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Abstract We introduce a new information-theoretic formulation of quantum measure-
ment uncertainty relations, based on the notion of relative entropy between measure-
ment probabilities. In the case of a finite-dimensional system and for any approxim-
ate joint measurement of two target discrete observables, we define the entropic di-
vergence as the maximal total loss of information occurring in the approximation at
hand. For fixed target observables, we study the joint measurements minimizing the
entropic divergence, and we prove the general properties of its minimum value. Such
a minimum is our uncertainty lower bound: the total information lost by replacing the
target observables with their optimal approximations, evaluated at the worst possible
state. The bound turns out to be also an entropic incompatibility degree, that is, a good
information-theoretic measure of incompatibility: indeed, it vanishes if and only if the
target observables are compatible, it is state-independent, and it enjoys all the invariance
properties which are desirable for such a measure. In this context, we point out the dif-
ference between general approximate joint measurements and sequential approximate
joint measurements; to do this, we introduce a separate index for the tradeoff between
the error of the first measurement and the disturbance of the second one. By exploiting
the symmetry properties of the target observables, exact values, lower bounds and op-
timal approximations are evaluated in two different concrete examples: (1) a couple of
spin-1/2 components (not necessarily orthogonal); (2) two Fourier conjugate mutually
unbiased bases in prime power dimension. Finally, the entropic incompatibility degree
straightforwardly generalizes to the case of many observables, still maintaining all its
relevant properties; we explicitly compute it for three orthogonal spin-1/2 components.

1. Introduction

In the foundations of Quantum Mechanics, a remarkable achievement of the last years
has been the clarification of the differences between preparation uncertainty relations
(PURs) and measurement uncertainty relations (MURs) [1–13], both of them arising
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from Heisenberg’s heuristic considerations about the precision with which the position
and the momentum of a quantum particle can be determined [14].

One speaks of PURs when some lower bound is given on the “spreads” of the dis-
tributions of two observables A and B measured in the same state ρ. The most known
formulation of PURs, due to Robertson [15], involves the product of the two standard
deviations; more recent formulations are given in terms of distances among probability
distributions [10] or entropies [13, 16–22].

On the other hand, one refers to MURs when some lower bound is given on the “er-
rors” of any approximate joint measurement M of two target observables A and B. When
M is realized as a sequence of two measurements, one for each target observable, MURs
are regarded also as relations between the “error” allowed in an approximate measure-
ment of the first observable and the “disturbance” affecting the successive measurement
of the second one.

Although the recent developments of the theory of approximate quantum measure-
ments [11, 23–26] and nondisturbing quantum measurements [27, 28] have generated a
considerable renewed interest in MURs, no agreement has yet been reached about the
proper quantifications of the “error” or “disturbance” terms. Here, the main problem
is how to compare the target observables A and B with their approximate or perturbed
versions provided by the marginals M[1] and M[2] of M; indeed, A, M[1], M[2] and B
may typically be incompatible. The proposals then range from operator formulations of
the error [1–4, 29, 30] to distances for probability distributions [6–12] and conditional
entropies [31–33].

In this paper, we propose and develop a new approach to MURs based on the notion
of relative entropy. Here we deal with the case of discrete observables for a finite di-
mensional quantum system. The extension to position and momentum is given in [34].

In the spirit of Busch, Lahti, Werner [6–10], we quantify the “error” in the approx-
imation A ' M[1] by comparing the respective outcome distributions Aρ and Mρ

[1]

in every possible state ρ; however, differently from [6–10], the comparison is done
from the point of view of information theory. Then, the natural choice is to consider
S
(
Aρ‖Mρ

[1]

)
, the relative entropy of Aρ with respect to Mρ

[1], as a quantification of the
information loss when Aρ is approximated with Mρ

[1]. Similarly, in order to quantify
either the “error” or – if A and B are measured in sequence – the “disturbance” related
to the approximation B ' M[2], we employ the relative entropy S

(
Bρ‖Mρ

[2]

)
. Relative

entropy appears to be the fundamental quantity from which the other entropic notions
can be derived, cf. [35–37]. It should be noticed that relative entropy, of classical or
quantum type, has already been used in quantum measurement theory to give proper
measures of information gains and losses in various scenarios [37–41].

