
 

Permanent link to this version 

http://hdl.handle.net/11311/1091503 
 
 

 
RE.PUBLIC@POLIMI 
Research Publications at Politecnico di Milano 
 

  
  

 
 
Post-Print 
 
 
 
This is the accepted version of: 
 
 
R. Vescovini, E. Spigarolo, E.L. Jansen, L. Dozio 
Efficient Post-Buckling Analysis of Variable-Stiffness Plates Using a Perturbation Approach 
Thin-Walled Structures, Vol. 143, 2019, 106211 (16 pages) 
doi:10.1016/j.tws.2019.106211 
 
 
 
 
 
The final publication is available at https://doi.org/10.1016/j.tws.2019.106211 
 
Access to the published version may require subscription. 
 
 
 
 
When citing this work, cite the original published paper. 
 
 
 
 
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/  



E�cient Post-Buckling Analysis of Variable-Sti�ness Plates

Using a Perturbation Approach

R. Vescovini1,∗, E. Spigarolo1, E. Jansen2, L. Dozio1

1Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano

Via La Masa 34, 20156 Milano, Italy

2 Institut fur Statik und Dynamik, Leibniz Universitat Hannover

Appelstrasse 9A 30167 Hannover, Germany

Abstract

The present work discusses the development of a formulation for e�ciently analyzing variable-sti�ness

plates operating in the post-buckling regime. The approach relies upon the combined use of a single-

mode Koiter's perturbation strategy along with a mixed variational formulation expressed in terms of

Airy stress function and out-of-plane displacement, where the unknowns are approximated using global

trial functions based on Legendre polynomials. A highly e�cient numerical tool is achieved, which allows

to analyze the initial post-buckling �eld with the ease of closed-form solution, but a much wider �eld of

employ in terms of elastic couplings, boundary and loading conditions. The quality of the predictions is

illustrated by means of a comprehensive set of comparisons against results from the literature. Possible

applications of the approach are shown, where the exploration of the design space o�ered by curvilinear

�bers requires thousands of non-linear post-buckling analyses to be run.

Keywords: Post-buckling; variable-sti�ness; perturbation approach; reduced-order models.

1 Introduction

The variable-sti�ness (VS) concept relies upon the idea of allowing �bers to run along non-straight paths,

such that elastic tailoring can be pursued with improved design �exibility with respect to classical, straight-

�ber composites. This idea has attracted the interest of many researchers in the past years, as improved

mechanical performances can be achieved and more e�cient structures obtained.

Early studies on variable-sti�ness structures date back to almost 50 year ago [1], however the lack of available

technologies hindered the progress of this concept until the early nineties, when renewed interest was raised
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thanks to the works of Leissa and Martin [2], Hyer and Charette [3, 4] and Gürdal and Olmedo [5].

In the past years, recent improvements of manufacturing techniques further promoted the variable-sti�ness

concept as a suitable candidate for the aerostructures of the next generation.

The advantages o�ered by VS designs regard a wide range of structural responses, and the tailoring opportu-

nities can be exploited to obtain improved behaviour in terms of buckling loads [4, 6�8], critical temperatures

[9, 10], fundamental frequencies [11�14] and failure loads [15, 16]. The bending response of VS doubly-curved

shells and plates was assessed in [17, 18]. Variable-sti�ness plates were also proposed in the context of mor-

phing applications were multiple-stable shapes are used for allowing change of con�guration [19�21].

Among the above mentioned opportunities, the elastic stability is one of the primary concern in the design

of thin panels commonly employed in aerospace applications. Indeed, the relatively small thicknesses along

with typical loading conditions that may promote instability render buckling and post-buckling analyses a

crucial aspect during the design phase. Accordingly, the availability of adequate numerical tools, capable of

combining computational e�ciency and accuracy of the predictions, is a necessary aspect to properly exploit

the potentialities o�ered by VS panels.

The buckling response is addressed referring to �nite element simulations in Refs. [22, 23], where design

optimization are performed using lamination parameters. One side e�ect of the improved design �exibility

o�ered by VS designs is the exponentially increasing number of design parameters. For this reason, �nite

element simulations can be too costly, and alternative and less expensive analyses strategies can be helpful

for reducing the overall design procedure phase. Metamodels were proposed as a mean for speeding-up the

optimization phase of VS cylinders in [24]. The robustness and the good convergence properties of the Di�er-

ential Quadrature Method (DQM) motivated its use for addressing pre-buckling, buckling and post-buckling

behaviour of VS plates [25, 26]. Another approach recently proposed in this �eld regards the application

of the isogeometric analysis (IGA) for analysis and design optimization of variable-sti�ness plates [27, 28].

The method of Ritz is another well-known strategy for guaranteeing fast yet accurate predictions, especially

when relatively simple geometries are of concern. In this context, the linear buckling behaviour of VS plates

is addressed in Refs. [8, 9, 29�32].

The availability of computationally e�ective tools is even more important when the post-critical response is

of concern, and non-linear simulations need to be conducted. The e�ectiveness of a Ritz-like implementation

was demonstrated by Wu et. al that developed a non-linear approach based on a mixed variational approach

[33], successfully applied in the context of design optimizations including post-buckling requirements [34, 35].

Plate assembly models were proposed for assessing the mechanical and thermal post-buckling behaviour of

sti�ened plates in Refs. [36, 37], using a displacement-based approach along with a Ritz solution technique.

An alternative way of achieving computational e�ciency consists in making use of reduced-order models,

based on the well-known perturbation approach due to Koiter [38]. This approach was pursued by Rahman

et al. [39, 40] that developed a shell �nite element in the DIANA code, demonstrating its use in the context
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of VS plate analysis. A �nite element-based implementation of Koiter's asymptotic theory has been recently

proposed by Madeo et al. [41] and applied to the post-buckling analysis of axially compressed VS plates

was addressed, illustrating the importance of multi-modal expansions for long plates. Still in the context of

�nite element-based approaches, an application of the Koiter-Newton approach to variable-sti�ness plates is

available in [42]. The potentialities o�ered by the Koiter's approach to real-life structures such as frames,

channel sections and wing-boxes can be found in [43, 44].

An interesting approach to further reduce the computational time for the post-buckling analysis consists in

combining the Koiter's asymptotic approach with e�cient mesh-free techniques. Recently, White et al. [45]

introduced this idea by coupling Koiter's theory and di�erential quadrature (GDQ) and integral quadrature

(GIQ) approaches for the initial post-buckling analysis of curved panels. Koiter's approach was used in

conjunction with generalized di�erential-integral quadrature method in Ref. [46]. Due to reduced compu-

tational costs, the approach was successfully applied to minimize post-buckling loss of sti�ness, illustrating

the superiority o�ered by VS con�gurations [47].

Starting from this latest idea, the present work aims at presenting a formulation for the initial post-buckling

analysis of variable-sti�ness panels that allows to further reduce the time for the analysis. The model stems

from a combined use of Koiter's perturbation method along with a mixed variational approach � previously

applied to composite panels [48, 49] and to variable-sti�ness plates [33�35] �, which is applied referring

to a Ritz solution strategy. The present investigation is not primarily aimed at presenting the advantages

due to variable-sti�ness designs � they have been already established by past research e�orts �, but rather

at illustrating a highly e�cient computational tool that can be successfully used for assessing the initial

post-buckling response. Speci�cally, the work discusses a tool whose e�ciency is comparable to closed-form

solutions, while removing typical restrictions in terms of �elds of employ. At the same time, the method

inherits the advantages of semi-analytical approaches, where wide range of con�gurations can be handled

in terms of elastic couplings, boundary and loading conditions. The accuracy of the predictions is demon-

strated by comparison against benchmarks from the literature, while design charts are presented for selected

VS con�gurations to show a potential use of the proposed approach.

2 Formulation

The formulation is developed for the analysis of thin plates obtained by the stacking of plies with non-uniform

sti�ness properties. It is assumed that the laminate is symmetric and balanced, meaning that in-plane and

out-of- plane coupling e�ects are absent, as well as those due to shear-extension coupling.

A sketch of the plate is provided in Figure 1. The reference surface of the plate is taken in correspondence

of the midsurface, and an orthogonal reference system xyz is considered. The origin is taken at the middle

of the plate. The thickness is denoted with h, whilst lx and ly are the planar dimensions along the x and

3



y directions, respectively. Note that the common nomenclature a and b is not adopted here to avoid any

confusion with the post-buckling coe�cients introduced next. The load is applied in the form of a prescribed

axial shortening of total magnitude u taken positive in compression. It can be noted that this condition

determines a non-uniform edge-wise stress distribution even in the linear pre-buckling �eld.

