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1. Introduction made by Krevaikas and Triantafillou [12], who identified the opti-
The use of Fiber Reinforced Polymers (FRPs) to strengthen or
retrofit existing reinforced concrete [1] or masonry buildings [2–
5] is becoming more and more frequent. In particular, buildings
made of brick or stone masonry, including those of historic or
artistic value, are extremely vulnerable to horizontal loads and
ground settlements because of the intrinsic brittleness and the
negligible tensile strength of masonry. The advantages of using
FRPs for structural reinforcement include flexibility, reversibility,
and limited increase in structural weight. For an overview of the
experimental and numerical researches carried out on masonry
structural elements reinforced by FRPs, readers are referred e.g.
to [6–10]. When using FRP strips on concrete or masonry elements,
a critical issue is the effectiveness of the interfacial bonding. The
phenomenon of delamination between externally bonded FRPs
and masonry surfaces has been experimentally investigated e.g.
in [4,11]. Appropriate surface treatments can avoid premature deb-
onding, which might nullify the strengthening effect of the FRPs.

So far, the layout of the reinforcing strips has been basically
driven by intuition, owing to the simplicity of the loading
conditions in the case of laboratory samples, or by the intent of heal-
ing existing cracks in the case of real structures. In presence of com-
plex load conditions or geometry, more general approaches with a
solid mechanical base have to be used. An attempt to this end was
mal layout of FRP strips to be placed on in-plane loaded masonry
walls. The approach was on a rational basis, by preliminarily defin-
ing a grid through which the optimal reinforcing array has to pass.

Recently, an innovative methodology based on topology
optimization was proposed for in-plane loaded concrete [13] or
masonry structures [14]. This methodology is extremely flexible,
as it does not require any a priori assumption on the optimal rein-
forcing layout or the utilization of existing energy based truss-like
strategies [15–17].

In the present work, attention is focused on masonry walls sub-
jected to out-of-plane loads. Despite the importance of these loads,
which are responsible for most of the failures of buildings under
earthquakes, so far relatively little attention has been devoted to
their effects on masonry walls. A survey of the possible failure
modes of unreinforced masonry walls under static and dynamic
out-of-plane loads was recently carried out by De Felice [18].
Simplified lower bound procedures were proposed by Milani and
coworkers [19–21] to obtain failure surfaces for reinforced and
unreinforced brick masonry under out-of-plane loads, using
homogenization theory for periodic media applied to limit analysis.

This paper deals with the extension of the topology optimiza-
tion approach presented in [14] to out-of-plane loaded masonry
walls. The outline of the paper is as follows. In Section 2 an original
approach is proposed to derive the macroscopic flexural rigidity of
masonry walls through a numerical homogenization approach. The
accuracy of the model predictions is assessed in Section 3, through
comparisons with a refined 3D finite element model and other
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theoretical models available in the literature. Then, the topology
optimization problem that allows the optimal reinforcing layout
of unidirectional FRPs to be defined is formulated for out-of-plane
loaded masonry elements (Section 4). The potentials of the pro-
posed approach are illustrated in Section 5, where the optimal
reinforcing layouts for solid and windowed panels are derived. Fi-
nally, the main findings of the work are summarized and future
perspectives of the research are outlined (Section 6).

In the current version, only walls subjected to alternating
(reversing) loads are taken into account, as no distinction is made
between the strength properties of the reinforcing layers in tension
and compression. Accordingly, the proposed approach has to be in-
tended as a preliminary step toward a more general procedure, in
which the unsymmetric behavior of the reinforcing layers is taken
into account (together with their anisotropy), allowing transverse
loads acting in a given fixed direction to be taken into account.

2. Masonry homogenization, simple out-of-plane model in the
linear elastic case

Consider any masonry wall subjected to transverse loads. As-
sume brickwork to consist of a regular pattern of units, separated
by bed and head mortar joints. Owing to the material periodicity,
a single unit cell (Y) can be used as Representative Volume Element
(RVE) for the heterogeneous medium, that is, the smallest volume
element containing all the information necessary to completely de-
scribe the macroscopic behavior of the entire wall (see Fig. 1). If a
running bond (or a header bond) pattern is considered, as shown in
Fig. 1, it is expedient to adopt a unit cell of rectangular shape.

A static model relying upon the subdivision of the unit cell into
24 triangular constant moment plate elements and joints reduced
to interfaces is presented and applied for the first time in the linear
elastic case. Due to the very limited number of optimization vari-
ables involved, the model is particularly suitable for deriving the
homogenized plate stiffness matrix.

Homogenization is a convenient strategy to analyze masonry
structures, both in the linear and in the non-linear range, since
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Fig. 1. The micro-mechanical model proposed. (a) Subdivision of the RVE into 24 cons
element, edge bending and twisting moments.
the mechanical properties of the constituent materials (bricks
and mortar) are accounted for only at the cell level, and large scale
FE computations at the macro-scale can be performed without the
need of meshing joints and bricks separately.

Homogenization has long been used for the analysis of in-plane
loaded masonry structures [22–27], and has recently been ex-
tended to masonry walls subjected to out-of-plane loads (see e.g.
[19,20,28–30] etc.).

According to homogenization theory for heterogeneous bodies
in bending [28], averaged quantities representing the macroscopic
curvature and moment tensors (denoted by v and M, respectively)
are defined as:

v ¼ 1
V

Z
Y

eðuÞ
z

dY ; M ¼ 1
A

Z
Y

zrdY ð1Þ

where Y denotes the elementary cell, V its volume, A the area of the
cell in the x–y plane, e and r the local (microscopic) stresses and
strains, respectively. In linear elasticity the macroscopic constitutive
law reads M = D: v, where D is the homogenized flexural stiffness
tensor: its components will be denoted by Dijhk (i, j, h, k = x or y).