The relative entropy formulation of MURs, given in Section 2.3, is: for every ap-
proximate joint measurement M of A and B, there exists a state ρ such that

S
(
Aρ‖Mρ

[1]

)
+ S

(
Bρ‖Mρ

[2]

)
≥ c(A,B), (1)

where the uncertainty lower bound

c(A,B) = inf
M

sup
ρ

{
S
(
Aρ‖Mρ

[1]

)
+ S

(
Bρ‖Mρ

[2]

)}
(2)

depends on the allowed joint measurements M. In the above definition, the same state
ρ appears in both error terms S

(
Aρ‖Mρ

[1]

)
and S

(
Bρ‖Mρ

[2]

)
; thus, by making their sum,



Entropic measurement uncertainty relations 3

all possible error compensations are taken into account in the maximization. The quant-
ity supρ

{
S
(
Aρ‖Mρ

[1]

)
+ S

(
Bρ‖Mρ

[2]

)}
gives a state-independent quantification of the

total inefficiency of the approximate joint measurement M at hand, and we call it en-
tropic divergence of M from (A,B).

By considering any possible approximate joint measurement in the definition of
c(A,B), we get an uncertainty lower bound cinc(A,B) that turns out to be a proper meas-
ure of the incompatibility of A and B. On the other hand, by considering only sequential
measurements, we derive an uncertainty lower bound ced(A,B) that provides a suitable
quantification of the error/disturbance tradeoff for the two (sequentially ordered) tar-
get observables. Indeed, such lower bounds share a lot of desirable properties: they are
zero if and only if the target observables are compatible (respectively, sequentially com-
patible); they are invariant under unitary transformations and relabelling of the output
values of the measurements; and finally, they are bounded from above by a value that
is independent of both the dimension of the Hilbert space and the number of the pos-
sible outcomes. As a main result, we show also that, for a generic couple of observables
A and B, considering only their sequential measurements is a real restriction, because
in general ced(A,B) may be larger than cinc(A,B); actually, the two indexes are guar-
anteed to coincide only if one makes some extra assumptions on A and B (e.g. if the
second observable B is supposed to be sharp).

Thus, every time A and B are incompatible, the total loss of information S
(
Aρ‖Mρ

[1]

)
+ S

(
Bρ‖Mρ

[2]

)
in the approximations A ' M[1] and B ' M[2] depends on both the joint

measurement M and the state ρ; however, since cinc(A,B) > 0, inequality (1) states that
there is a minimum potential loss that no joint measurement M can avoid. Similar re-
marks hold for sequential measurements and the corresponding error/disturbance coef-
ficient. Note that, even if A and B are incompatible, the left hand side of (1) can vanish
if the state ρ and the approximate joint measurement M are suitably chosen (see Section
2.3). Of course, this is not a contradiction, as the formulation (1), (2) of MURs is about
the size of the total information loss in the worst – but not all – input states. In this
sense, the bound (2) is a state-independent quantification of the minimal inefficiency of
the approximations A ' M[1] and B ' M[2].

Our MURs directly compare with those of [6–10], from which however they differ
in one essential aspect: the latter quantify the inaccuracy of the approximate joint meas-
urement M by maximizing the errors of the approximations Aρ1 ' Mρ1

[1] and Bρ2 ' Mρ2
[2]

over independently chosen states ρ1 and ρ2; instead, in (2) we maximize the total ap-
proximation error S

(
Aρ‖Mρ

[1]

)
+ S

(
Bρ‖Mρ

[2]

)
over a single state ρ. On the concep-

tual level, this amounts to say that our MURs are a statement about the inaccuracy of
the approximation (A,B) ' (M[1],M[2]) that occurs in one preparation of the system;
those of [6–10] rather refer to the inefficiencies of two separate uses of the approxim-
ate joint measurement M, namely, for approximating A ' M[1] in a first preparation,
and B ' M[2] in a second one. Similar considerations hold for the conditional entropy
approach of [31–33], where the “noise” and “disturbance” terms are defined through
different preparations in a sort of calibration procedure. In this respect, our MURs are
reminiscent of the traditional entropic PURs, which relate the spreads of the distribu-
tions Aρ and Bρ evaluated at the same state ρ (see Section 2.5).

Whenever A and B are incompatible, we will look for the exact value of cinc(A,B),
or at least some lower bound for it, as well as we will try to determine the optimal
approximate joint measurements M which saturate the minimum. In particular, we will
prove that in some relevant applications there is actually a unique such M, thus show-
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ing that in these cases the entropic optimality criterium unambiguously fixes the best
approximate joint measurement.

The generalization of our MURs to the case of more than two target observables
is rather straightforward by the very structure of the relative entropy formulation. It is
worth noticing that there are triples of observables whose optimal approximate joint
measurements are not unique, even if all their possible pairings do have the corres-
ponding binary uniqueness property (see e.g. the two and three orthogonal spin-1/2
components in Sections 3.2 and 4.2).