It assumed that the plate is free to expand or contract along the transverse direction, so the in-plane boundary

conditions are: 
Nxy = 0 on ∂S

Nyy = 0 on y = ±ly/2

u = u/2 on x = ±lx/2

(1)

where S ≡ [−lx/2, lx/2]× [−ly/2, ly/2], and ∂S denotes the plate boundaries.

Other common in-plane boundary conditions are those of transverse edges prevented from expansion or free

to expand, while remaining straight. Those cases, as well as that of prescribed edge forces, can be handled

by modifying the formulation as discussed by Wu et al. [33]. Regarding the �exural boundary conditions,

the edges can be subjected to any combination of free (F), simply-supported (S) and clamped conditions

(C). According to notation adopted hereinafter, the conditions are speci�ed by using a letter for each edge,

starting from the one at x = −lx/2, and moving along the counter-clockwise direction.

The kinematic model is based upon von Kármán large de�ection theory, which provides the membrane

strain-displacement relation in the form:

εxx = u,x +
1

2
w2
,x εyy = v,y +

1

2
w2
,y γxy = u,x + v,y + w,xw,y (2)

where the comma followed by an index denotes di�erentiation with respect to that index, and u, v and w

are the three displacement components of the reference surface along the directions x, y and z, respectively.

According to von Kármán theory, the e�ects of geometric non-linearity are due to the out-of-plane displace-

ments w, whereas the quadratic contributions associated with the displacement components u and v are

assumed negligible.

The plate curvatures are obtained as:

kxx = −w,xx kyy = −w,yy kxy = −2w,xy (3)

The von Kármán kinematic model has been traditionally used in the framework of semi-analytical models

to analyze the buckling and post-buckling behaviour of plate-type structures. It has been pointed out in

the context of the Finite Element implementation of Koiter's approach [50, 51], that the von Kármán model

involves certain kinematic issues which require speci�c care when analyzing the behaviour of structures

through this perturbation approach. These previous studies have also shown, that these kinematic issues

do not have a severe e�ect on the accuracy of the results, when the post-buckling �eld is characterized by

strong stress redistributions.
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The plate constitutive relation, expressed in its semi-inverse form, and according the hypothesis of symmetric

and balanced laminate, reads:  ε

M

 =

a(x, y) 0

0 D(x, y)

N

k

 (4)

The matrix a collects the coe�cients of the laminate membrane compliance, i.e. a = A−1 where A is

the membrane sti�ness according to the Classical Lamination Theory (CLT) and, similarly, D de�nes the

bending sti�ness matrix. The vectors ε and k collect the strain and curvature components according to

Eqs. (2) and (3), while N and M are the membrane forces and moments per unit length [52, 53].

The expression of Eq. (4) accounts for the dependence of the elasticity coe�cients on the position x, y over

the plate domain, and provides a relation of general validity for the case of variable sti�ness panels. The

present study focuses on panels characterized by a linear variation of the �ber angle, according to sketch

reported in Figure 2.

Speci�cally, the laminate is obtained as a stack of plies with �ber angles varying linearly with respect to a

local reference system x′y′, generically rotated by an angle Φ with respect to the global system xy. The �ber

angle, measured with respect to the reference x′y′ and taken positive for counter-clockwise rotations with

respect to the axis z = z′, is equal to T0 at the center of the plate, and T1 at a distance d from the center

along the direction x′ [8, 29]. According to this assumption, each ply is speci�ed by [Φ < T0|T1 >], and the

orientation is given by:

θ(x, y) = θ(x′) = Φ + (T1 − T0)
x′

d
+ T0 (5)

It is remarked that the �ber orientation depends on both x and y, thus the formulation is developed with

su�cient generality for handling any constitutive law with elastic coe�cients varying from point to point.

Due to its simplicity and the possibility of highlighting the plate response with relatively few degrees of

freedom, the description of Eq. (5) will be adopted next. In addition, the angles Φ will be restricted to the

case of 0 and 90 degrees, representing a change of the �ber orientation along the x or y direction, respectively.

Accordingly, the reference distances d are taken equal to lx and ly.

2.1 Variational principle

The formulation is developed in the context of a mixed variational approach expressed in terms of out-of-plane

de�ections and Airy stress function F , the latter de�ned as:

N,xx = F,yy N,yy = F,xx N,xy = −F,xy (6)

The problem is thus formulated in terms of two unknown �elds, instead of three as in the case of purely

displacement-based approaches. This leads to a considerable advantage in terms of size of the problems to

be solved when an approximate solution is sought. The de�nition of the Airy stress function of Eq. (6)
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guarantees that in-plane equilibrium conditions are identically satis�ed, whereas an additional requirement

is needed for expressing the compatibility of the membrane strains. To this aim, the following functional,

due to Giavotto [54, 55] and successively used by Vescovini and Bisagni [48, 49] and Wu et al. [33�35], is

introduced:

ΠU = −1

2

∫
S

[
a11(x, y)F 2

,yy + 2a12(x, y)F,xxF,yy + a22(x, y)F 2
,xx + a66(x, y)F 2

,xy

]
dS+

+
1

2

∫
S

[
D11(x, y)w2

,xx + 2D12(x, y)w,xxw,yy +D22(x, y)w2
,yy+

+ 4D66(x, y)w2
,xy + 4D16(x, y)w,xxw,xy + 4D26(x, y)w,yyw,xy

]
dS+

+
1

2

∫∫
S

[F,yyw
2
,x + F,xxw

2
,y − 2F,xyw,xw,y

]
dS −

∫ +ly

−ly
F,yy

u

2

∣∣∣∣
±lx

dy

(7)

It is worth noting that the adoption of a mixed-formulation is particularly e�ective to guarantee fast con-

vergence of the membrane stress resultants. Furthermore, typical membrane locking phenomena occurring

in displacement-based �nite element approximations are avoided. Also it is observed that the extension to

�rst-order shear deformation theory can be derived following the steps discussed in Ref. [55].

The variational principle associated with Eq. (7) states that membrane compatibility and out-of-plane equi-

librium are identically satis�ed by imposing the vanishing of the �rst variation of ΠU , i.e.:

δΠU = 0 (8)

The functional of Eq. (7) embeds the von Kármán large de�ection compatibility and equilibrium equations

into one single scalar expression � for this reason it will be referred hereinafter as unitary. The functional

can be derived by formulating the weak form of the von Kármán equations, and applying the divergence

theorem to lower the maximum order of derivation of the unknown functions w and F . In other words, and

following the inverse approach, the non-linear equilibrium and compatibility equations can be obtained by

application of the Euler-Lagrange equations to the functional of Eq. (7). It can be noted that the third

integral accounts for geometric non-linearities as far as it is quadratic with respect to w and linear in F . The

fourth integral contribution is associated with the imposed axial displacement u, and is omitted whenever

the load is introduced in the form of a prescribed edge force.

The non-linear functional of Eq. (7) is suitable for formulating the post-buckling problem of thin plates using

direct solution strategies [33, 48, 49], such as the Ritz method. In this work, a perturbation approach is

proposed in conjunction with a Ritz-like approximation of the unknown functions for the fast analysis of the

initial post-buckling �eld.

2.2 Perturbation approach

The perturbation approach has been historically used in a number of problems in the �eld of elastic stability.

Pioneering work is due to Koiter [38] that employed this strategy for explaining the imperfection sensitivity of
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shell-like structures. The approach consists essentially in performing an asymptotic expansion in proximity of

the bifurcation load to be valid in the initial post-buckling range. Based on the unknown functions entering

the functional of Eq. (7), the asymptotic solution of Eq. (8) is sought in the form:

F = λF (0) + ξF (1) + ξ2F (2)

w = λw(0) + ξw(1) + ξ2w(2)
(9)

where ξ is a perturbation parameter, whilst the superscripts 0,1 and 2 identify the solutions of the zero-, �rst-

and second-order problems, respectively. Furthermore, a single-mode approximation is assumed, meaning

that the behaviour in the surrounding of the bifurcation point is approximated by accounting for the buckled

shape corresponding to the lowest eigenvalue. This assumption can be reasonably introduced whenever the

lowest eigenvalues are well-separated, which is generally the case for plate-like structures. As demonstrated

by Rahman et al. [40], clustered modes may characterize the behaviour of variable sti�ness plates optimized

for maximum buckling load. For the current analysis, it is assumed that no modal interaction occurs, and the

analyses are conducted by considering N single-mode approximations, where N is the number of clustered

modes within a given threshold. This approach leads to a simple and e�cient formulation. In those cases in

which an interaction between buckling modes in�uences the post-buckling behaviour, the use of the multi-

mode expansion would be necessary.

Two possible ways can be considered for deriving the governing equations of the perturbation approach.