The local stress (r) and displacement (u) fields must fulfill suit-
able periodicity conditions that read:

u ¼ zvv þ uper in Y

rn anti� periodic on @Y

�
ð2Þ

where uper is the periodic part of the displacement field, v is any
point in the RVE in the local reference frame, Y is the boundary of
the RVE and n is the unit outward normal vector to @Y (see Fig. 2).

To analyze the macroscopic elastic behavior of a masonry wall
in bending, the simplest hypothesis that can be done is assuming
both constituent materials to be linearly elastic, with joints re-
duced to interfaces of vanishing thickness. It this framework, units
are discretized by means of a coarse mesh consisting of constant
moment triangles (CMT), independently formulated by Hellan
[31] and Herrmann [32], as sketched in Fig. 1. This type of triangu-
lar element has been preferred to other more accurate elements,
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such as those proposed by Krenk et al. [33] and Krabbenhoft and
Damkilde [34], due to its simplicity and to the low number of
unknowns involved in the optimization procedure.

A constant moment field is assumed within each element, so
that three moment unknowns per element are introduced. These
unknowns are the bending moments (per unit length) about the
horizontal and vertical axis, and the twisting moment (Mxx, Myy,
Mxy), see Fig. 1.

The choice of meshing 1/4 of the brick through at least 3 trian-
gular elements is due to the need of capturing the presence of
twisting in the bed joints (element 2 in Fig. 1) under horizontal
bending. In this way, and with the coarse discretization adopted,
1/4 of the RVE is meshed through 6 triangles, indicated in Fig. 1
by 1, 2, 3, 7, 8, 9. The generalization of the symbols to the whole
cell is straightforward.

From here onwards, the superscript (n) will indicate any
moment component belonging to the n-th element. Accordingly,
assuming the wall to undergo plate conditions, the moment tensor
in the n-th CMT element, M(n), is characterized by the three non-
vanishing components MðnÞ

xx (horizontal bending), MðnÞ
yy (vertical

bending) and MðnÞ
xy (torque).

Assuming a stress-based approach, and neglecting both body
forces and out-of-plane tractions, equilibrium within any element
is a priori satisfied, being the moment tensor field element-wise
constant (@2MðnÞ

xx =@x2 þ @2MðnÞ
xy =@y2 ¼ 0 and @2MðnÞ

xy =@x2þ @2MðnÞ
yy =@y2

¼ 0). On the contrary, two equality constraints involving bending
and twisting moments along the interface between adjoining trian-
gular elements have to be prescribed at any internal interface. For
instance, the moment vector must be continuous across the inter-
face between elements 1 and 2. It can be easily shown that the
moment components in elements (1) and (2) are linked by the
following two equations:

Mð2Þ
xx ¼ Mð1Þ

xx þ f Mð1Þ
xy �Mð2Þ

xy

� �
ð3Þ

Mð2Þ
yy ¼ Mð1Þ

yy þ f�1 Mð1Þ
xy �Mð2Þ
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Fig. 2. Schematic deformed shape and boundary conditions applied under (a) macrosco

Table 1
Initial mechanical properties assumed for the elastic simulations reported in Fig. 3.

E [N/mm2] Young modulus m Poisson ratio

Brick 20,000 0.2
Mortar 5000 0.25
having denoted by f the ratio of the semi-length to the height of the
brick (f = b/2a). Similar equations must be written at all the remain-
ing interfaces, which are globally 28. A total of 56 equilibrium equa-
tions at the interfaces is obtained, whereas 72 are the unknown
stress components (three for each triangular element).

Anti-periodicity constraints for the moment vector are prescribed
on the couples of triangles 1–6, 7–12, 13–18, 19–24, 1–19, 3–21,
4–22, 6–24, leading to additional 16 equalities. For instance, refer-
ring to couple 1–6, anti-periodicity amounts at setting:

Mð1Þ
xx ¼ Mð6Þ

xx ð4Þ
Mð1Þ
xy ¼ Mð6Þ

xy

Not all the equations are, however, linearly independent. In partic-
ular, it can be shown that the corner elements 1, 6, 19 and 24 pro-
vide 4 linearly dependent equations for the twisting moment.

The homogenized flexural rigidities Dijhk can be obtained mini-
mizing the complementary energy in the unit cell – see a similar
procedure for the in-plane case in [35]. In this case, the comple-
mentary energy is given by the following quadratic form:

P� ¼ 1
2

XNtr

i¼1

AðiÞtr

12ð1� m2
bÞ

Ebt3 MðiÞ2
xx � 2mbMðiÞ

xx MðiÞ
yy þMðiÞ2

yy þ 2
MðiÞ2

xy

ð1� mbÞ

" #

þ 1
2

XNI

i¼1

AðiÞI
12
t3

MðiÞ2
nn

Em
þMðiÞ2

nt

Gm

" #
� tMhkvhk; ð5Þ

where Ntr is the number of triangular elements, of area AðiÞtr , NI is the
total number of mortar interfaces, AðiÞI is the area of the i-th mortar
interface, vhk are prescribed macroscopic curvature components
conjugated to the three macroscopic moments Mhk. Summation
over h and k is implied (h, k = x or y),

The determination of the plate elastic moduli can be obtained
by a constrained minimization of the complementary energy,
which is a quadratic form in the 72 moment components in the
elements and the three macroscopic moments.