Now, we summarize the structure of the paper. In Section 2, we state our entropic
MURs for two target observables, and we introduce and study the main mathematical
objects which are involved in their formulation. In Section 3, we undertake the explicit
computation of the incompatibility indexes cinc(A,B) and ced(A,B) and their respect-
ive optimal approximate joint measurements M for several examples of incompatible
target observables. Some general results are proved, which show how the symmetry
properties of the quantum system can help in the task. Then, two cases are studied:
two spin-1/2 components, which we do not assume to be necessarily orthogonal, and
two Fourier conjugate observables associated with a pair of mutually unbiased bases
(MUBs) in prime power dimension. In Section 4, we generalize the relative entropy
formulation of MURs to the case of many target observables. As an example, the case
of three orthogonal spin-1/2 components is completely solved. Finally, Section 5 con-
tains a conclusive discussion and presents some open problems. Three further appen-
dices are provided at the end of the paper: in Appendix A, a couple of examples show
that the coefficients cinc(A,B), ced(A,B) and ced(B,A) may be different in general;
Appendices B and C collect all the technical details and proofs for the cases studied in
Sections 3.2, 3.3, and 4.2.

1.1. Observables and instruments. We start by fixing our quantum system and recalling
the notions and basic facts on observables and measurements that we will use in the
article [23–25, 27, 42–45].

The Hilbert space H and the spaces L(H), T(H), S(H). We consider a quantum sys-
tem described by a finite-dimensional complex Hilbert space H, with dimH = d; then,
the spaces L(H) of all linear bounded operators on H and the trace-class T(H) coin-
cide. Let S(H) denote the convex set of all states on H (positive, unit trace operators),
which is a compact subset of T(H). The extreme points of S(H) are the pure states
(rank-one projections) ρ = |ψ 〉 〈ψ |, with ψ ∈ H and ‖ψ‖ = 1.

The space of observables M(X) and the space of probabilities P(X). In the general
formulation of quantum mechanics, an observable is identified with a positive operator
valued measure (POVM). We will consider only observables with outcomes in a finite
set X. Then, a POVM on X is identified with its discrete density A : X → L(H),
whose values A(x) are positive operators on H such that

∑
x∈X A(x) = 1; here, the

sum involves a finite number |X| of terms (|X| denotes the cardinality of X). Similarly,
a probability on X is identified with its discrete probability density (or mass function)
p : X→ R, where p(x) ≥ 0 and

∑
x∈X p(x) = 1.

For ρ ∈ S(H), the function Aρ(x) = Tr {ρA(x)} is the discrete probability dens-
ity on X which gives the outcome distribution in a measurement of the observable A
performed on the quantum system prepared in the state ρ.
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We denote by M(X) the set of the observables which are associated with the sys-
tem at hand and have outcomes in X; M(X) is a convex, compact subset of L(H)X,
the finite dimensional linear space of all functions from X to L(H). Both mappings
ρ 7→ Aρ and A 7→ Aρ are continuous and affine (i.e. preserving convex combinations)
from the respective domains into the convex set P(X) of the probabilities on X. As a
subset of RX, the set P(X) is convex and compact. The extreme points of P(X) are the
(Kronecker) delta distributions δx, with x ∈ X.

Trivial and sharp observables. An observable A is trivial if A = p1 for some prob-
ability p, where 1 is the identity of H. In particular, we will make use of the uniform
distribution uX on X, uX(x) = 1/ |X|, and the trivial uniform observable UX = uX1.

An observable A is sharp if A(x) is a projection ∀x ∈ X. Note that we allow A(x) =
0 for some x, which is required when dealing with sets of observables sharing the same
outcome space. Of course, for every sharp observable we have |{x : A(x) 6= 0}| ≤ d.

Bi-observables and compatible observables. When the outcome set has the product
form X×Y, we speak of bi-observables. In this case, given the POVM M ∈M(X×Y),
we can introduce also the marginal observables M[1] ∈M(X) and M[2] ∈M(Y) by

M[1](x) =
∑
y∈Y

M(x, y), M[2](y) =
∑
x∈X

M(x, y).

In the same way, for p ∈ P(X× Y), we get the marginal probabilities p[1] ∈ P(X) and
p[2] ∈ P(Y). Clearly, (M[i])

ρ = (Mρ)[i]; hence there is no ambiguity in writing Mρ
[i] for

both probabilities.
Two observables A ∈M(X) and B ∈M(Y) are jointly measurable or compatible if

there exists a bi-observable M ∈M(X×Y) such that M[1] = A and M[2] = B; then, we
call M a joint measurement of A and B.

