D, until the final fracture in d22,C where the two surfaces are completely sepa-
rated. Between d22,0 and d22,C the stiffness K22 can be computed as

K22 ¼ K22;0 1� Dð Þ: ð8Þ

The area C22 underling the cohesive law is the energy to make the defect
grow of a unit area and it is therefore representative of the fracture
toughness, GIC,

C22 ¼
Z dC

0

r22dd22: ð9Þ

In the monotonic case, the damage variable D can be written as a function
of the opening (d22) and of the damage initiation and critical opening
(respectively d22,0 and d22,C):

D ¼
d22;c d22 � d22;0

� �
d22 d22;c � d22;0

� � : ð10Þ

When the element is unloaded, the damage cannot be healed; therefore,
looking at Fig. 3, the unloading and subsequent loadings will follow the
dashed line, until a further damage is attained. This simple model is able
to describe the monotonic damage in case of mode I loading.

Considering the entire cohesive layer, the areal crack extension (A) can
be computed as the sum of damaged areas of all the cohesive elements
integration points (Ad) [12]:

A ¼
X

Ad: ð11Þ

When the fatigue damage is considered, from the previous equation, the
crack growth (dA) can be written as a function of the increment of the
damage area of all the cohesive elements (dAd), therefore:

dA ¼
X

dAd ð12Þ

FIGURE 4 Nominal and damaged area in a representative surface element (RSE).



However the damage increment would not concern the whole cohesive
layer, but it will be concentrated in a relatively small process zone close to
the crack tip. In order to estimate the size of ACZ, analytical relationships
can be found in the literature [50], where the size per unit thickness is defined
as the distance from the crack tip to the point where r22,0 is attained. In this
work, a different definition and evaluation method is proposed: ACZ corre-
sponds to the sum of the nominal sections of the cohesive elements where
the difference in opening between the maximum and minimum load of
the fatigue cycle, Dd22¼ d22,max� d22,min, is higher than a threshold value
Dd22th. The value Dd22th is supposed to be the highest value of Dd22 in
the cohesive layer when DG in the simulation equals DGth experimentally
obtained by FCG tests. It has to be underlined that in this way FCG may take
place even at d22,max� d22,0, which is a condition that should be accounted
for since d22,0 results from the calibration of cohesive zone on fracture
tests and may not be representative of a threshold for FCG. The process zone
size ACZ has therefore to be evaluated by FEA while performing the FCG
simulation but, on the other hand, does not need to be assumed from
a theoretical model.

Equation (12) can be therefore rewritten as follows [12]:

dA ¼
X
i2ACZ

dAi
d; ð13Þ

where only the elements lying in the process zone (named ACZ) are
considered.

In order to represent the crack growth due to fatigue (dA=dN), the local
damage of the cohesive elements (D) has to be related to the number of
cycles (N). This is done using the following equation:

dD

dN
¼ dD

dAd

dAd

dN
ð14Þ

The first part of Eq. (14) can be easily obtained deriving Eq. (7); therefore,

dD

dAd
¼ 1

Ae
: ð15Þ

The process to obtain the second part is quite more complicated: the
derivative of Eq. (13) with respect to the number of cycles is

dA

dN
¼

X
i2ACZ

dAi
d

dN
: ð16Þ

At this point, an assumption is introduced: the increment of damage per cycle
is supposed to be the same for all the elements lying in the process zone.



Therefore, the value dAd=dN is assumed to be the average value of the
damaged area growth rate dAi

d=dN for all of the elements in the process
zone.

Hence the crack growth rate can be rewritten as [12]:

dA

dN
¼

X
i2ACZ

dAd

dN
¼ nCZ

dAd

dN
ð17Þ

where ncz is the number of elements lying on the process area ACZ. ncz can
be written as the ratio between the process zone extension (ACZ) and the
nominal cross-sectional area (Ae) leading to the equation:

dA

dN
¼ ACZ

Ae

dAd

dN
: ð18Þ

The second part of Eq. (14) can be therefore written as follows:

dAd

dN
¼ dA

dN

Ae

ACZ
: ð19Þ

Combining Eqs. (15) and (19), the crack growth rate can be finally expressed
as a function of the applied strain energy release rate, in the simplest version
using Eq. (1):

dD

dN
¼ 1

ACZ
BDGd: ð20Þ

2.2.1. STRAIN ENERGY RELEASE RATE COMPUTATION

The relationship between the applied strain energy release rate and the
increase of damage in the cohesive zone needs a general method to calculate
the value of the strain energy release rate as a function of crack length. The
most common methods for the strain energy release rate evaluation by using
the FEA are the contour integral (J) and the VCCT. These two methods are
usually available in finite element software, but VCCT is intended in general
as alternative to using cohesive elements while the software used in this work
(Abaqus1) does not output the contour integral for an integration path
including cohesive element.