A detailed description of the equilibrium and anti-periodicity
equations involved in the minimization problem is provided in
Appendix A, where it is shown how the determination of the
homogenized moduli Dxxxx and Dxxyy can be obtained solving a par-
ticularly simple unconstrained minimization problem in three
variables. The same procedure may be used to estimate Dyyyy and
Dxyxy as well.
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Fig. 3. Homogenized out-of-plane moduli. (a) Comparison between present plate
approach and an in-plane model available in the literature [26]. (b) Error estimation
against literature model. D0ijhk is the homogenized module by Zucchini and Lourenço
[26].
3. Comparison with other homogenization approaches
available in the literature

In this section, the reliability of the out-of-plane homogeniza-
tion model proposed is tested on two cases of technical interest.
Thanks to the very limited number of optimization variables
involved, a standard large scale quadratic programming routine
is utilized to solve the elastic problem over the unit cell, Eq. (5),
varying the ratio of the elastic moduli of brick and mortar (Eb/Em)
over a wide range.

The first example focuses on the same masonry walls analyzed
at a structural level in Section 5 and tested to failure by Chong and
co-workers [36,37]. The wall consists of units 215 mm long, 65 mm
high and 102.5 mm wide, and mortar joints 5 mm thick.

The mechanical properties of the constituent materials are sum-
marized in Table 1; the mortar joint elastic modulus is progres-
sively decreased from the value given in Table 1 down to 1/35 of
the brick elastic modulus.

Results of the simulations are summarized in Fig. 3, where the
predictions given by the models proposed by Lourenço [38] and
Zucchini and Lourenço [26] are also reported. According to the
in-plane macroscopic stiffness coefficients Aijhk predicted by these
models, the flexural rigidities Dijhk are computed as Aijhkt3/12, t
being the wall thickness.

The procedure proposed by Zucchini and Lourenço [26] belongs
to the wide family of in-plane models (see also [22,23]). This pro-
cedure has proved to be relatively reliable and allows the homog-
enized elastic moduli to be obtained solving a set of simplified
compatibility and equilibrium equations deduced from the behav-
ior of a unit cell discretized by means of 3D finite elements. The
disadvantage is that the procedure holds for membrane loads,
and may lead to incorrect predictions of the flexural rigidity about
a horizontal axis, which is significantly affected by twisting of the
mortar joints, especially if blocks are rigid or the brick-to-mortar
Young’s modulus ratio is large.

The procedure proposed by Lourenço [38] consists in homoge-
nizing a masonry pillar constituted by two half bricks (of height
h) and a joint (of thickness e). Accordingly, it can be regarded as
a variation of the procedure by Pande et al. [22] applied to the eval-
uation of the vertical membrane stiffness exclusively. For this
structural system, the flexural rigidity about a horizontal axis can
be shown to read:

Dyyyy ¼
t3

12
hþ e

1� m2
b

� �
h
Eb
þ 1� m2

m

� �
e

Em

ð6Þ

The error estimation depicted in Fig. 3(b) shows that in most cases
the present approach fits well the results obtained with the previ-
ously presented simplified approaches, even in presence of quite
weak mortar joints. There is a significant deviation from Zucchini
and Lourenço’s model only in terms of Dxxxx as Eb/Em > 20 for the
reason discussed above.

In the second case, standard Italian 250 � 120 � 55 mm3 bricks
(UNI 5628/25), with 10 mm thick mortar joints, are considered.
The ratio of the mortar thickness to the block length is 1/25, which
may increase the error in the estimated elastic stiffness when
joints are reduced to interfaces, as in the proposed model. Never-
theless, it has been widely demonstrated (see e.g. [28]) that such
error becomes unacceptable from an engineering point of view
only when the joint elastic modulus is smaller than 1/20–1/30 of
the brick elastic modulus. Accordingly, treating joints as interfaces
may become critical for models with rigid blocks.

In order to compare the results given by the proposed model
with a reliable benchmark solution, a refined discretization of the
elementary cell into 3D finite elements is utilized to deduce the
flexural rigidities numerically, see Fig. 4. The linear elastic
homogenization problem, as well as the periodicity conditions to
be applied within a commercial FE code to get the homogenized
elastic coefficients, are discussed in detail in [24,28,29].

If the joints are of finite thickness, the determination of the
homogenized moduli for periodic heterogeneous media requires
the problem governed by the following field equations to be
numerically solved:

divr ¼ 0 micro-equilibrium
r ¼ ab;me constitutive law
e ¼ Eþ zvþ symðgraduperÞ strain� periodicity
r ez ¼ 0 on@Yþz and @Y�z
r n antiperiodic on @Yl

uper periodic on @Yl

8>>>>>>>><>>>>>>>>:
ð7Þ



Fig. 4. Meshes employed in finite element modeling. (a) Mesh 1: 5265 nodes, 4368 8-node brick elements; (b) Mesh 2: 10,179 nodes, 8736 8-node brick elements; (c) Mesh 3:
38,425 nodes, 34,944 8-node brick elements.
where E and v are the macroscopic strain and curvature tensors,
respectively; r (e) is the micro-stress (micro-strain) tensor; ab,m is
the elasticity tensor of bricks (b) or mortar (m); oYl is the internal
boundary of the elementary cell, see Fig. 2; n is the outward unitary
vector perpendicular to oYl; uper is a periodic displacement field that
takes the same values on opposite sides of oYl; ez is the unit vector
of the z axis; @Yþz –@Y�z are the external cell boundaries (i.e. external
surfaces of the cell perpendicular to ez).

For the problem at hand, a strain-periodic displacement field,
within a rigid body motion, can be written as follows (see also
Fig. 2):

uxðyÞ ¼ Exxxþ Exyyþ z vxxxþ vxyy
� �

þ uper
x

uyðyÞ ¼ Exyyþ Eyyyþ z vxyxþ vyyy
� �

þ uper
y

uzðyÞ ¼ � vxx
x2

2 þ vyy
y2

2 þ vxyxy
� �

þ uper
x

ð8Þ

where Eij and vij (i, j = 1, 2) are the components of the macroscopic
in-plane strain and curvature tensors, respectively.