Two classical probabilities p ∈ P(X) and q ∈ P(Y) are always compatible, as they
can be seen as the marginals of at least one joint probability in P(X × Y). Indeed, one
can take the product probability p ⊗ q given by (p ⊗ q)(x, y) = p(x)q(y). Clearly,
nothing similar can be defined for two non-commuting quantum observables, for which
instead compatibility usually is a highly nontrivial requirement.

The space of instruments J(X). Given a pre-measurement state ρ, a POVM allows to
compute the probability distribution of the measurement outcome. In order to describe
also the state change produced by the measurement, we need the more general math-
ematical notion of instrument, i.e. a measure J on the outcome set X taking values
in the set of the completely positive maps on L(H). In our case of finitely many out-
comes, an instrument is described by its discrete density x 7→ Jx, x ∈ X, whose
general structure is Jx[ρ] =

∑
α J

α
x ρJ

α ∗
x , ∀ρ ∈ S(H); here, the Kraus operators

Jαx ∈ L(H) are such that
∑
x∈X

∑
α J

α ∗
x Jαx = 1 and, since H is finite-dimensional,

the index α can be restricted to finitely many values. The adjoint instrument is given by
J ∗x [F ] =

∑
α J

α ∗
x FJαx , ∀F ∈ L(H). The sum JX =

∑
x∈X Jx is a quantum channel,

i.e. a completely positive trace preserving map on S(H). We denote by J(X) the convex
and compact set of all X-valued instruments for our quantum system.

By setting A(x) = J ∗x [1] =
∑
α J

α ∗
x Jαx , a POVM A ∈ M(X) is defined, which is

the observable measured by the instrument J ; we say that the instrument J implements
the observable A. The state of the system after the measurement, conditioned on the
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outcome x, is Jx[ρ]/Aρ(x). We recall that, given an observable A, one can always find
an instrument J implementing A, but J is not uniquely determined by A, i.e. different
instruments J , with different actions on the quantum system, may be used to measure
the same observable A.

Sequential measurements and sequentially compatible observables. Employing the no-
tion of instrument, we can describe a measurement of an observables A ∈ M(X) fol-
lowed by a measurement of an observable B ∈ M(Y): a sequential measurement of
A followed by B is a bi-observable M(x, y) = J ∗x [B(y)], where J is any instrument
implementing A. Its marginals are M[1](x) = J ∗x [1] = A(x) and M[2](y) = J ∗X[B(y)].
We write M = J ∗(B), which is a measurement in which one first applies the instrument
J to measure A, and then he measures the observable B on the resulting output state; in
this way, he obtains a joint measurement of A and J ∗X[B(·)], a perturbed version of B.

An observable A ∈ M(X) can be measured without disturbing B ∈ M(Y) [27], or
shortly A and B are sequentially compatible observables, if there exists a sequential
measurement M = J ∗(B) such that

M[1] ≡ J ∗· [1] = A, M[2] ≡ J ∗X[B(·)] = B.

So, a measurement of B at time 1 (i.e. after the measurement of A) has the same outcome
distribution as a measurement of B at time 0 (i.e. before the measurement of A).

If A and B are sequentially compatible observables, they clearly are also jointly
measurable. However, the opposite is not true; two counterexamples are shown in [27]
and are reported in Appendix A. This happens because we demand to measure just B
at time 1, i.e. we do not content ourselves with getting at time 1 the same outcome dis-
tribution of a measurement of B performed at time 0. Indeed, this second requirement
is weaker: it can be satisfied by any couple of jointly measurable observables A and B,
by measuring a suitable third observable C after A (with A implemented by an instru-
ment J which possibly increases the dimension of the Hilbert space). The definition of
sequentially compatible observables is not symmetric, and indeed there exist couples
of observables such that A can be measured without disturbing B, but for which the
opposite is not true. This asymmetry is also reflected in the remarkable fact that, if the
second observable is sharp, then the compatibility of A and B turns out to be equivalent
to their sequential compatibility.

Target observables. In this paper, we fix two target observables with finitely many
values, A ∈ M(X) and B ∈ M(Y), and we study how to characterize their uncertainty
relations. For any ρ ∈ S(H), the associated probability distributions Aρ and Bρ can be
estimated by measuring either A or B in many identical preparations of the quantum
system in the state ρ. No joint or sequential measurement of A and B is required at
this stage. In Section 2 we develop a general theory to quantify the error made by
approximating A and B with compatible observables and we introduce the notion of
optimal approximate joint measurement for A and B.