In order to compute the J-integral, a path surrounding the crack has to
be selected. Considering, for example, the crack in Fig. 5, the path (X) is
displayed by the dashed line and it is represented by the top and bottom
nodes of the cohesive elements.



The J-integral definition [51] is

J ¼
Z
X
n � H½ � � qdX ð21Þ

where n is a vector normal to the path, q is a vector lying on the crack propa-
gation direction, and [H] is defined as

H½ � ¼ W I½ � � rij
� � @uij

@xij

� �
; ð22Þ

where W is the strain energy density, [rij] the stress matrix, and ui the
displacements of the points lying on the path.

Neglecting geometrical nonlinearity, the vector q can be assumed to be
perpendicular to the direction x2 along the whole path; therefore, the
J-integral can be rewritten as follows:

J ¼
Z
X

�r12
@u1

@x1
� r22

@u2

@x1

� �
dC: ð23Þ

Extracting the opening=sliding and the stresses in the cohesive elements
at the beginning of the increment, the strain energy release rate is then
computed. An interesting feature of this approach is that the mode I
and the mode II component of the J-integral can be obtained by integrating
separately the second or the first components of the integral in Eq. (23),
respectively.

This method can be easily implemented for a two-dimensional problem,
since there is only one possible path. In the case of three dimensional
problems, the implementation is more difficult since several paths can be
identified along the crack width, and moreover their definition is rather
troublesome, especially when dealing with irregular meshes. A three-
dimensional version has been implemented in [21] in the case of planar crack
geometries and regular cohesive mesh. In this case, Eq. (23) is evaluated on
several parallel contours in order to obtain J-integral along the crack front.

FIGURE 5 Example of J-integral surrounding the cohesive element layer.



2.2.2. FINITE ELEMENT IMPLEMENTATION

The theoretical framework described in Section 2.2 and the strain energy
release rate (SERR) calculation procedures are implemented programming
Fortran subroutines templates available in the commercial software
Abaqus1. In particular the USDFLD Abaqus1 subroutine is used to modify
the cohesive element stiffness by means of a field variable that accounts
for damage, while the URDFIL subroutine is used to get the results in terms
of stresses, displacements, and energies. The fatigue analysis is carried out a
as a simple static analysis divided in a certain number of increments.
Each increment corresponds to a given number of cycles.

Assuming that the fatigue cycle load varies from a maximum value Pmax

to a minimum value Pmin, the analysis is carried out applying to the model the
maximum load Pmax. The load ratio is defined as the ratio between the
minimum and maximum load applied:

R ¼ Pmax

Pmin
: ð24Þ

The strain energy release rate amplitude is, therefore,

DG ¼ 1� R2
� �

Gmax: ð25Þ

This latter is compared with the strain energy release rate threshold DGth.
If DG>DGth, the analysis starts (or it continues is the increment is not
the first) otherwise the analysis is stopped.

The flow diagram in Fig. 6 shows the operations done within each
increment, where DDj

i is calculated as follows:

DDj
i ¼ DDmax if 1� D

j
i > DDmax;

DDj
i ¼ 1� Dn

i if 1� D
j
i < DDmax: ð26Þ

FIGURE 6 Flow diagram of the automatic procedure for the crack growth rate prediction.



In other words, DDj
i is the minimum between the DDmax and the

amount needed for D to reach the unity. The procedure is explained in detail
in reference [19].

It is worth to underline that the procedure is fully automated, i.e., the
simulation is performed in a unique run without stops. During the initial
loading ramp, the stress–strain behavior is represented by the input cohesive
law and the statically accumulated damage, represented by Eq. (10), is stored
for the cohesive elements where d> d0. The stiffness is then degraded
according to the procedure described previously, starting from the stored
static value until D¼ 1. If dmax of the cycle is lower than d0 but Dd>Ddth,
elements entering the process zone during the fatigue analysis step start
damaging before d> d0. In this case, the stress deviates from the linear elastic
region of the cohesive law at d<ō0 to fall then on the linear damage part
without reaching rmax.