Dealing only with out-of-plane deformations, E = 0 is assumed
and only the macroscopic curvature tensor v is supposed to be
prescribed.

The homogenized flexural rigidities Dijhk can be obtained by
separately applying three different ‘‘elementary’’ curvature tensors
defined as follows:

Ixx
v ¼

1 0
0 0

� �
Iyy
v ¼

0 0
0 1

� �
Ixy
v ¼

0 1=2
1=2 0

� �
ð9Þ

or synthetically:

Ihk
v

� �
ij ¼

1
2

dihdjk þ dikdjh

� �
where dih is the Kronecker symbol.

The symmetry of the elementary cell allows the numerical
model to be simplified; in particular, if any of the bending
Table 2
Standard Italian brickwork: comparison between the values of the homogenised flexural r
N/mm2; Em = 2200 N/mm2; mb = 0.2; mm = 0.25).

Dxxxx [N mm] Dxxyy

Mesh 1 1.2900 � 109 2.092
Mesh 2 1.2913 � 109 2.090
Mesh 3 1.2919 � 109 2.090

e% ¼
DMesh1

ijhk �DMesh3
ijhk

DMesh3
ijhk

				 				100
0.147 0.105

e% ¼
DMesh2

ijhk �DMesh3
ijhk

DMesh3
ijhk

				 				100
0.046 0.019
curvatures, Ixx
v or Iyy

v , is prescribed, x = 0 and y = 0 are planes of sym-
metry; on the other hand, if Ixy

v is prescribed, x = 0 and y = 0 are
planes of anti-symmetry. Moreover, in any case z = 0 is a plane of
anti-symmetry.

Finally, prescribing e.g. a unit bending curvature Ixx
v the

homogenized flexural rigidities Dxxxx and Dxxyy can be obtained by
numerically evaluating the following integrals:

Dxxxx ¼
2

Ŝ

Z
rxxzdV Dxxyy ¼

2

Ŝ

Z
ryyzdV ð10Þ

where bS is 1=4 of the elementary cell area in the z = 0 plane.
It should be kept in mind that in several commercial finite

element programs (such as Strand 7.3, which was used in the
numerical applications) average stress values are provided for each
finite element. Obviously, this gives a poorer precision when inte-
grals (10) are computed accordingly, compared to computations
based on the values of the stresses at the Gauss points. In any case,
the numerical error can be reduced by refining the mesh.

In order to assess the accuracy of the numerical out-of-plane
homogenization technique, the results obtained using three FE
meshes (see Fig. 4) were compared. The elastic parameters listed
in Table 2 caption were used in the applications; again, Em is chan-
ged from the value in Table 2 within the range Eb/2.5-Eb/10.

Although Mesh 3 is very refined and Mesh 2 is more refined
than Mesh 1, Table 2 shows that the rigidity values obtained with
the three meshes do not differ significantly (see the relative errors
respect to the values given by Mesh 3): as a consequence, for the
sake of simplicity Mesh 1 can be employed to derive the plate
homogenized flexural rigidities.

In Fig. 5, the homogenized flexural rigidities computed
numerically (DFE

ijhk) and analytically (Dijhk) are plotted vs. the ratio
Eb/Em. The selected range of variation for this ratio (from 2.5 to
10) is typical of mortars classified from M1 to M4 by the Italian
code. Fig. 5(b) shows that the relative error with respect to the
igidities computed using the three finite element meshes shown in Fig. 4 (Eb = 11,000

[N mm] Dyyyy [N mm] Dxyxy [N mm]

3 � 108 1.0328 � 109 3.8930 � 108

5 � 108 1.0313 � 109 3.8916 � 108

1 � 108 1.0309 � 109 3.8912 � 108

0.1843 0.046

0.039 0.010
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Fig. 5. Homogenized out-of-plane moduli, comparison with FE simulations. (a)
Comparison between present plate approach and FEM with out-of-plane homog-
enization. (b) Error estimation against FE results.
FE solution is generally lower than 10% – a result which appears
acceptable from an engineering point of view.
4. Topology optimization problem

Topology optimization has already been used to generate
energy-based truss-like layouts in concrete structures [15–17],
and later extended to the retrofitting of existing in-plane loaded
concrete [13] and masonry [14] structures. The approach proposed
in the latter two papers is extended here to out-of-plane loaded
masonry structures.

Within a two-dimensional domain X, consider a linear elastic
body subjected to out-of-plane loads. A reinforcing material is ap-
plied on both sides of the body, with the aim of maximizing the
global structural stiffness. A priori, the reinforcing layers might
not be symmetrically placed on the two sides of the body. Whereas
the underlying body is subjected to bending and twisting mo-
ments, the reinforcing layers are supposed to undergo membrane
forces only, which add bending stiffness to the structure thanks
to their lever arm.
Under the assumption of perfect bonding, a reinforcing layer
may be modeled as an additional in-plane stiffness contribution
to the underlying brickwork. Extending the framework of recent
approaches for the topology optimization of fiber-reinforcement
in existing structures (see e.g. [13]), one may define two arrays
of element-wise minimization unknowns, i.e. xi,1 and xi,2, that gov-
ern the stiffness of any finite element (i) into which the reinforced
structure is subdivided, according to the following expression:

KTiðxi;1; xi;2Þ ¼ KMi þ xp
i;1KRi;1 þ xp

i;2KRi;2 ð11Þ

In Eq. (11) KTi is the element stiffness matrix modeling both
masonry and reinforcement, KMi is the stiffness contribution of
the underlying masonry structure, KRi,1 and KRi,2 account for the
reinforcement placed on the two sides of the masonry element.
The contributions KRi,1 and KRi,2 are scaled to the (normalized)
density of the reinforcement on each side of the i-th element, xi,1

and xi,2, according to the so-called SIMP law that implements a
penalization with exponent p, see e.g. [39]. The proposed approach
allows any optimization problem to be dealt with, resorting to con-
tinuous functions for the density unknowns 0 6 xi,1,xi,2 6 1, whereas
stiffness penalization at intermediate densities is able to steer the
solution towards the expected extreme values of the range (i.e. 0
and 1). The optimal layout of reinforcement is defined by the distri-
bution of reinforcing material that minimizes the structural compli-
ance, which is twice the overall elastic strain energy (see e.g. [40]),
in such a way that the weight of each reinforcing phase is less than a
fixed amount.