1.2. Relative and Shannon entropies. In this paper, we will be concerned with entropic
quantities of classical type [35, 36]; we express them in “bits”, which means to use
logarithms with base 2: log ≡ log2.

The fundamental quantity is the relative entropy; although it can be defined for gen-
eral probability measures, here we only recall the discrete case. Given two probabilities
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p, q ∈ P(X), the relative entropy of p with respect to q is

S
(
p‖q
)
=


∑

x∈supp p
p(x) log

p(x)

q(x)
if supp p ⊆ supp q,

+∞ otherwise;
(3)

it defines an extended real valued function on the product set P(X) × P(X). Also
the terms Kullback-Leibler divergence and information for discrimination are used for
S
(
p‖q
)
.

The relative entropy S
(
p‖q
)

is a measure of the inefficiency of assuming that the
probability is q when the true probability is p [36, Sect. 2.3]; in other words, it is the
amount of information lost when q is used to approximate p [35, p. 51]. It appears in
data compression theory [36, Theor. 5.4.3], model selection problems [35], and it is
related to the error probability in the context of hypothesis tests that discriminate the
two distributions p and q [36, Theor. 11.8.3]. We stress that S

(
p‖q
)

compares p and q,
but it is not a distance since it is not symmetric. As such, the use of S is particularly
convenient when the two probabilities have different roles; for instance, if p is the true
distribution of a given random variable, while q is the distribution actually used as
an approximation of p. This will be our case, where the role of p is played by the
distribution Aρ (or Bρ) of the target observable A (or B) and q will be the distribution of
some allowed approximation; in particular, no joint distribution of p and q is involved.

In comparing our results with entropic PURs, we need also the Shannon entropy of
a probability p ∈ P(X). It is defined by

H(p) = −
∑
x∈X

p(x) log p(x), (4)

and it provides a measure of the uncertainty of a random variable with distribution
p [36, Sect. 2.1].

We collect in the following proposition the main properties of the relative and Shan-
non entropies [35–37, 43, 46]. For the definition and main properties of lower semicon-
tinuous (LSC) functions, we refer to [47, Sect. 1.5].

Proposition 1. The following properties hold.

(i) 0 ≤ H(p) ≤ log |X| and S
(
p‖q
)
≥ 0, for all p, q ∈ P(X).

(ii) H(p) = 0 if and only if p = δx for some x, where δx is the delta distribution at x.
S
(
p‖q
)
= 0 if and only if p = q.

(iii) H(uX) = log |X|, and H(p) = log |X| − S
(
p‖uX

)
for all p ∈ P(X), where uX is

the uniform probability on X.
(iv) H and S are invariant for relabelling of the outcomes; that is, if f : X′ → X is a

bijective map, then H(p ◦ f) = H(p) and S
(
p ◦ f‖q ◦ f

)
= S

(
p‖q
)
.

(v) H is a concave function on P(X), and S is jointly convex on P(X)×P(X), namely

S
(
λp1+(1−λ)p2‖λq1+(1−λ)q2

)
≤ λS

(
p1‖q1

)
+(1−λ)S

(
p2‖q2

)
, ∀λ ∈ [0, 1].

(vi) The function p 7→ H(p) is continuous on P(X). The function (p, q) 7→ S
(
p‖q
)

is
LSC on P(X)× P(X).

(vii) If p1, p2 ∈ P(X) and q1, q2 ∈ P(Y), then S
(
p1 ⊗ q1‖p2 ⊗ q2

)
= S

(
p1‖p2

)
+

S
(
q1‖q2

)
.
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In order to derive some further specific properties of the relative entropy that will be
needed in the following, it is useful to introduce the extended real function s : [0, 1] ×
[0, 1]→ [−1/2,+∞], with

s(u, v) =


u log

u

v
if 0 < u ≤ 1 and 0 < v ≤ 1,

0 if u = 0 and 0 ≤ v ≤ 1,

+∞ if u > 0 and v = 0.

(5)

In terms of s, the relative entropy can be rewritten as S
(
p‖q
)
=
∑
x∈X s(p(x), q(x)).

Note that, unlike the relative entropy, the function s can take also negative values, and
its minimum is s(1/2, 1) = −1/2. As a function of (u, v), s is continuous at all the
points of the square [0, 1]× [0, 1] except at the origin (0, 0), where it is easily proved to
be LSC.