Whenever a static overload occurs at a certain point in life, the cohesive
element responds elastically with a degraded stiffness K instead of K0, and
further damage, or even static crack growth, can be accumulated related to
the overload according to Eq. (10). After the overload, cyclic loading starts
from the value of cyclic þstatic damage stored previously, see reference [52].

2.2.3. MIXED-MODE LOADING

With the aim to extend the model to mixed-mode I=II conditions, a
mixed-mode cohesive law has to be defined. This is done according to the
scheme shown in Fig. 7 from the knowledge of the pure mode I and pure
mode II cohesive laws (the index 22, refers to opening or mode I direction,
index 12 refers to sliding or mode II direction)

FIGURE 7 Example of cohesive law in the case of mixed-mode conditions.



First of all the mixed-mode equivalent opening has to be defined. This is
done using the relationship:

deq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d22 þ d22j j

2

� �2

þ d12ð Þ2
s

: ð27Þ

In case of pure mode I, this equation yields the value of d22 in case of positive
d22, while it gives 0 in case of negative d22. This is done since it is supposed
that compression stresses do not lead to the damage of the adhesive layer. Of
course d22 assumes only positive values if crack surface interpenetration is
properly prevented in the model. In the present model, interpenetration is
prevented by restoring element stiffness if values of d22< 0 are detected.

Moreover, the mixed-mode cohesive law is defined in terms of the initial
stiffness (Keq,0), damage initiation equivalent opening (deq,0), and critical
equivalent opening (deq,C). The equivalent initial stiffness is obtained by equat-
ing the equivalent strain energy (UEQ) to the total strain energy (UTOT), which in
turn is equal to the sum of the strain energy inmode I (U22) and inmode II (U12):

UEQ ¼ UTOT ¼ U22 þ U12 ¼
1

2
� d2eq � K 0

eq ¼
1

2
� d22 þ d22j jð Þ2 � K0

22 þ
1

2
� d212 � K 0

12;

ð28Þ

where K22,0 and K12,0 represent the initial stiffness of the mode I and mode II
cohesive laws, respectively.

A further relationship is needed to define damage initiation: this is done
using the quadratic damage initiation criterion [53]:

r22
r22max

� �2

þ r12
r12max

� �2

¼ 1: ð29Þ

The last relationship needed, regards the definition of the critical equivalent
opening. Since the area underlying the cohesive law is representative of the
critical strain energy release rate, using the Kenane and Benzeggagh (KB)
theory [54] the area underlying the mixed-mode equivalent cohesive law
(Ceq) can be computed as

Ceq ¼ C22 þ C12 � C22ð Þ �MMmm ; ð30Þ

where (C22) and (C12) are the areas underlying the mode I and mode II
cohesive laws, respectively; mm is a mixed-mode coefficient depending on
the adhesive; and MM is the mixed-mode ratio defined as a function of the
mode I and mode II strain energy release rates as follows:

MM ¼ GII

GI þ GII
: ð31Þ



The KB mixed-mode fatigue crack propagation model [55] is the first con-
sidered, since it is the most general law that can be found in the literature.
The fatigue crack growth rate is given by Eq. (1), where this time B and d
are functions of the mixed-mode ratio MM:

lnB ¼ lnBII þ lnBI � lnBIIð Þ 1�MMð ÞnB ; ð32Þ

d ¼ dI þ dII � dIð Þ MMð Þnd ; ð33Þ

and dI, BI and dII, BII are, respectively, the parameters of the Paris law in
mode I and mode II and nd, nB are material parameters. Also other literature
approaches were implemented in [19] but they are not considered here for
the sake of comparison with Abaqus1 VCCT fatigue delamination, where
KB is the only mixed-mode loading FCG model. Moreover, updating of B
and d with MM during propagation has been deactivated since it is not a fea-
ture available in Abaqus1.

2.3. Finite Element Models

The CZM and VCCT fatigue delamination models were tested on various joint
geometries characterized by different mixed-mode ratios, in order to verify
accuracy, robustness, and performance in terms of computational time. In
particular, pure mode I loading was simulated with a Double Cantilever
Beam (DCB) geometry, pure mode II loading with an End Loaded Split
(ELS) geometry, and mixed-mode I=II loading with a Mixed-Mode End
Loaded Split (MMELS) geometry, as shown in Fig. 8. Additionally, a single-lap
joint (SLJ) was modeled as a representative case of real joint geometry (see

FIGURE 8 Simulated geometries: (a) DCB, (b) ELS, (c) MMELS, and (d) SLJ.