The �rst one consists in substituting the expansion of Eq. (9) into Eq. (7) and, after collecting the terms

pre-multiplied by corresponding powers of ξ, the partial di�erential equations associated with the zero-, �rst-

and second-order problems are retrieved by imposing the variational principle of Eq. (8). The resulting set

of equations can then be solved exactly or approximately using a series expansion of the unknowns. This

is the strategy employed, for instance, by Arbocz et al. [56, 57], where the approach is developed starting

from the strong form formulation of the problem.

A second and alternative strategy is pursued in this work. Speci�cally, the unknowns are �rstly expanded

using global functions, and the perturbation is then introduced at unknown amplitudes level. The two

approaches lead to the same set of discrete equations to be solved, but this second strategy is preferred here

due to the ease of derivation of the �nal governing equations.

Following previous works of Refs. [25, 29, 33], the Airy stress function and the out-of-plane displacements

are represented with a Ritz-like expansion as:

F (ξ, η) = F0(η) + F1(ξ, η) = F0(ξ) +

P∑
p=0

Q∑
q=0

φpqXp(ξ)Yq(η) (10)

where the nondimensional coordinates η = 2x/lx and ξ = 2y/ly, de�ned in the range [−1, +1] are introduced.

The stress function is divided into a contribution describing the stress resultants along the boundaries, F0,
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and inside the plate domain, F1. These two functions, in turn, are represented as:

Nx0 = F,yy =
4

b2
F0,ηη =

4

b2

K∑
k=0

ckLk(η) (11)

and:

Xp(ξ) = f(ξ)Lp(ξ) = (1− ξ2)2Lp(ξ)

Yq(η) = f(η)Lq(η) = (1− η2)2Lq(η)
(12)

where the generic term Li is the Legendre polynomial of order i, whilst the quartic boundary functions f

ensure the ful�llment of the homogenous boundary conditions. The unknown amplitudes are given the terms

φpq and ck of Eqs. (10) and (11), respectively.

Similarly, the out-of-plane de�ections are described as:

w(ξ, η) =

M∑
m=0

N∑
n=0

wmnXm(ξ)Y n(η) (13)

The unknowns wmn are the (M + 1) × (N + 1) coe�cients of the series, while Xm(ξ),Y n(η) are the trial

functions satisfying the �exural essential boundary conditions, which are taken as:

Xm(ξ) = (1− ξ)i1(1 + ξ)i2Lm(ξ)

Y n(η) = (1− η)j1(1 + η)j2Ln(η)
(14)

where the indices ik, jk can be either 0, 1, or 2 depending on the boundary conditions, and correspond,

respectively, to free, simply-supported and clamped conditions.

Following the asymptotic expansion of Eq. (9), and on the basis of the Ritz approximations given by Eqs. (10)

and (13), it is possible to express the unknown amplitudes as:
ck = λc

(0)
k + ξc

(1)
k + ξ2c

(2)
k + · · ·

φpq = λφ
(0)
pq + ξφ

(1)
pq + ξ2φ

(2)
pq + · · ·

wmn = λw
(0)
mn + ξw

(1)
mn + ξ2w

(2)
mn + · · ·

(15)

A formal substitution of the expansion of Eq. (15) into Eqs. (10) and (13) and then into Eq. (7) allows to

approximate the unitary functional with the expansion:

ΠU = Π
(0)
U + ξ2Π

(1)
U + ξ4Π

(2)
U + · · · (16)

where the index in the parenthesis de�nes the order of the problem, which is derived after imposing the

stationarity condition, i.e.:

δΠ
(k)
U = δcT ∂Π

(k)
U

∂c
+ δΦT ∂Π

(k)
U

∂Φ
+ δwT ∂Π

(k)
U

∂w
= 0 ∀δc, δΦ, δw k = 0, 1, 2 (17)
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having collected the Ritz amplitudes into the vectors c, Φ and w.

One can observe that pre-buckling equations are available in the form of equilibrium conditions by imposing

the vanishing of δΠ
(0)
U ; the buckling problem is obtained by setting to zero the variation of the quadratic part

of the functional, i.e. δΠ
(1)
U , which is, as a matter of fact, an application of the Tre�tz criterion [58, 59]; the

second-order problem, necessary for the assessment of the initial post-buckling response, is available from

the condition δΠ
(2)
U = 0.

Speci�cally, the zero-order problem is obtained as:
Sccc(0) + ScΦΦ(0) +

1

2
w(0)T

N̂ kw
(0) = Pcλ

SΦcc(0) + SΦΦΦ(0) +
1

2
w(0)T

N pqw
(0) = 0

Kwww(0) + c(0)T
N̂mnw(0) + Φ(0)T

Nmnw(0) = 0

(18)

where the relevant terms multiplying the unknown amplitudes are obtained from the integration of the surface

integrals of the unitary functional, and are reported in the Appendix. To this aim, numerical integration is

performed using Gauss quadrature.

The solution of the linear pre-buckling problem of Eq. (18), on the basis of the assumption of symmetric

laminate, implies that w(0) = 0. The problem is then simpli�ed to the solution of the linear system given

by the �rst two sets of equations of Eq. (18), where the non-linear terms are identically zero. The size of the

linear system is then (P+1)(Q+1), with additional K + 1 degrees of freedom if the load is introduced in the

form of prescribed displacement.

The �rst-order problem is obtained by taking k = 1 into Eq. (17), and leads to the following set of equations:
Sccc(1) + ScΦΦ(1) +

1

2
w(0)T

N̂ kw
(1) +

1

2
w(1)T

N̂ kw
(0) = 0

SΦcc(1) + SΦΦΦ(1) +
1

2
w(0)T

N pqw
(1) +

1

2
w(1)T

N pqw
(0) = 0

Kwww(1) +
(
c(0)T

N̂mn + Φ(0)T
Nmn

)
w(1) +

(
c(1)T

N̂mn + Φ(1)T
Nmn

)
w(0) = 0

(19)

where the amplitudes identi�ed by the superscript (0) are available from the pre-buckling solution, while the

unknowns are those associated with the superscript (1).

Due to the null de�ections in the pre-buckling range, the in-plane and out-of-plane �rst-order equations are

uncoupled, and the �rst-order solution is sought by considering the third of Eq. (19) as:[
Kww + λ

(
c(0)T

N̂mn + Φ(0)T
Nmn

)]
w(1) = 0 (20)

The problem is in the form of a standard eigenvalue problem, where the buckling multiplier λcr is obtained as

the lowest positive eigenvalue, whilst the shape of the buckled surface is the corresponding eigenvector. Due

to the uncoupling between in-plane and out-of-plane behaviour, the total number of degrees of freedom is

restricted to (P+1)(Q+1). For consistency with the formulae presented next for the post-buckling response,
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the �rst-order modes are scaled to have unitary ratio between the maximum modal displacement and the

plate thickness.

It is noted that the set of discrete equations given by Eqs. (18) and (19) are equal to those obtained if the

Ritz method is applied in its standard form to the linear pre-buckling and buckling problems [25, 29].

The second-order equations, i.e. those corresponding the initial post-buckling range, are readily available as:
Sccc(2) + ScΦΦ(2) = −1

2
w(1)T

N̂ kw
(1)

SΦcc(2) + SΦΦΦ(2) = −1

2
w(1)T

N pqw
(1)

Kwww(2) +
(
c(0)T

N̂mn + Φ(0)T
Nmn

)
w(2) = 0

(21)

One can observe that the last equation is identically satis�ed by taking w(2) = 0, meaning that the second-

order solution regards the in-plane response only, i.e. it is associated with a variation of the internal

membrane forces, but not the de�ected surface. Thus, the corresponding number of degrees of freedom

is (P+1)(Q+1), with K+1 additional dofs in case of prescribed displacement.

The solution of the initial post-buckling problem is indeed simpli�ed to the solution of the �rst two equations

reported in Eq. (21), which is a linear system in the unknowns c(2) and Φ(2). Indeed, the quadratic terms

in the amplitudes w(1) can be calculated once the �rst-order solution is available, and represent the forcing

term of the initial post-buckling problem.

2.3 Post-buckling response

The perturbation approach consists in the sequential solution of the three problems reported by Eqs. (18)-

(21), and allows to determine the initial post-buckling behaviour by solving linear problems only.