Proposition 2. For all λ ∈ (0, 1] and q ∈ P(X), the map gλ(p) = S
(
p‖λp+(1−λ)q

)
is finite and continuous in p ∈ P(X). It attains the maximum value

max
p∈P(X)

S
(
p‖λp+ (1− λ)q

)
= log

1

λ+ (1− λ)minx∈X q(x)
, (6)

which is a strictly decreasing function of λ ∈ (0, 1].

Proof. Let λ ∈ (0, 1]. For all u, v ∈ [0, 1], the condition u > 0 implies λu+(1−λ)v >
0, hence

s(u, λu+ (1− λ)v) =

u log
u

λu+ (1− λ)v
if 0 < u ≤ 1,

0 if u = 0.

Clearly, this is a continuous function of u ∈ (0, 1]. To see that it is continuous also at 0,
we take the limit

lim
u→0+

u log
u

λu+ (1− λ)v
= lim
u→0+

u log u− lim
u→0+

u log[λu+ (1− λ)v]

= − lim
u→0+

u log[λu+ (1− λ)v] =

{
0 if v 6= 0,

− 1
λ limu→0+ λu log(λu) = 0 if v = 0.

Since gλ(p) =
∑
x s (p(x), λp(x) + (1− λ)q(x)), the continuity of gλ then follows.

Since gλ is also convex on P(X) by Proposition 1, item (v), and the set P(X) is compact,
the function gλ takes its maximum at some extreme point δx of P(X). It follows that

sup
p∈P(X)

S
(
p‖λp+ (1− λ)q

)
= max

x∈X
S
(
δx‖λδx + (1− λ)q

)
= log

1

λ+ (1− λ)minx∈X q(x)
.

Setting qmin = minx∈X q(x), the derivative in λ of the last expression is

d

dλ

(
log

1

λ+ (1− λ)qmin

)
=

qmin − 1

(1− qmin)λ+ qmin
,

which is negative for all λ ∈ (0, 1] since qmin ≤ 1/|X| < 1. Thus, the right hand side
of (6) is strictly decreasing in λ. ut
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Note that, if λ = 0, then g0(p) = S
(
p‖q
)

is an extended real LSC function on P(X)
by Proposition 1, item (vi). However, it is not difficult to show along the lines of the
previous proof that the maximum in (6) is still attained, and

max
p∈P(X)

S
(
p‖q
)
=

log
1

minx q(x)
if supp q = X,

+∞ otherwise.

2. Entropic measurement uncertainty relations

In general, the two target observables A and B, introduced at the end of Section 1.1,
are incompatible, and only “approximate” joint measurements are possible for them.
Moreover, any measurement of A may disturb a subsequent measurement of B, in a
way that the resulting distribution of B can be very far from its unperturbed version; this
disturbance may be present even when the two observables are compatible. Typically,
such a disturbance of A on B can not be removed, nor just made arbitrarily small, unless
we drop the requirement of exactly measuring A. However, in both cases, the measure-
ment uncertainties on A and B can not always be made equally small. The quantum
nature of A and B relates their measurement uncertainties, so that improving the ap-
proximation of A affects the quality of the corresponding approximation of B and vice
versa. Incompatibility of A and B on the one hand, and the disturbance induced on B
by a measurement of A on the other hand, are alternative manifestations of the quantum
relation between the two observables, and as such deserve different approaches.

Our aim is now to quantify both these types of measurement uncertainty relations
between A and B by means of suitable informational quantities. In the case of incom-
patible observables, we will find an entropic incompatibility degree, encoding the min-
imum total error affecting any approximate joint measurement of A and B. Similarly,
when the observable B is measured after an approximate version of A, the resulting un-
certainties on both observables will produce an error/disturbance tradeoff for A and B.
In both cases, we will look for an optimal bi-observable M whose marginals M[1] and
M[2] are the best approximations of the two target observables A and B. However, the
different points of view will be reflected in the fact that we will optimize over M in two
different sets, according to the case at hand.

2.1. Error function and entropic divergence for observables. We now regard any bi-
observable M ∈ M(X × Y) as an approximate joint measurement of A and B and we
want an informational quantification of how far its marginals M[1] and M[2] are from
correctly approximating the two target observables A and B. Following [6–8], these
two approximations will be judged by comparing (within our entropic approach) the
distribution Mρ

[1] with Aρ, and the distribution Mρ
[2] with Bρ, for all states ρ. Note that

we can not compare the output of M[1] with that of A, and the output of M[2] with that
of B, in one and the same experiment. Indeed, although our bi-observable M is a joint
measurement of M[1] and M[2], there is no way to turn it into a joint measurement of
the four observables A, M[1], M[2] and B, when A and B are not compatible. Neverthe-
less, even if A and B are incompatible, each of them can be measured in independent
repetitions of a preparation (state) ρ of the system. Similarly, any bi-observable M can
be measured in other independent repetitions of the same preparation. So, all the three
probability distributions Aρ, Bρ, Mρ can be estimated from independent experiments,
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and then they can be compared without any hypothesis of compatibility among A, B
and M.