The discrete version of the topology optimization problem
implemented in this work may be therefore written as:

Find

min
x1 ;x2

uT KT u s:t:

KT u ¼ fXn

i¼1

xi;1Ai=
Xn

i¼1

Ai 6 Vf

Xn

i¼1

xi;2Ai=
Xn

i¼1

Ai 6 Vf

0 6 xi;1; xi;2 6 1; i ¼ 1; . . . ; n

8>>>>>>>>>>>><>>>>>>>>>>>>:
ð12Þ

The objective function in the above equation is the structural com-
pliance, that is, the discrete bilinear form computed through the
global stiffness matrix KT and the array of the nodal displacements
at equilibrium, i.e. u. The first constraint in the optimization prob-
lem (12) enforces the equilibrium condition for the reinforced
structural element in weak form, within the framework of a classi-
cal displacement-based finite element formulation. The global stiff-
ness matrix can be split into three terms, corresponding to the three
stiffness contributions of any finite element in Eq. (11). The second
and the third constraint represent global constraints enforced on
the (normalized) available amount of material, that is, a maximum
allowable volume fraction Vf for each side of the structural element.
Ai is the area of the i-th finite element and n the number of finite
elements. In the numerical simulations presented in the following
section, Vf is taken equal to 0.25.

A finite element code written in Matlab� for plates in bending
reinforced by FRP layers is used to solve the volume-constrained
minimization of the overall compliance of the reinforced structural
element, Eq. (12). The presented optimization problem is solved by
means of mathematical programming and calls for the sensitivity
analysis of the objective function and the constraints on the two
sets of variables, i.e. xi,1 and xi,2. The starting guess for the density
unknowns consists in a homogeneous reinforcement of the struc-
tural element, such that xi,1 = xi,2 = Vf all over the domain.

In the formulation developed so far, the underlying material is
assumed to be orthotropic, whereas the reinforcing layers are



assumed to be isotropic. Note however that orthotropic fiber-
reinforcements could be easily accommodated in the problem,
and the fiber orientation in the reinforcing layers could be taken
as additional design variable, as done in [13].

The above formulation may be considered as a preliminary tool
to investigate the optimal distribution of fiber-reinforcement for
masonry structures in bending. The method follows the main-
stream approach of energy-based formulations that are ideally
conceived to retrieve optimal load paths depending on the applied
external forces and constraints. Accordingly, regions that require
strengthening to provide affordable transfer paths across the struc-
ture can be pinpointed, as done e.g. in the strut-and-tie modeling
for reinforced concrete elements [15–17].

Strut-and-tie modeling was originally introduced as a design
technique to provide concrete, which is intended as a no-tension
material, with suitable reinforcements resisting mainly tensile
stresses, i.e. rebars. Within this framework, a linear elastic material
is conventionally adopted to search for truss-like structures that
are able to provide an equilibrated load path connecting the
external forces to the ground constraints. Most of the methods
developed in the literature with the aim of defining optimal
strut-and-tie models, i.e. preferred solutions among statically
admissible load paths, make use of energy-based optimization
approaches mainly based on the principle of minimum potential
energy, see e.g. [15]. Indeed, this approach is suggested by interna-
tional codes prescribing the adoption of energy criteria to select
optimal strut-and-tie models among those that can be derived
through a linear elastic modeling of the structure, see e.g. [41]. Ties
of the achieved truss-like layouts stand for regions where steel
rebars should be placed.

The proposed approach extends the energy-based framework
outlined above to the achievement of an optimal reinforcement
for masonry walls in two-way bending. A simple strategy is
derived that includes the contribution of the reinforcement in
the modeling, but does not take into account any difference
between the tensile and the compressive behavior of the reinforc-
ing layers. According to this simplification, the same amount of
material turns out to be employed over each side of the plate. This
Fig. 6. Windowed panels loaded out-of-plane. Dimensio
is a possible solution to cope with external actions that act upon
the structure with opposite sign, e.g. in the case of seismic excita-
tions. Under monotonic loads, a more robust approach would con-
sist in the adoption of a suitable set of stress constraints that
penalize compressive stresses, to achieve a layout where the
reinforcement undergoes only tensile stresses – see in particular
[42,43]. Within such an approach the well-known singularity prob-
lem should be additionally dealt with, because stress constraints
have to be enforced over a layer that may vanish, see e.g. [42]. This
approach is currently under investigation, along with the develop-
ment of an alternative method that defines the reinforcement lay-
out by fully allowing for the non-symmetric behavior of masonry
within the optimization procedure. In [13] and [14] stress-based
formulations were adopted to derive the optimal arrangement of
reinforcing layers for existing structures. The difference in tensile
and compressive strength of the material to be retrofitted was
explicitly taken into account, but the computational cost of such
procedure was remarkably higher than that of the simple strategy
proposed herein. Although no singularity problem arose in that
case (as the strength constraints apply to an existing layer of
non-vanishing thickness), the adoption of a stress-based formula-
tion definitely increases the complexity of the algorithm.