One of the main advantage of the procedure relies on the possibility of quickly obtaining an estimate of the

plate response in terms of the so-called �rst and second post-buckling coe�cients a and b, which are the

quantities associated with the asymptotic expansion of the load parameter as:

λ = λcr + λcraξ + λcrbξ
2 + · · ·

= λcr

(
1 + bξ2

) (22)

For the plate-type VS con�gurations anticipated in the current investigations, the �rst post-buckling coe�-

cient a is assumed to be zero here and in all subsequent derivations. The second post-buckling coe�cient b

is given by [56]:

b = −
2F (1)

(
w(1), w(2)

)
+ F (2)

(
w(1), w(1)

)
λcr∆̂

= −
F (2)

(
w(1), w(1)

)
λcr∆̂

(23)
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The expression of Eq. (23) is simpli�ed due to the fact that w(2), for a �at plate, is identically null, and use

is made of the short notation due to Hutchinson and Frauenthal [60], where:

A · (B,C) =

∫ +lx/2

−lx/2

∫ +ly/2

−ly/2
[A,xxB,yC,y +A,yyB,xC,x −A,xy(B,xC,y +B,yC,x)] dxdy (24)

and:

∆̂ =
∂F (0)

∂λ

∣∣∣∣
λ=λcr

· (w(1), w(1)) = F (0) ·
(
w(1), w(1)

)
(25)

Another useful parameter for characterizing the post-buckling response is the slope of the force-displacement

curve, i.e. the post-buckling sti�ness. Within the present perturbation approach, the average membrane

resultant along x reads:

N̂xx = λN̂ (0)
xx + ξN̂ (1)

xx + ξ2N̂ (2)
xx (26)

where the caret denotes the average load acting along the loaded edges of length. The expression of the

generic term N̂
(i)
xx is available from Eqs. (11) and (15) and, in particular, it is:

N̂ (i)
xx = − 2

b2

∫ 1

−1

Lkdη c
(i)
k (27)

Or, in compact form, it can be written as:

N̂xx = λNcc(0) + ξNcc(1) + ξ2Ncc(2) (28)

where the expression of Nc is reported in the Appendix, while the vectors c(i) are solutions of Eqs. (18),

(20) and (21).

A closed-form solution can be derived for the nondimensional post-buckling sti�ness, as the ratio between

the sti�ness just after the bifurcation and the linear sti�ness in the pre-buckling range. In particular:

Kpb =
N̂xx − N̂ cr

xx

∆−∆cr
(29)

where the axial shortening is readily available as:

∆ (λ) = λu (30)

Using Eqs. (26) and (30), it is possible to re-write Eq. (29) as:

Kpb =
λN̂

(0)
xx + ξN̂

(1)
xx + ξ2N̂

(2)
xx − λcrN̂

(0)
xx

λu− λcru
(31)

Recalling now Eq. (22), and observing that N
(1)
xx , the perturbation parameter is expressed as:

ξ2 =

(
λ

λcr
− 1

)
1

b
(32)
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and, after substitution of Eq. (32) into Eq. (31), it is obtained the expression of the post-buckling sti�ness:

Kpb =
1

(λ− λcr)u

[
(λ− λcr) N̂

(0)
xx + (λ− λcr)

1

bλcr
N̂ (2)
xx

]
(33)

Observing now that the linear pre-buckling sti�ness is:

Kpre =
λcrN̂

(0)
xx

λcru
(34)

It follows that:

Kr =
Kpb

Kpre
= 1 +

N̂
(2)
xx

bN̂ cr
xx

(35)

where Kr is commonly denoted as relative post-buckling sti�ness, which provides a measure of the post-

buckling sti�ness in relation the pre-buckling one.

It is important to highlight that the parameters characterizing the post-buckling response, such as the

b-coe�cient of Eq. (23) and the relative post-buckling sti�ness of Eq. (35), are evaluated during the post-

processing phase, once the solution of the second-order problem is available. Overall the procedure is very

e�cient and all the parameters can be derived with reduced computational e�ort. Furthermore, once the

solution is available for a nominally perfect structure, the e�ect of initial imperfections can be easily recovered

with no need to perform additional analyses. Assuming that the imperfection can be represented with the

same shape of the �rst buckling mode, the relation due to Lanzo et al. [61] can be used:(
1− λ

λcr

)
ξ + b

(
ξ3 + 2ξξ

2
+ 3ξ2ξ

)
=

λ

λcr
ξ (36)

where ξ is the nondimensional imperfection amplitude, de�ned as the ratio between the maximum imperfec-

tion value and the plate thickness.

3 Results

In this section, the results obtained using the perturbation approach are presented for a wide set of con�g-

urations, ranging from isotropic materials to composite ones with straight and curvilinear �bers.

The present approach will be referred to as reduced-order, in contrast to the classical Ritz multi-modal

approach (see Refs. [25, 29, 33]), denoted hereinafter as the full-order one.

For clarity, the elastic properties of the materials considered in this section are summarized in Table 1.

To fully illustrate the potentialities of the formulation, di�erent sets of loading and boundary conditions are

discussed. A �rst part is devoted to the validation of the approach, as well its implementation, and the

comparison against reference results from the literature is presented. In the second part, the potentialities of

the approach are illustrated by exploring the design space for a set of variable-sti�ness con�gurations. Design

charts summarizing their post-buckling response, for which thousands of non-linear analyses are necessary,
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are derived with reduced computational e�ort, and presented as a valuable tool for assisting the design phase.

In all the analyses, the number of trial functions is speci�ed as A × B, where A stands for the number of

functions along x, and B represents those along y.

3.1 Comparison against reference results

Isotropic and orthotropic plates under compression

The �rst example deals with isotropic and orthotropic composite panels, for which well-known closed-form

solutions are available. In particular, the solutions derived in Refs. [62�65] are considered in terms of relative

post-buckling sti�ness Kr. The referenced works provide approximate solutions based on classical Koiter's

approach [62] and Galerkin-type solution of von Kármán large de�ection equations, where the compatibility

equation is satis�ed in exact manner [63�65].

Two materials are considered, an isotropic one with Poisson's ratio of 0.3 and Material A of Table 1. The

plates are loaded in compression by means of a prescribed axial shortening, and they are simply-supported

along the four-sides. Two di�erent sets of in-plane conditions are considered for the longitudinal edges: in

one case they are subjected to stress free conditions, and in the second case they are constrained to remain

straight.

A summary of the results is provided in Table 2, where di�erent plate aspect ratios are considered. One may

observe that identical results are obtained up to the �rst four �gures for all the cases investigated here, thus

providing evidence of the ability of the present implementation to correctly capture the response of isotropic

and orthotropic plates.

The existence of closed-form solutions is restricted to simply-supported boundary conditions. To verify the

accuracy of the predictions for di�erent sets of constraints, the results presented referring to the test cases

presented by Lanzo et al. [61] and Rahman [39]. Di�erent aspect ratios and �exural boundary conditions

are considered. In all the cases, the load is introduced by means of a prescribed compressive force, whilst the

longitudinal edges are subjected to in-plane stress-free conditions. The material is isotropic with Poisson's

coe�cient of 0.25. A preliminary convergence study is illustrated in Table 3, where the b-coe�cients are

reported for an increasing number of trial functions. The expansions are taken by considering the same

number of trial functions for the stress function and the out-of-plane de�ections. Furthermore, an equal

number of P functions is considered along both directions. The number of integration points is set to P+5.

It can be noted that, for all the cases reported, convergence is guaranteed up to the �rst four digits if 11

functions are used. This implies that the solution is achieved by solving linear problems of dimension 121.

It is worth highlighting that good predictions are available even if the number of functions is restricted to

9, corresponding to the solution of linear problems of dimension 81. In this case, the maximum di�erence

with respect to the convergence solution is below 0.3%. These results illustrate also that very few degrees

13



of freedom are generally required for obtaining converged results, much less than those required even by a

relatively coarse �nite element mesh. For instance, if a 25 × 25 thin-plate-element mesh is considered �

similarly to the cases discussed in Ref. [61] � the number of degrees of freedom would be beyond 2000.

The comparison against the �nite element perturbation approach due to Lanzo et al. [61] and Rahman [39]

is presented in Table 4. Note that, for the latter, the results considered here are those obtained using the

eight-node quadrilateral iso-parametric CQ40S shell element.

Based on the previous convergence study, calculations are conducted using 11 trial functions for approxi-

mating the unknown functions.

The results are presented in Table 4 in terms of linear buckling load and b-coe�cient. Both in case of linear

and non-linear calculations, they tend to lie in between those of Refs. [39, 61], demonstrating good accuracy

irrespective on the aspect ratio and boundary conditions. Regarding bifurcation buckling loads, for which

exact results are available, one can note that the results reported by Rahman [39] tend to be conservative,

while the opposite is true for those of Ref. [61]. Thus the present solution closely corresponds to the exact

solution. No exact solutions are available for the b-coe�cients, but the agreement with reference ones is very

good.