Fig. 8). Even though cracks may initiate from both sides of the SLJ, here the
propagation was allowed only on one side to simplify the comparison of the
two FCG models. The applied load and the specimens dimensions are given
in Table 1. The elastic properties are taken as those typical of an aluminum
alloy (E¼ 70GPa; n¼ 0.3) while the cohesive law and FCG behavior is taken
from [12]. All the properties are summarized in Table 2. In all the simulations
a load ratio R¼ 0 is assumed. The adherends were meshed with 3D Con-
tinuum Shell elements and, in the case of CZM, the cohesive elements were
kinematically tied to the two delaminating halves. The element size at the
delamination plane was 0.5mm (CZM) and 1.0mm (VCCT) in order to keep
computation time within a reasonable value. Other parameters to be set,
specific of each FCG model, are as follows:

. a maximum damage increment, DDmax¼ 0.2, based on the sensitivity
analysis done in [56], has been used for CZM;

. a number of Fourier series terms equal to 49 and a time increment 0.01.

The choice of time increment in the VCCT solution followed from
a convergence study. Indeed, a strong influence of time integration points
was observed on the results obtained by VCCT and different values of SERR

TABLE 1 Specimen Dimensions and the Applied Load for Unit Thickness

Parameter Mode I Mode II

U [N=mm] 0.266 1.002
rmax [MPa] 30 30
d0 [mm] 0.003 0.003
dC [mm] 0.0173 0.066
B [N�dmm2�d] 0.0616 4.23
D 5.4 4.5

Parameter Value

mm 2.6
md 1.85
mB 0.35

TABLE 2 Cohesive Zone Parameters and FCG Behavior for Pure Mode I
and Pure Mode II, and Mixed-Mode I=II [12]

DCB ELS MMELS SLJ

P [N=mm] 10 20 15 200
a0 [mm] 20 20 20 =
h [mm] 5 5 5 10.56
L [mm] 175 175 175 285.8
b [mm] 20 20 20 20
Lo [mm] = = = 110.8



were obtained when the time integration points were varied from 10 to 1000.
As a result of these variations in SERR, there were significant differences in
the estimation of the number of cycles due to the presence of high values
of the exponent in the Paris Law. Therefore, 1000 time integration points with
an initial time increment of 0.001 were used to evaluate accurate results
which however, increased the computational time drastically.

An initial crack length equal to the size of one element has been
specified for the SLJ when simulated using VCCT, while no initial crack
length was needed in the case of CZM.

The increment in crack length was fixed in the case of VCCT, i.e., equal
to element size along the delaminating=debonding interface, while in the
case of CZM it came as a result of in the increment in damage DD; therefore,
it is not generally constant as DD may vary from increment to increment
according to Eq. (26). However, the average increment in crack length in
the case of CZM ranged from 0.1 to 0.5mm in the various cases simulated
in this work.

3. COMPARISON OF CZM AND VCCT PERFORMANCE

The two methods are compared with respect to: (i) agreement with each
other; (ii) calculation time. Concerning (i), a comparison of G values along
the crack front was done at selected crack lengths while, due to crack front
bowing (Fig. 9), the average G (or GI, GII), and crack length along the crack
front were considered for a global comparison. Additionally, Eq. (1) is
integrated numerically using the G vs. crack length coming from the analysis
instead of taking directly the output number of cycles. The reason is that,
as the CZM process zone needs some time to get to a steady state while
VCCT does not, the G calculated by CZM may be rather different in the first

FIGURE 9 Bowed crack front and process zone in mode I fatigue modeling with CZM.



millimeters of propagation yielding a different number of cycles. For this rea-
son, a comparison with experiments is foreseen as a further validation step,
while at the moment the paper focuses on the comparison of numerical
results of the two model after the transient phase of process zone formation.
Regarding ii), the time the analyst has to wait for the crack to reach the knee
of the a–N diagram, that is close to fracture, was monitored. In the cases
examined, this means a crack length of 30mm for all the geometries except
SLJ, for which the analyses were stopped at 10mm of crack length even
though still far from fracture. Only the outputs strictly necessary for each
model were required, in order to minimize time spent in storing data. The
PC used for calculations for CZM was an Intel1 CoreTM I, �2630QM 2GHz
CPU, with 6GB RAM and 579Gb HD (7200 rpm, 6MB cache), while for VCCT
it was an Intel1 XeonTM E5645 (Nehalem, 1 core) 2.4GHz CPU, with 48GB
RAM and 900Gb HD (10 k rpm, 12.3MB cache).