5. Case studies/numerical simulations

A set of windowed panels, sketched in Fig. 6 and labeled from
SB01 to SB04, were experimentally tested up to failure without
any reinforcement by other authors [36,37]. Here, they are ana-
lyzed by the proposed topology optimization approach to predict
a possible optimal reinforcement. The dimensions of all the panels
are 5615 � 2475 � 102.5 mm3. Each panel was built in stretcher
bond between two stiff abutments, with simply supported vertical
edges (allowance for in-plane displacements was provided); the
top edge was free and the bottom edge was fixed.

Three of the specimens (SB02–SB04) were provided with
openings. The opening sizes and dimensions used in the tests were
chosen to be representative of those used in practice, see Fig. 6. The
panels were loaded by air-bags up to failure, with increasing
ns of the panels and boundary conditions [36,37].



out-of-plane uniform pressure. The air pressure p and the displace-
ment d at the mid-point of the free edge were monitored during
testing. As the adopted optimization framework is linear, the value
of the applied pressure was arbitrarily taken equal to 2.5 kN/m2.

Running bond masonry is well known to have orthotropic
mechanical properties even in the elastic range: for this reason
orthotropy has been fully taken into account in the following sim-
ulations, although moderate effects are expected on the topology
optimization results with respect to a simplified isotropic model-
ing, see [13]. The equivalent elastic properties of masonry adopted
are Ex = 14534 MPa, Ey = 12420 MPa, Gxy = 4914 MPa and
mxy = 0.1588 (myx = mxyEy/Ex), where x is the horizontal axis. The
above values have been derived according to the homogenization
procedure presented in Section 2 and the results in Fig. 3, in agree-
ment with indications provided by both experimental and numer-
ical literature dealing with this set of experiments (see e.g. [20]).

The presented formulation for the topology optimization of any
reinforcement is implemented with the aim of distributing a given
amount of material, herein Vf = 0.25, with Young modulus
Ef = 230 GPa and Poisson ratio mf = 0.2, over two layers of thickness
tf = 0.5 mm bonded at both sides of the structure. The minimum
(a)

Fig. 7. Panel SB01. Optimal distribution of the fiber-reinfor

(a) Mxx

(c) Mxy

Fig. 8. Panel SB01. Moments in the unreinforced masonry pane
compliance solution compatible with the prescribed amount of
material is presented in Fig. 7(a) for Panel SB01. Black regions
stand for reinforced zones; white regions for unreinforced ones.
Reinforcement is mainly located along the lower edge of the panel,
in order to increase stiffness where maximum bending is expected.
Fig. 8 shows contour plots of the moments Mxx, Myy and Mxy, com-
puted in the unreinforced panel, whereas Fig. 9 presents the corre-
sponding plots for masonry in the reinforced panel. Comparing
Fig. 7(a) and Fig. 8 one can easily see that the optimization proce-
dure distributes the available amount of material in order to stiffen
the regions undergoing the moments of higher modulus, here Myy.
Fig. 7(b) shows that the highest principal stresses in the optimal
reinforcement are nearly vertical, thus reducing the modulus of
the moment Myy acting in the underlying masonry, see Fig. 9. This
is in agreement with well-known results referring to the topology
optimization of elastic structures. Energy-based minimum compli-
ance formulations find optimal designs that relieve highly
stressed-regions by enhancing the local stiffness, see also [44].

Fig. 10 shows the convergence curve for the objective function,
i.e. the compliance, which was normalized to the value computed
for the totally unreinforced panel, C0. Apparently, a smooth
(b)

cement (a) and relevant principal stress directions (b).

(b) Myy

l (in kNm/m). Max out-of-plane displacement = 2.40 mm.



(a) Mxx (b) Myy

(c) Mxy
Fig. 9. Panel SB01. Moments in the masonry layer of the reinforced panel (in kNm/m). Max out-of-plane displacement = 2.03 mm.

Fig. 10. Reinforcement of Panel SB01: convergence curve for the optimization
procedure.
convergence is found in a very limited number of iterations, finding
an optimal solution that reduces the compliance (i.e. the deforma-
bility) of the original structure of about 18%.

In the simulations presented so far, a mesh consisting of
32 � 16 square elements was adopted, with a side of about
155 mm. With this discretization, the layout of the achieved
optimal reinforcement and the orientation of its fibers can be
straightforwardly identified with an accuracy sufficient for
practical purposes, without the need of resorting to finer meshes.
Nonetheless, to assess to what extent the solution is mesh-depen-
dent, the analysis was repeated using meshes consisting of 64 � 32
elements and 128 � 64 elements. Indeed, the proposed method can
be efficiently applied to finer meshes, thanks to the low computa-
tional cost of an energy-based formulation. The optimal reinforcing
layouts obtained are shown in Fig. 11(a) and (b), respectively.
These layouts are not found to significantly differ from that
obtained with the coarse mesh, shown in Fig. 7(a).

In the applications regarding the windowed panels SB02–SB04,
a mesh of 40 � 20 square elements was employed, with a side of
125 mm approximately. Fig. 12(a) shows the optimal distribution
of reinforcement for the windowed Panel SB02. The presence of
the hole modifies the layout of the reinforcement with respect to
the previous case (Panel SB01). In fact, similarly to the solid panel,
the reinforcement includes the region in the vicinity of the lower
edge of the wall, but the minimization of the strain energy calls
for an increase in stiffness of the lintel above the window and
around the lower corners of the opening. Indeed, by inspection of
Fig. 13 one can easily see that the moments in the unreinforced
panel attain their highest modulus at the bottom edge of the panel
(Myy), in the lintel (Mxx) and at the lower corners of the opening
(Mxy). Remarks similar to those made for the solid panel apply to
the layout of the reinforcement of the windowed panel.
Fig. 12(b) shows that the overlying layer mainly behaves as a uni-
directional reinforcement, except for its bidirectional contribution
around the corners of the central hole. Comparing Figs. 13 and 14,
one may also appreciate the relieve in the maximum moments
computed in masonry upon application of the reinforcing layers
in the reinforced region. Despite the increased complexity in the
geometry of the design domain, no remarkable difference is found
comparing the convergence curves for the compliance of the solid



(a) (b)

Fig. 11. Panel SB01. Optimal distribution of the fiber-reinforcement for a mesh of (a) 64 � 32 elements or (b) 128 � 64 elements.