To further validate the present numerical model, the maximum out-of-plane de�ections are reported for

di�erent load levels in Figure 3 for two of the plates reported in Table 4. Speci�cally, SCSC and SFCS

boundary conditions are considered, and results are presented for di�erent magnitudes of the initial imper-

fections w0, taken equal to 0, 10% and 100% of the thickness of the plate. The results, consistently with those

of Ref. [61], are presented in terms of total deviation from the nominally �at con�guration. Thus, the sum of

the imperfection and the post-buckling de�ection is reported in the horizontal axis, while the nondimensional

force Nxx = N cr
xx

(
π2

l2y

Eh3

12 (1− ν2)

)−1

is reported at the vertical axis. Excellent agreement is observed with

reference results, irrespective on the boundary conditions and amplitude of the initial imperfection. It is

worth highlighting that one single analysis needs to be performed for a given plate con�guration, and the

e�ect of initial imperfection can be easily recovered ex-post by referring to Eq. (36).

Isotropic plates under in-plane bending

Buckling and post-buckling response are investigated in Table 5 for the case of in-plane bending, introduced

by means of a prescribed force with linear distribution. The isotropic material is the same considered in the

previous example, and the longitudinal edges are subjected to stress-free conditions.

In this case, the buckled surface tends to have a more complex pattern and, for this reason, several trial

functions are generally necessary for guaranteeing convergence of the solution. This is particularly true for

increasing values of the plate aspect ratio. To illustrate this aspect, analyses are conducted using 11 × 11

and 31× 11 functions for approximating the unknown functions, where the number of functions is increased
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along the longitudinal as suggested by the geometry of plates for which r > 1.

It is interesting to note that 11 × 11 functions are always su�cient to guarantee accurate buckling predic-

tions, as no substantial advantages are achieved by enriching the basis up to 31 functions. On the contrary,

an increase of the number of degrees of freedom is necessary when assessing the post-buckling response.

This observation is particularly true for fully clamped panels, for which the errors in the evaluation of the

b-coe�cient can be as high as 22% if 11× 11 functions are considered. As it turns out, a converged buckling

analysis may not su�ce to guarantee an accurate prediction of the b-coe�cient, which, in general, demands

for a higher accuracy in the description of the �rst-order modes. In other words, the buckling eigenvalue

is stationary in the neighborhood of the eigenvector [66], thus re�ned descriptions of the modal shape are

not necessary for capturing the bifurcation load. On the contrary, the same property does not hold with

respect to the b-coe�cient, and improved re�nement is needed to guarantee accurate initial post-buckling

description.

In this regard, the example highlights the importance of adopting relatively large basis of trial functions

when plates are non-square and their post-buckling behaviour is of concern. This, in turn, highlights the

need for an e�cient implementation, capable of dealing with many degrees of freedom, while preserving the

computational advantages inherently associated with the Koiter's approach.

Further proof of the good quality of the predictions is available in Figure 4, where the maximum out-of-

plane displacements are plotted for di�erent magnitudes of the initial imperfections against the calculations

presented in [61]. Minor di�erences can be noted revealing a slight oversti�ness in the reference results, pre-

sumably ascribable to the relatively coarse mesh adopted for calculations. The �rst-order mode is reported

in the �gure, illustrating a pattern with four half-waves in the compressively loaded region.

Cross-ply laminates under compression

Comparison against the single-term solution derived by Beerhorst et al. [67] for plates with rotationally

restrained and free longitudinal edges is illustrated in Figure 5. Close agreement with FEM predictions was

demonstrated in Ref. [67], so these results are believed to be an interesting benchmark for validating the

present approach to the case of cross-ply laminates.

The plates are nominally �at and characterized by an aspect ratio equal to 3, with a longitudinal dimension

of 600 mm, and are made of CFRP material B of Table 1. Two cross-ply stacking sequences are considered,

[0/90]s and [90/0]s, corresponding to a total thickness of 1 mm.

The panels are loaded with a prescribed axial shortening, and subjected to two sets of restraints, corre-

sponding to SSSF and SCSF edges. The in-plane conditions are modeled by considering stress free edges,

i.e. Nxy = 0 along the entire boundary and Nyy = 0 at the longitudinal edges. A slight di�erence should be

pointed out with respect to the solution of Ref. [67], which is derived by considering one stress-free longi-
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tudinal edge, free to translate along the in-plane direction, and another one constrained along the direction

normal to the edge. However, due to the presence of one edge free to translate along the transverse direction,

no signi�cant membrane forces Nyy develop. The discrepancy between the two models is thus restricted to

the local membrane force distribution in correspondence of the constrained longitudinal edge, which has a

minor impact over the global response of the plate. Indeed very close agreement can be noticed in terms of

maximum out-of-plane de�ection at di�erent load levels beyond the buckling load, as demonstrated by the

plots of Figure 5. Clearly, the present approach does not o�er the e�ciency of the closed-form solution of

Ref. [67]. However, the computational cost for one single run is still very low � of the order of 1/10 s �, thus

o�ering the advantage of allowing the analysis of a wider range of con�gurations with no restrictions on the

lay-up, the distribution of the sti�nesses and the boundary conditions.

Variable-sti�ness laminates under compression

Previous composite con�gurations were restricted to cross-ply lay-ups, for which the problem, in general, can

be analytically tractable. More realistic con�gurations imply the presence of plies at orientations other than

0 and 90, which are those considered in the next example, starting from the results reported by Rahman [39].

Furthermore, the case of plates with variable-sti�ness properties is considered, where the �ber orientation is

allowed to vary between two values at the center and the edge of the panel according to Eq. (5).

The results are reported in Table 6, and refer to square simply-supported panels, made of Material A. Dif-

ferent sets of in-plane constraints are assumed, while the load is introduced in the form of a prescribed

displacement.

The buckling loads are reported in nondimensional form, along with two nondimensional measures of the

post-buckling sti�ness, Kpb/Kpre,iso and Kr, where Kpb is the post-buckling sti�ness of the plate and Kpre,iso

the linear sti�ness of a quasi-isotropic con�guration.

Following Ref. [39], and for comparison purposes, �exural anisotropy is arti�cially set to zero. Overall

the results demonstrate close agreement, with post-buckling sti�nesses di�ering by less than 3% for all the

con�gurations apart from the variable-sti�ness one with boundary conditions B. In this case, two clustered

modes are observed, the second one characterized by a lower post-buckling sti�ness. For this lay-up, a higher

discrepancy can be noted with respect to reference results, with percent di�erences of approximately 3% and

8% for the �rst and second mode, respectively. It is worth noting that results of Ref. [39] are presumably not

completely converged and, indeed, a convergence study demonstrates that noticeable increase is achieved in

the post-buckling sti�ness by re�ning the mesh grid from 10 to 20 elements per side. It is thus believed that

the discrepancy observed would be reduced if the analyses in the referenced work were run with a further

re�ned mesh. Indeed, the aggressive steering of the [90± < 0| − 75 >]4s lay-up is responsible for drastic

variations of the in-plane sti�nesses, rendering a re�ned in-plane approximation particularly important.

An interesting case is the one proposed by Madeo et al. [41] and Oliveri et al. [37], regarding a square
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variable-sti�ness plate with planar dimensions equal to 1000 mm and total thickness 1.5264 mm. The plate

is made of material A with lay-up [0± < 45|0 >]3s. Fully clamped conditions are considered, while the load

is introduced in the form of a prescribed axial compressive force.

The nondimensional axial force is traced against the out-of-plane de�ections in Figure 6. The predictions

obtained with the present reduced-order approach are derived by with approximating the problem unknowns

with 11 trial functions along both the directions x and y. The comparison is illustrated with the results

derived by Madeo et al. [41] referring to a �nite element-based Koiter's approach, and those presented by

Oliveri et al. [37] by means of a displacement-based Ritz approach. Furthermore Abaqus results taken from

Ref. [37] are presented as an additional comparison. Close agreement is observed with the reference results,

especially with respect to those of Ref. [37], while the present results and the Ritz and Abaqus results of

Ref. [37] show a sti�er behaviour than the results of Ref. [41].

It is interesting to discuss these results in terms of number of degrees of freedom according to the di�erent

solution strategies. Speci�cally, the results of Ref. [41] are obtained using a 100×100 mesh of 4-node ele-

ments with six degrees of freedom per node. It follows that the size of the problem is of the order of ten

thousands, similarly to the converged �nite element model of Ref. [37], consisting of 47526 dofs; the Ritz

model of Ref. [37] makes use of 864 dofs. The present implementation allows to obtain converged results by

solving linear problems of size 121, which reveals the e�ciency of the formulation with consequent bene�cial

e�ects on the computational time.

It is worth highlighting that the advantages of the proposed approach are very clear when analysing speci�c

test cases and simple structures, such as those outlined in this section. The advantages become even more

important when thousands of analyses are performed, as it commonly happens in preliminary studies and

design optimizations. Clearly, the larger number of degrees of freedom and corresponding higher compu-

tational time of a �nite element model is substantially compensated by a larger �eld of employ, allowing

the study of structures with more general and complex geometries. It follows that the proposed Ritz-based

approach has not to be interpreted as an alternative to �nite element strategies. Rather it as a highly e�cient

way for handling problems characterized by simple geometries for which the understanding of the underlying

mechanical response is of concern.