The first step is to quantify the inefficiency of the distribution approximations Aρ '
Mρ

[1] and Bρ ' Mρ
[2], given the bi-observable M. According to the discussion in Section

1.2, the natural way to quantify the loss of information in each approximation is to
use the relative entropy. Remarkably, the relative entropy properties allow us to give
a single quantification for the whole couple approximation (Aρ,Bρ) ' (Mρ

[1],M
ρ
[2]):

since S
(
Aρ‖Mρ

[1]

)
and S

(
Bρ‖Mρ

[2]

)
are homogeneous and dimensionless, they can be

added to give the total amount of information loss.

Definition 1. For any bi-observable M ∈ M(X × Y), the error function of the approx-
imation (A,B) ' (M[1],M[2]) is the state-dependent quantity

S[A,B‖M](ρ) = S
(
Aρ‖Mρ

[1]

)
+ S

(
Bρ‖Mρ

[2]

)
. (7)

Note that the approximating distributions Mρ
[i] appear in the second entry of the

relative entropy, consistently with the discussion following its definition (3).
By Proposition 1, item (vii), we can rewrite (7) in the form

S[A,B‖M](ρ) = S
(
Aρ ⊗ Bρ‖Mρ

[1] ⊗Mρ
[2]

)
. (8)

It is important to note that the error function itself is a relative entropy; this can be
mathematically useful in some situations (see e.g. the proof of Theorem 4). Note that,
whether A and B are compatible or not, Aρ⊗Bρ is the distribution of their measurements
in two independent preparations of the same state ρ.

The second step is to quantify the inefficiency of the observable approximations
A ' M[1] and B ' M[2] by means of the marginals of a given bi-observable M, without
reference to any particular state. In order to construct a state-independent quantity, we
take the worst case in (7) with respect to the system state ρ.

Definition 2. The entropic divergence of M ∈M(X× Y) from (A,B) is the quantity

D
(
A,B‖M

)
= sup
ρ∈S(H)

S[A,B‖M](ρ) ≡ sup
ρ∈S(H)

{
S
(
Aρ‖Mρ

[1]

)
+ S

(
Bρ‖Mρ

[2]

)}
. (9)

The entropic divergence D
(
A,B‖M

)
quantifies the worst total loss of information due

to the couple approximation (A,B) ' (M[1],M[2]). Note that there is a unique su-
premum over ρ, so that D

(
A,B‖M

)
takes into account any possible balancing and

compensation between the information losses in the first and in the second approxima-
tion. The entropic divergence depends only on M[1] and M[2], and so it is the same for
different bi-observables with equal marginals. If A and B are compatible and M is any
of their joint measurements, then D

(
A,B‖M

)
= 0 by Proposition 1, item (ii).

Theorem 1. Let A ∈ M(X), B ∈ M(Y) be the target observables. The error function
and the entropic divergence defined above have the following properties.

(i) The function S[A,B‖M] : S(H)→ [0,+∞] is convex and LSC, ∀M ∈M(X× Y).
(ii) The function D

(
A,B‖ ·

)
: M(X× Y)→ [0,+∞] is convex and LSC.

(iii) For any M ∈M(X× Y), the following three statements are equivalent:
(a) D

(
A,B‖M

)
< +∞,

(b) kerM[1](x) ⊆ kerA(x), ∀x, and kerM[2](y) ⊆ kerB(y), ∀y,
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(c) S[A,B‖M] is bounded and continuous.
(iv) D

(
A,B‖M

)
= max
ρ∈S(H), ρ pure

S[A,B‖M](ρ), where the maximum can be any value

in the extended interval [0,+∞].
(v) The error S[A,B‖M](ρ) is invariant under an overall unitary conjugation of A, B,

M and ρ, and a relabelling of the outcome spaces X and Y.
(vi) The entropic divergence D

(
A,B‖M

)
is invariant under an overall unitary conjug-

ation of A, B and M, and a relabelling of the outcome spaces X and Y.