(a) (b)

Fig. 12. Panel SB02. Optimal distribution of the fiber-reinforcement (a) and relevant principal stress directions (b).

(a) Mxx (b) Myy

(c) Mxy

Fig. 13. Panel SB02. Moments in the unreinforced masonry panel (in kNm/m). Max out-of-plane displacement = 2.07 mm.
Panel SB01 (Fig. 11) and of the windowed Panel SB02 (Fig. 15).
Again, the achieved design allows the compliance (i.e. the deforma-
bility) of the original windowed panel to be reduced of about 18%.

Fig. 16(a) and (b) show the optimal design found for Panel SB02
over meshes of 80 � 40 elements or 160 � 80 elements, respec-
tively. The finer meshes obviously allow the layout of the rein-
forcement to be defined with higher accuracy, but for practical
purposes the basic geometric details of the reinforcement scheme
are well captured by the coarse mesh (Fig. 12(a)).

Finally, Figs. 17 to 22 show two variations on the same theme,
concerning the optimal reinforcement of the other two windowed
Panels, SB03 and SB04. The former has a wide horizontal opening,
whose shape, however, does not significantly modify the layout of
the optimal reinforcement achieved for Panel SB02. The latter is a



(a) Mxx (b) Myy

(c) Mxy

Fig. 14. Panel SB02. Moments in the masonry layer of the reinforced panel (in kNm/m). Max out-of-plane displacement = 1.73 mm.

Fig. 15. Reinforcement of Panel SB02: convergence curve for the optimization
procedure.

(a)

Fig. 16. Panel SB02. Optimal distribution of the fiber-reinforcemen
panel cut by a door opening, that the optimizer solves reinforcing
the two parts of the wall at their clamped boundaries by increasing
the amount of material near the vertical edges of the opening. A
horizontal strip is also placed in Panel SB04 to reinforce the lintel.
The compliance of the original structure is reduced of about 21% in
both cases.

Figs. 18, 19, 21 and 22 confirm that the optimal energy-based
layouts described above provide reinforcement where the strain
energy is locally maximum, matching regions where the highest
moduli of the moments are found. The bending moment Myy dom-
inates in both designs, whereas Mxx plays a crucial role in some
minor regions. The twisting moment Mxy calls for a fiber-reinforce-
ment stressed along both the principal axis around the stress sin-
gularities found at the lower corners of the opening of Panel
SB03, see Figs. 18 and 15(b). Conversely, the contours of Mxy do
not show any strict match with the reinforced zones of the optimal
layouts for Panel SB04. This is mainly due to the fact that the
adopted energy-based objective function is much more sensitive
to the bending terms, where moments work for the highest gener-
alized strains (curvatures). Indeed, the peaks in Mxy occur where
the twisting curvatures are negligible, as shown in Fig. 21 for the
regions along the lateral edges of the panel.

Figs. 12, 17 and 20 confirm, as expected, that the edges of the
openings are crucial regions to be reinforced. However, defining
the amount and the shape of the reinforcement in these regions
(b)

t for a mesh of (a) 80 � 40 elements or (b) 160 � 80 elements.



(a) (b)

Fig. 17. Panel SB03. Optimal distribution of the fiber-reinforcement (a) and relevant principal stress directions (b).

(a) Mxx (b) Myy

(c) Mxy

Fig. 18. Panel SB03. Moments in the unreinforced masonry panel (in kNm/m). Max out-of-plane displacement = 2.15 mm.

(a) Mxx (b) Myy

(c) Mxy

Fig. 19. Panel SB03. Moments in the masonry layer of the reinforced panel (in kNm/m). Max out-of-plane displacement = 1.72 mm.



(a) (b)

Fig. 20. Panel SB04. Optimal distribution of the fiber-reinforcement (a) and relevant principal stress directions (b).

(a) Mxx (b) Myy

(c) Mxy

Fig. 21. Panel SB04. Moments in the unreinforced masonry panel (in kNm/m). Max out-of-plane displacement = 2.51 mm.

(a) Mxx (b) Myy

(c) Mxy

Fig. 22. Panel SB04. Moments in the masonry layer of the reinforced panel (in kNm/m). Max out-of-plane displacement = 2.03 mm.
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Fig. 23. Static unknowns involved in the determination of the homogenized
flexural rigidities Dxxxx and Dxxyy (1=4 of the elementary cell).
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Fig. 24. Unconstrained minimization problem for the evaluation of Dxxxx: comple-
mentary energy at subsequent iterations.
is not a trivial matter, and this encourages the use of the proposed
optimization technique to spot out the most effective arrangement
of the reinforcement.

In conclusion, note that in all the simulations presented in this
section no measure was taken against the occurrence of numerical
problems, such as checkerboard patterns or mesh dependence, see
[40]. Undesired checkerboard patterns and thin-braced solutions in
finer meshes, however, could be both avoided resorting e.g. to
standard filtering schemes (see e.g. the in-plane reinforcement
problems investigated in [13]).
6. Conclusions

By extending an innovative procedure based on topology
optimization, recently proposed to define the optimal layout of
fiber-reinforcement for in-plane loaded masonry walls [14], the
problem of strengthening masonry walls under out-of-plane loads
was dealt with. The proposed procedure allows a given maximum
quantity of reinforcement to be optimally located over an existing
wall undergoing transverse loads, in order to achieve the highest
stiffness (that is, the lowest compliance) of the reinforced structure.