For completeness, it is noted that shear deformability is not accounted for in the context of the proposed

approach, while it is considered in the approaches of Refs. [37, 41]. Furthermore, the solution procedure

implemented exploits the uncoupling of membrane and bending behaviour, so that the size of the problem

is kept at a minimum.

To further investigate the case of variable-sti�ness plates, two examples presented by Wu et al. [33] are

illustrated in terms of force-displacement and force-maximum de�ection plots in Figure 7.

Square panels made of Material C are considered, with lay-ups of [0± < 0|20 >]4s and [90± < 0|75 >]4s.

The former is characterized by a �ber variation along the longitudinal direction, the latter along the trans-
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verse one, which leads to superior buckling performance due to pre-buckling load redistribution towards the

edges. The boundaries are simply-supported, with the longitudinal sides free to expand but forced to remain

straight. The load is introduced by means of a prescribed displacement.

The force-displacement plot of Figure 7(a) is reported in a nondimensional form, using the quasi-isotropic

con�guration as a reference. One can observe the excellent agreement in terms of drop of sti�ness in cor-

respondence of the bifurcation point for both the con�gurations. Given the lowest buckling load of the

[0± < 0|20 >]4s laminate, a deeper post-buckling region is shown in the plot. It is interesting to highlight

the increasing loss of accuracy of the present approach, which relies upon a linearization around the bifur-

cation load, far from the initial post-buckling range. This aspect is further clari�ed in Figure 7(b), where

the �rst-order mode is reported along with the post-buckling pattern calculated at N̂xx/Nxx,iso = 3.5 by

implementing the full-order Ritz method of Ref. [33]. It can be observed that the deformed con�guration and

the �rst-order mode of the [90± < 0|75 >]4s laminate are very similar each other, thus justifying the close

agreement between the present solution and reference one. On the contrary, the [0± < 0|20 >]4s laminate

experiences a progressive change of pattern, whose �nal con�guration is presented in Figure 7(b), as the

structure enters the moderate/deep post-buckling �eld, whose modal interactions cannot be predicted by

the present formulation.

Comparison between reduced-order and full model

The comparison between the predictions obtained using the reduced-order and a full model is further inves-

tigated by considering additional variable-sti�ness con�gurations.

Speci�cally, two exemplary test cases are presented to show that the accuracy of the reduced-order predic-

tions depends on two main aspects, namely the degree of non-linearity due to the post-buckling de�ections,

as well as modal interactions in the post-critical regime.

To this aim, two square panels made of Material C are considered. The lay-ups are [90± < 0|15 >]4s and

[90± < 0|75 >]4s. Simply-supported constraints, with straight transverse edges are considered, while the

load is imposed by prescribing the axial shortening. The plots summarizing the post-buckling response in

terms of force-displacement curve and maximum out-of-plane de�ections are presented in Figure 8 using

the reduced-order model and the full one. As expected, close results are achieved in the surrounding of the

bifurcation load, while the accuracy of the reduced-order model tends to diminish far away from it. For a

given load level, the accuracy tends to be smaller for those con�gurations undergoing larger out-of-plane

displacements. This behaviour is indeed observed from Figure 8. This behaviour is re�ected into the mem-

brane resultant distribution at the loaded edges, which is reported for two load levels in Figure 9, along with

�rst-order modes and post-buckled patterns.

It is interesting to extend the investigation to variable-sti�ness plates with lay-ups [90± < 90|15 >]4s and

[90± < 90|75 >]4s. As seen from the post-buckling curves of Figure 10, the situation is now reversed,
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as lower accuracy is associated with the con�guration undergoing the smallest out-of-plane displacements.

This behaviour is understood by assessing the membrane load distribution and the post-buckling patterns

reported in Figure 11. As observed from Figure 11(a), the quality of the initial post-buckling predictions

for ∆/∆cr = 1.1 is satisfactory, and the reduced-order model provides results in close-agreement with those

of the full model. When the load is increased up to ∆/∆cr = 4.0, a progressive change of the post-buckled

shape is observed for the [90± < 90|75 >]4s laminate, leading to a pattern which signi�cantly deviated from

the �rst-order mode. This, in turn, determines a loss of accuracy in the description of the membrane state

of stress. It follows that, despite the lower degree of non-linearity in terms of out-of-plane de�ections, the

prediction for the [90± < 90|75 >]4s con�guration tends to be less accurate.

As a rule of thumb, one can consider ∆/∆cr = 1.5 as the upper bound for guaranteeing satisfactory accuracy

of the results in most of the cases.

3.2 Design charts

The advantage of the present formulation relies upon the combined reduced computational cost along with

a wide �eld of employ in terms of lay-up, boundary and loading conditions. In a nutshell, the formulation

tries to combine the ease of computation of closed-form solutions with the range of applicability of more

costly non-linear Ritz- or FEM-like calculations.

This feature can be exploited for performing several analysis very quickly, which is particularly useful for

obtaining design charts to explore the buckling and post-buckling behaviour of variable-sti�ness con�gura-

tions. For instance, the contour plots of Figures 12 to 15 span the entire design space of laminates with

lay-ups [Φ± < T0|T1 >]4s, di�erent aspect ratios and subjected to various loading and boundary conditions.

In-plane stress free boundary conditions are assumed unless otherwise speci�ed.

The charts are realized by allowing T0 and T1 to vary from 0 to 90 degrees with steps of 1 degree, thus

corresponding to more than 8000 analyses.

Following Wu et al. [33], the results are presented in nondimensional form by taking a quasi-isotropic con-

�guration as reference. Speci�cally, a design load equal to 1.50 times the critical load of the quasi-isotropic

con�guration is assumed. The results are reported in terms of nondimensional buckling force N̂ cr
xx/Nxx,iso,

post-buckling sti�ness Kpb/Kpb,iso and maximum out-of-plane de�ections wmax/wmax,iso.

In addition, the relative post-buckling sti�ness Kr, de�ned as the ratio between the post- and pre-buckling

sti�ness, is presented, as it provides a useful information regarding the e�ect of buckling in terms of drop of

sti�ness which, in turn, has an impact over the internal load path of the structure.
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Simply-supported square plates loaded in compression

The �rst case, whose results are depicted in Figure 12, regards a square simply-supported panel loaded with

a prescribed displacement. The lay-up is [90± < T0|T1 >]4s, so the �bers change their orientation along the

transverse direction y. A number of 13 × 13 functions is considered, based on a preliminary convergence

study. To further remark the e�ciency of the method, it is observed that one single run requires, on average,

0.20 s on a standard laptop with Intel Core i7 and 32 GB of RAM. It is interesting to note that the CPU

time is approximately 5 to 10 times faster with respect to an already e�cient Ritz full-order implementation.

This amount of speed-up is particularly bene�cial in case of repeated analyses, such as for the generation of

the design charts discussed here. In this case, the advantage is multiplied by a factor equal to the number

of analyses to be run. i.e. 8000.

As observed from Figure 12(a), the highest buckling loads are achieved for T0 = 0 and T1 = 77, which

correspond to an in-plane sti�ness distribution, where loads are mostly supported at the plate edges. Looking

at the post-buckling sti�ness in Figure 12(b), one can observe that the highest values are achieved in the top

right region, i.e. with �bers aligned along the loading direction (T0 and T1 close to 90). These con�gurations

are clearly associated with poor buckling performance. It is interesting to observe that, starting from a

given angle T0, the post-buckling sti�ness can raised by increasing T1 towards higher angles of orientation.

This means that rotating the outer �bers along the loading direction promotes post-buckling load-carrying

capability. This is not necessarily the case if one is interested in the relative post-buckling sti�ness Kr, whose

response is depicted in Figure 12(c). Highest values are achieved in a region associated with relatively high

buckling loads, although a one-to-one correspondence is be found. A frontier of discontinuity can be seen in

the plot, which is due to a change of shape of the �rst-order mode. Looking at the maximum out-of-plane

de�ections, one can observe an approximately inverse trend with respect to the buckling chart. Indeed,

higher buckling loads have the e�ect of reducing the post-buckling region which the panel is exposed to for

sustaining the prescribed design load. Whenever the buckling load is higher than the prescribed load, the

plate remains unbuckled, as seen for the con�gurations in the blue region of Figure 12(d). It is worth noting

that con�gurations lying on the same buckling plot isolines do not necessarily share the same response in

terms of maximum out-of-plane de�ections, thus requirements over the maximum de�ections can discriminate

the choice between buckling-equivalent con�gurations.