3.1. Strain Energy Release Rate Comparison

3.1.1. MODE I LOADING (DCB)

The two models show the same trend and an overall good correspondence
with each other in Fig. 10, with CZM yielding generally slightly higher values
than VCCT and a different trend in the first millimeter, where the process
zone is under development. The average difference is about 5% on the
21–29-mm crack length span.

The main result in terms of crack length vs. number of cycles is shown in
Fig. 11, where a 28% difference in number of cycles at 29mm is evident,
though compatible with the difference inG in Fig. 10. It is believed that further
mesh refinement can get the two models closer to each other in this case.

FIGURE 10 Comparison of GI obtained by CZM and VCCT in the case of DCB.



3.1.2. MODE II LOADING (ELS)

Figure 12 shows the values of GII obtained by CZM and VCCT. Again as in the
case of DCB, the two sets show a good overall correspondence with each
other except the first millimeter and some oscillations in VCCT values prob-
ably related to a non-uniform (one row of elements per time increment)
crack front propagation that has been recorded in the simulation.

The main result in terms of crack length vs. number of cycles is shown
instead in Fig. 13, where a difference comes out lower than mode I (18% at
39-mm crack length), and also in this case a further mesh refinement can get
the two models closer to each other.

FIGURE 11 Comparison of a–N values in the case of DCB obtained by CZM and VCCT.

FIGURE 12 Comparison of GII obtained by CZM and VCCT in the case of ELS.



3.1.3. MIXED-MODE I=II LOADING (MMELS)

Figure 14 shows the values of GI and GII obtained by CZM and VCCT,
along with G and MM. The values obtained with the two methods in this case
highlight a little bit the differences found for the single modes (see previous
paragraph); however, the total G are instead almost superimposed (1%
average difference from 21- to 30-mm crack length) and difference in
mixed-mode ratio is not very large.

The main result in terms of crack length vs. number of cycles is shown
in Fig. 15 where, skipping the first millimeter of propagation, the values
are practically coincident (less than 1% difference).

3.2. Single-Lap Joint

Figure 16 shows the values of GI and GII obtained by CZM and VCCT, along
with G and MM. Concerning the comparison of the single modes, the values
are closer to each other than in the case of MMELS, except the first 3mm,
necessary to establish a steady state process zone in CZM. After this, the total
G is the same and so also the mixed-mode ratio (2.5% average difference
from 3- to 10-mm crack length).

With these premises, the crack length vs. number of cycles in Fig. 17,
skipping the first millimeter of propagation, the values are practically
coincident (4.5% difference at 10-mm crack length).

3.3. Calculation Time

The calculation times are reported in Table 3. The CZM results 2–15 times
quicker than VCCT, despite a far less powerful computation hardware.

FIGURE 13 Comparison of a–N values in the case of ELS obtained by CZM and VCCT.



FIGURE 15 Comparison of a–N values in the case of MMELS obtained by CZM and VCCT.

FIGURE 14 Comparison of GI, GII, G, and MM obtained by CZM and VCCT in the case of
MMELS.



FIGURE 16 Comparison of GI, GII, G, and MM obtained by CZM and VCCT in the case of SLJ.

FIGURE 17 Comparison of a–N values in the case of SLJ obtained by CZM and VCCT.



The origin of this large difference in performance between the in-house
built CZM subroutine and the built-in VCCT, both run using the Abaqus
solver, can be at least partly found in the direct cyclic procedure that is
associated with VCCT in Abaqus. Indeed, this procedure requires quite
a large number of iterations to satisfy convergence on DG value. On the
other hand, relaxing the convergence on DG may affect the number of cycles
to failure in a hardly predictable way.

4. CONCLUSIONS

The comparison of the performances of CZM [21] and VCCT embedded in the
software Abaqus on mode I, mode II, and mixed-mode I=II loaded cracks in
composite assemblies yielded the following results:

. The two models are in overall good agreement with each other, with the
exception of the first instants of propagation where the CZM process zone
has to shape up, whereas the VCCT starts with a sharp crack.

. While the modeling effort is a bit higher (need of introducing a layer of
cohesive elements), the CZM is of easier use (no need to identify the proper
number of Fourier terms and time increment to represent cyclic loading).
At the same time, it results more efficient as the computation is lower up to
one order of magnitude, despite the less performing hardware used to run
the analyses.
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