The macroscopic flexural rigidities of the masonry element to be
reinforced are computed according to an original homogenization
procedure presented in Section 2. This procedure allows for the
macroscopic orthotropy of masonry and the brickwork geometry.

As pointed out by the numerical examples presented in Section 5,
the energy-based optimization procedure employed to obtain the
minimum structural compliance strengthens highly-stressed re-
gions, without the need of calling for any post-processing or sensitiv-
ity computation involving the stress field. Numerical simulations
show that, for a prescribed volume fraction of reinforcement equal
to 25% of the total volume of the panels, the gain in the overall stiff-
ness provided by the optimal fiber-reinforcement is around 20%.

The proposed approach may be therefore considered as an
efficient method for preliminary investigations on the optimal
fiber-reinforcement of masonry panels. Results may be of course
improved, e.g. taking into account the strength properties of the
underlying material, the anisotropy of the reinforcing layers, and
their inability to carry compressive stresses.

An alternative to the formulation presented in this work would
be the minimization of the amount of reinforcement required to
keep the stress at any point of the wall below a given threshold.
The strength properties of the reinforced wall can be described
by a domain defined, in the space of the bending and twisting
moments, through an approach of limit analysis applied to homog-
enization theory for periodic media [20], basically similar to that
employed in Section 2 in the linear elastic field. The optimization
procedure could also be enriched by taking the fiber orientation
as design variables, in addition to the material density.

Another important issue that was disregarded in the current
formulation is the possibility of debonding of the reinforcing
layers, due to excessive inter-laminar shear stresses.

The points outlined above will be dealt with in the prosecution
of the research. Needless to say that carrying out experiments on
full scale reinforced masonry walls would be the ultimate valida-
tion of the effectiveness of the numerically obtained reinforcement
layouts.

Appendix A. Determination of the homogenized flexural
rigidities Dxxxx and Dxxyy by unconstrained minimization of the
complementary energy

Consider an elementary cell of any periodic brick wall (see
Fig. 1) undergoing e.g. a unit macroscopic curvature (vxx) about
the vertical axis. The number of static unknowns involved in the
linear elastic homogenization problem which gives the homoge-
nized flexural rigidities Dxxxx and Dxxyy can be significantly reduced
owing to the problem symmetry. Only 1=4 of the elementary cell
may be considered, see Fig. 23, and the static variables involved
in the minimization of the total complementary energy are Mð1Þ

xx ,
Mð1Þ

yy , Mð2Þ
xx , Mð2Þ

xy , Mð2Þ
yy , Mð3Þ

xx , Mð3Þ
yy . According to Fig. 23, periodicity con-

ditions and equilibrium on vertical and horizontal interfaces are
automatically fulfilled.

By prescribing equilibrium along the diagonal interfaces
(labeled I1 and I2 hereafter), the static unknowns are reduced
furtherly (from 7 to 3):
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where:
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a
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It is interesting to notice that, from Eq. (13), Mð1Þ
xx , Mð1Þ

yy and Mð3Þ
xx , Mð3Þ

yy

can be expressed as functions of Mð2Þ
xx , Mð2Þ

xy , Mð2Þ
yy by means of the

following simple relations:
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The complementary energy is thus specialized in this case as
follows:
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where indexes i; j;h; k ¼ x; y and D is the fourth order tensor of
homogenized elastic stiffness. In (16) the minimum principle
reduces to a simple unconstrained minimization problem for a
quadratic function in three variables (Mð2Þ

xx , Mð2Þ
xy , Mð2Þ

yy ).
For the sake of illustration, the flexural rigidities of the masonry

wall dealt with in Section 3 (running bond brickwork built with
standard Italian bricks, joints 10 mm thick, Eb = 11000 MPa,
Em = 2200 MPa, mb = 0.2 and mm = 0.25) are here recomputed in an
alternative way. The homogenized plate rigidities computed
according to the procedure outlined in Section 2 are plotted in
Fig. 5. Here, Dxxxx and Dxxyy are estimated using a standard medium
scale unconstrained minimization routine available in Matlab
(fminunc), which uses the well-known BFGS Quasi-Newton meth-
od with a cubic line search procedure. When a standard PC is used
for computations, convergence to the minimum is virtually imme-
diate and requires a few iterations: this is shown in Fig. 24, where
the percent error in terms of complementary energy (compared to
the ‘exact’ value given by the constrained minimization of Eq. (5))
is plotted at subsequent iterations. The results obtained are practi-
cally coincident with those obtained by means of the constrained
quadratic minimization used in the general case.

It is worth noting that, in this special case, equating the gradient
of the complementary energy to zero, a linear system of three
equations could be easily obtained, and the solution could be
immediately determined simply through the inversion of a matrix,
without the need of resorting to more general algorithms. The
analytical procedure may be extended to the solution of problem
(5) when all the macroscopic curvatures are nonvanishing. This
notwithstanding, a numerical approach was preferred in the
present work, as it can be directly embedded within the topology
optimization code.

When dealing with the general case, the solution of the
constrained minimization problem is slightly more expensive from
a computational point of view (as 72 unknowns and 63 linearly
independent equality constraints are involved), but yet requires a
few seconds with a standard PC. Accordingly, it can be concluded
that the simplified numerical approach proposed for the evaluation
of the macroscopic flexural rigidities is much more efficient than a
standard discretization of the elementary cell by FEs.
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