The same con�gurations, but considering now aspect ratio equal to 3, are studied in Figure 13. This geometry

is closer to typical aerospace panels, and the presence of longer edges has the e�ect of reducing the e�ects due

to the boundaries. This example is a challenging one, as adequate spatial re�nement is needed. Due to the

increased aspect ratio and the corresponding larger number of buckling half-waves, 25 × 13 trial functions

were found to be necessary to guarantee convergence.

While buckling and post-buckling sti�ness charts (Figures 13(a) and 13(b)) are almost unchanged, it is

interesting to note the altered pattern of the relative post-buckling sti�ness (Figure 13(c)). In this case,
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multiple sudden variations exist due to a di�erent distribution of mode shapes in the design space T0-T1.

Looking at the maximum out-of-plane displacements in Figure 13(d), it is possible to note a similar pattern

with respect to the one obtained for square plates (see Figure 12(d)). However, the magnitude of de�ections

is di�erent, meaning that plate geometric e�ects are relevant. For this reason, any design choice involving

the post-buckling de�ections should be carefully taken by referring to the actual geometric con�guration,

and reference solutions available for square plates can provide qualitative but not quantiative information.

Plates with one free edge loaded in compression

The response of plates with SSSF boundary conditions and aspect ratio equal to 10 is presented in Fig-

ure 14. Fiber steering is now permitted along the longitudinal direction x, with lay-ups in the form of

[0± < T0|T1 >]4s. These con�gurations can be representative of the web of a blade stringer or the �ange

of a T stringer. In this context, one may be interested in assessing not only the buckling load, but also the

behaviour in the post-buckling regime. The presence of a free-edge determines a buckling chart which is

quite di�erent form the previous ones, the optimal region being now in the central part of the design space

(see Figure 14(a)), i.e. plies at ±45. On the contrary, high post-buckling sti�ness is still achieved when

�bers are mostly directed along the loading direction, in this case corresponding to T0 and T1 equal to 0.

The reason here is to be attributed to the much higher linear sti�ness of 0-degree plies, which leads to an

equally higher post-buckling sti�ness. Indeed, the relative post-buckling sti�ness varies in a restricted range

of values (see Figure 14(c)), so the prevailing e�ect is the one of the pre-buckling sti�ness.

Out-plane-de�ections are depicted in Figure 14(d). It is interesting to observe that requirements over the

maximum out-plane-displacements can be satis�ed by preventing the values of T0 and T1 to exceed a given

threshold. In other words, the post-buckling de�ections tend to increase as �bers are rotated more and more

transversally with respect to the loading direction. Also, it can be observed that the response of straight

�ber designs, i.e. points lying on the diagonal of the plot, can be generally improved thanks to �ber steering.

Fully clamped plate under in-plane bending

Another example regards loading condition of pure in-plane bending, applied at the short edges of plates

with aspect ratio equal to 3 and fully clamped at the four sides. Given the relatively complex shapes of the

�rst order modes, a number of functions equal to 25 × 13 is adopted.

The results are reported in terms of buckling load, Figure 15(a), and maximum out-of-plane de�ection,

Figure 15(b). The presence of an unbuckled region can be observed in Figure 15(b), for those con�gurations

associated with a buckling load higher than the design load. In general, it can be noted that contemporary

increase of buckling loads and reduction of post-buckling de�ections are possible thanks to �ber steering.

The plots of Figure 15 can help to quantify these aspects.
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4 Conclusions

The paper presented a formulation based on Koiter's perturbation theory for analyzing the post-buckling

behaviour of variable-sti�ness plates. Isotropic and composite plates can be retrieved as a special case.

The approach relies upon a mixed variational principle, where the unknowns are described by means of

global Ritz-like functions. The kinematic approach relies on von Kármán theory, so the formulation can be

successfully employed in those cases where post-bucking stress redistribution is noticeable, such as the plate

con�gurations and the corresponding speci�c boundary conditions as investigated in this paper. Beam-like

plates, for which the redistribution e�ects are milder, would require the adoption of more advanced kinematic

formulations. The nonlinear post-buckling problem is solved after performing a linearization around the

bifurcation point, which transforms the non-linear governing equations into a series of linear equations. The

implementation of the approach is restricted to the single-mode case and leads to a highly e�cient numerical

tool, which can be successfully employed for estimating the initial post-buckling response of variable-sti�ness

plates. Main advantage is to be found in the computational e�ectiveness of the method, which allows to

deal with a small number of degrees of freedom, generally of the order of the hundreds, much less than those

typically required by a �nite element approximation. When compared to a similar full-order, Ritz-based

approach � for which a comparison of the computational times can be easily performed �, the time saving is,

approximately, of one order of magnitude. The improved e�ciency of the approach is particularly suitable for

analyzing simple geometries, such as the plates considered in this paper, that can help to derive benchmark

results and gather insight into the mechanical behaviour of variable-sti�ness con�gurations. In this regard,

the cases presented in the paper have practical signi�cance for aircraft structures, and are representative

of the skin of a sti�ened panel undergoing local buckling, or the �anges of blade sti�eners. More complex

con�gurations are beyond the scopes of the Ritz approach and, to this aim, �nite element procedures can be

the most viable strategy.

The accuracy of the predictions is demonstrated by means of an extensive set of comparisons against results

from the literature. As observed, the quality of the predictions tends to decrease as the structure enters

the moderate to deep post-buckling regime. However, if the range of interest is not too far away from the

bifurcation and modal interactions are not relevant, the proposed strategy is capable of furnishing accurate

results.

The e�ciency of the formulation is particularly useful for gathering understanding into the mechanical

behaviour of variable-sti�ness plates, where the number of design variables is even higher than in classical

composite con�gurations. This aspect is of paramount importance to guide the design, especially when non-

linear responses are of concern. Design charts can be easily derived, and parametric studies or preliminary

optimizations can be conducted with reduced e�ort. The extension to include shear deformability e�ects

and the possibility of accounting multi-modal interactions are subject of future investigation.
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Table 1: Elastic properties of CFRP composite materials.

E11 E22 G12 ν12

Material (MPa) (MPa) (MPa) (MPa)

A 181000 10273 7170.5 0.28

B 128000 11300 6000 0.3

C 163000 6800 3400 0.28
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Table 2: Relative post-buckling sti�ness Kr for SSSS plates under di�erent in-plane constraints: comparison

against closed-form solutions (A: stress-free transverse edges; B: transverse edges forced to remain straight).

Isotropic [0/90]s

In-plane BCs A B A B

a/b Ref. [64] Present Ref. [62] Present Ref. [65] Present Ref. [63] Present

1.0 0.4083 0.4083 0.5000 0.5000 0.3654 0.3654 0.5000 0.5000

1.25 0.4509 0.4509 0.6324 0.6324 0.3824 0.3824 0.6324 0.6324

1.5 0.3683 0.3683 0.3969 0.3969 0.4001 0.4001 0.7519 0.7519

1.75 0.3872 0.3872 0.4423 0.4423 0.4176 0.4176 0.8384 0.8384

2.0 0.4083 0.4083 0.5000 0.5000 0.4343 0.4343 0.8947 0.8947
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Table 3: Convergence analysis (P=Q=M=N=K): b-coe�cients for isotropic plate (ν = 0.25) subjected to

prescribed compressive force.

N. trial functions 3×3 5×5 7×7 9×9 11×11 21×21

BC r = a/b

SSSS 1 0.1798 0.1827 0.1827 0.1827 0.1827 0.1827

2 0.1454 0.2060 0.2121 0.2120 0.2120 0.2120

3 0.0629 0.1724 0.2151 0.2221 0.2226 0.2226

SCSC 1 0.1467 0.1825 0.1953 0.1957 0.1957 0.1957

2 0.0699 0.1983 0.2569 0.2650 0.2654 0.2654

SFSC 2 0.0088 0.0089 0.0089 0.0089 0.0089 0.0089

CSCS 2 0.1692 0.2391 0.2579 0.2603 0.2604 0.2604
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Table 4: Nondimensional buckling loads and b-coe�cients for isotropic plate (ν = 0.25) subjected to pre-

scribed compressive force.

Nxx = Ncr
xx

(
π2

l2y

Eh3

12 (1− ν2)

)−1

b-coe�.

BC r = a/b Ref. [61] Ref. [39] Present Ref. [61] Ref. [39] Present

SSSS 1 4.0026 3.9599 4.0000 0.1824 0.1836 0.1827

2 4.0032 / 4.0000 0.2118 / 0.2120

3 4.0067 / 4.0000 0.2217 / 0.2226

SCSC 1 7.7135 7.6528 7.6913 0.1958 0.1962 0.1957

2 7.0114 / 6.9716 0.2654 / 0.2654

SFSC 2 1.3881 1.3788 1.3862 0.0088 0.0090 0.0089

CSCS 2 4.8550 4.8239 4.8471 0.2608 0.2608 0.2604
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Table 5: Nondimensional buckling loads and b-coe�cients for isotropic plate subjected to in-plane bending

(1,2: using 11 and 31 functions along the longitudinal direction, respectively.)

Nxx = Ncr
xx

(
π2

l2y

Eh3

12 (1− ν2)

)−1

b-coe�.

BC r = a/b Ref. [61] Ref. [39] Present1 Present2 Ref. [61] Ref. [39] Present1 Present2

SSSS 1 25.5766 25.2295 25.5283 25.5283 0.2193 0.2212 0.2188 0.2188

2 23.9452 23.6668 23.8818 23.8818 0.2196 0.2217 0.2239 0.2240

3 24.2542 / 24.1119 24.1118 0.2115 / 0.2102 0.2119

CCCC 1 48.1574 / 47.7539 47.7539 0.2924 / 0.2926 0.2926

2 42.2118 / 41.6466 41.6456 0.2858 / 0.2643 0.2775

3 41.7225 / 40.6135 40.4789 0.2765 / 0.2229 0.2727
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Table 6: Nondimensional buckling loads and post-buckling sti�nesses for square SSSS composite plates with

straight and curvilinear �bers (B: transverse edges forced to remain straight; C: transverse edges prevented

from lateral displacement). Results from Ref. [39] are reported in parenthesis.

Nxx = N̂cr
xx

(
E11h3

l2x

)−1

In-plane BCs Lay-up Mode 1 Mode 2 Kpb/Kpre,iso Kr

C quasi-isotropic 1.0709 (1.0681) 2.0191 (2.0106) 0.5207 (0.52113) 0.5207 (0.52113)

[±32]s 1.1993 (1.1965) 2.6772 (2.6669) 0.2879 (0.29288) 0.2160 (0.21958)

[0± < 0|50 >]s 1.4366 (1.4159) 2.7578 (2.6835) 0.3509 (0.35171) 0.2618 (0.26846)

B

quasi-isotropic 1.3878 (1.3842) 2.1685 (2.1594) 0.5000 (0.49363) 0.5000 (0.49363)

[±45]s 1.7461 (1.7424) 2.3252 (2.2361) 0.1798 (0.17492) 0.5000 (0.48650)

[90± < 0| − 75 >s] 3.1345 (2.9282) 3.1503 (2.9499) 0.4126 (0.38264) 0.7683 (0.74506)

/ / 0.3136 (0.2756) 0.5840 (0.53664)
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Figure 1: Variable sti�ness plate: dimensions and reference system.
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Figure 2: De�nition of the �bers' orientation.
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(a) (b)

Figure 3: Isotropic plate with three levels of imperfection and subjected to prescribed axial force; aspect

ratio r=2, and boundary conditions: (a) SCSC, (b) SFSC.
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Figure 4: Isotropic plate with three levels of imperfection and subjected to prescribed in-plane bending;

aspect ratio r=2, and CCCC boundary conditions.
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(a) (b)

Figure 5: Axial force versus maximum out-of-plane displacement for cross-ply laminate with aspect ratio

r=3 and lay-up: (a) [0/90]s, (b) [90/0]s.
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Figure 6: Axial force versus maximum out-of-plane displacement for variable-sti�ness plate; aspect ratio

r=1, and CCCC boundary conditions.
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(a) (b)

Figure 7: Post-buckling response of variable-sti�ness panels in terms of: (a) force versus axial shortening,

(b) force versus maximum out-of-plane displacement (de�ected patterns are reported at N̂xx/N
cr
xx,iso=3.5).
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(a) (b)

Figure 8: Post-buckling response of variable-sti�ness panels ([90± < T0|T1 >]4s, and T0 = 0) using reduced-

order and full model: (a) force versus axial shortening, (b) axial shortening versus maximum out-of-plane

displacement.
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(a) (b)

Figure 9: Post-buckling response of variable-sti�ness panels ([90± < T0|T1 >]4s, and T0 = 0)using reduced-

order and full model. Axial force at the loaded edge at: (a) ∆/∆cr = 1.1, (b) ∆/∆cr = 4.0.
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(a) (b)

Figure 10: Post-buckling response of variable-sti�ness panels ([90± < T0|T1 >]4s, and T0 = 90 using reduced-

order and full model: (a) force versus axial shortening, (b) axial shortening versus maximum out-of-plane

displacement.
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(a) (b)

Figure 11: Post-buckling response of variable-sti�ness panels ([90± < T0|T1 >]4s, and T0 = 90) using

reduced-order and full model. Axial force at the loaded edge at: (a) ∆/∆cr = 1.1, (b) ∆/∆cr = 4.0.
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Figure 12: Buckling and post-buckling response of axially compressed plates with lay-up [90± < T0|T1 >]4s,

r = 1 and SSSS: (a) N̂ cr
xx/N

cr
xx,iso, (b) Kpb/Kpb,iso, (c) Kr, (d) wmax/wmax,iso
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Figure 13: Buckling and post-buckling response of axially compressed plates with lay-up [90± < T0|T1 >]4s,

r = 3 and SSSS constraints: (a) N̂ cr
xx/N

cr
xx,iso, (b) Kpb/Kpb,iso, (c) Kr, (d) wmax/wmax,iso
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Figure 14: Buckling and post-buckling response of axially compressed plates with lay-up [0± < T0|T1 >]4s,

r = 10 and SSSF constraints: (a) N̂ cr
xx/N

cr
xx,iso, (b) Kpb/Kpb,iso, (c) Kr, (d) wmax/wmax,iso
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Figure 15: Buckling and post-buckling response of plates subjected to in-plane bending, and with lay-up

[90± < T0|T1 >]4s, r = 3 and CCCC constraints: (a) N̂ cr
xx/N

cr
xx,iso, (b) wmax/wmax,iso
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6 Appendix

A matrix is denoted as:

A(i)(j) = A (37)

where the brackets identify the row and column indexes. This notation is useful for avoiding misinterpre-

tations whenever the matrix is constructed starting from arrays of scalars with three or more indexes. For

instance:

A(ik)(rs) = A (38)

speci�es a matrix where each couple of values ik de�nes a given row, whilst rs identi�es the column index.

Similarly, it is possible to consider arrays of matrices, such as A(ik)(rs)(mn). In this case, the following

notation is adopted

A(ik) −→ array of the matrices A(rs)(mn)

A(rs) −→ array of the matrices A(ik)(mn)

A(mn) −→ array of the matrices A(ik)(rs)

(39)

The absence of brackets will denote a vector.

The integrals entering Eqs. (18)-(21) are reported below. The prime denotes di�erentiation with respect to

the variable ξ or η. No ambiguity exists due to the separation of variables operated in Eqs. (10) and (13)

Scc
(k)(k)

= Scc = −
∫
S

r4a11LkLkdS (40)

where S ≡ [−1, 1]× [−1, 1].

SΦΦ
(pq)(pq) = SΦΦ =

∫
S

[
r4a11FpG

′′
qFpG

′′
q + r2a12

(
F ′′p GqFpG

′′
q + FpG

′′
qF
′′
p Gq

)
+ a22F

′′
p GqF

′′
p Gq +

+r2a66F
′
pG
′
qF
′
pG
′
q − r3a16

(
FpG

′′
qF
′
pG
′
q + F ′pG

′
qFpG

′′
q

)
− ra26

(
F ′′p GqF

′
pG
′
q + F ′pG

′
qF
′′
p Gq

)]
dS

(41)

Kww
(mn)(mn) = Kww =

∫
S

[
D11X

′′
mYnX

′′
mYn + r2D12 (X ′′mYnXmY

′′
n +XmY

′′
nX

′′
mYn) +

+ r4D22XmY
′′
nXmY

′′
n + 4r2D66X

′
mY
′
nX
′
mY
′
n+

+2rD16 (X ′′mYnX
′
mY
′
n +X ′mY

′
nX
′′
mYn) + 2r3D26 (XmY

′′
nX

′
mY
′
n +X ′mY

′
nXmY

′′
n )
]

dS

(42)

SΦc
(pq)(k) = SΦc = −

∫
S

(
r4a11FpG

′′
qLk + r2a12F

′′
p GqLk − r3a16F

′
pG
′
qLk

)
dS (43)
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N̂(k)(mn)(mn) = r2

∫
S

LkX
′
mYnX

′
mYndS (44)

N(pq)(mn)(mn) = r2

∫
S

[
FpG

′′
qX
′
mYnX

′
mYn −

(
F ′pG

′
qX
′
mYnXmY

′
n + F ′pG

′
qXmY

′
nX
′
mYn

)
+

+F ′′p GqXmY
′
nXmY

′
n

]
dS

(45)

P ck = Pc =
ar2

2

∫ 1

−1

Lkdη u (46)

N c
k = Nc = − 2

b2

∫ 1

−1

Lkdη (47)
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