Proof. (i) The function S[A,B‖M] is the sum of two terms which are convex, because
the mapping ρ 7→ Xρ is affine for any observable X and by Proposition 1, item (v); hence
S[A,B‖M] is convex. Moreover, each term is LSC, since ρ 7→ Xρ is continuous and
because of Proposition 1, item (vi); so the sum S[A,B‖M] is LSC by [47, Prop. 1.5.12].

(ii) Each mapping M 7→ Mρ
[i] is affine and continuous, and the functions S

(
Aρ‖ ·

)
,

S
(
Bρ‖ ·

)
are convex and LSC by Proposition 1, items (v) and (vi). It follows that M 7→

S
(
Aρ‖Mρ

[1]

)
and M 7→ S

(
Bρ‖Mρ

[2]

)
are also convex and LSC functions on M(X× Y);

hence, such are their sum and the supremum D
(
A,B‖ ·

)
[47, Prop. 1.5.12].

(iii) Let us show (a)⇒(b)⇒(c)⇒(a).
(a)⇒(b). If kerM[1](x) * kerA(x) for some x, then we could take a pure state ρ =
|ψ 〉 〈ψ | with ψ belonging to kerM[1](x) but not to kerA(x), so that Mρ

[1](x) = 0

while Aρ(x) > 0; thus, we would get S
(
Aρ‖Mρ

[1]

)
= +∞ and the contradiction

D
(
A,B‖M

)
= +∞.

(b)⇒(c). The function S[A,B‖M] is a finite sum of terms of the kind s
(
Aρ(x),Mρ

[1](x)
)

or s
(
Bρ(y),Mρ

[2](y)
)
, where s is the function defined in (5). Under the hypothesis (b),

each of these terms is a bounded and continuous function of ρ by Lemma 1 below. We
thus conclude that S[A,B‖M] is bounded and continuous.
(c)⇒(a). Trivial, as D

(
A,B‖M

)
= supρ∈S(H) S[A,B‖M](ρ).

(iv) If D
(
A,B‖M

)
< +∞, then S[A,B‖M] is a bounded and continuous function

on the compact set S(H) by item (iii) above, and thus it attains a maximum; moreover,
S[A,B‖M] is convex, hence it has at least a maximum point among the extreme points
of S(H), which are the pure states. If instead D

(
A,B‖M

)
= +∞, then kerM[1](x) *

kerA(x) for some x, or kerM[2](y) * kerB(y) for some y again by item (iii). In
this case, every pure state ρ = |ψ 〉 〈ψ | with ψ ∈ kerM[1](x) \ kerA(x), or ψ ∈
kerM[2](y) \ kerB(y), is such that S[A,B‖M](ρ) = +∞, and thus it is a maximum
point of S[A,B‖M].

(v) For any unitary operator U on H, we have (U∗AU)U
∗ρU = Aρ, (U∗BU)U

∗ρU =

Bρ, and, since (U∗MU)[i] = U∗M[i]U , also (U∗MU)U
∗ρU

[i] = Mρ
[i]. Therefore, by the

definition (7) of the error function, we get the equality

S[U∗AU, U∗BU‖U∗MU ](U∗ρU) = S[A,B‖M](ρ).

The invariance under relabelling of the outcomes is an immediate consequence of the
analogous property of the relative entropy (Proposition 1, item (iv)).
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(vi) The two invariances immediately follow by the previous item. We check only
the first one:

D
(
U∗AU, U∗BU‖U∗MU

)
= sup
ρ∈S(H)

S[U∗AU, U∗BU‖U∗MU ](ρ)

= sup
ρ∈S(H)

S[U∗AU, U∗BU‖U∗MU ](U∗ρU) = sup
ρ∈S(H)

S[A,B‖M](ρ)

= D
(
A,B‖M

)
,

where in the second equality we have used the fact that US(H)U∗ = S(H). ut

An essential step in the last proof is the following lemma.

Lemma 1. Suppose A,B ∈ L(H) are such that 0 ≤ A ≤ 1 and 0 ≤ B ≤ 1, and
assume that kerB ⊆ kerA. Let Aρ = Tr {Aρ}, Bρ = Tr {Bρ}, and let s be the
function defined in (5). Then, the function sA,B : S(H) → [0,+∞], with sA,B(ρ) =
s(Aρ, Bρ), is bounded and continuous.

Proof. We will show that sA,B is a continuous function on S(H); since S(H) is com-
pact, this will also imply that sA,B is bounded. The case B = 0 is trivial, hence we will
suppose B 6= 0. By the hypotheses, the condition Bρ = 0 implies that Aρ = 0. The
definition (5) of s then gives

sA,B(ρ) =


Aρ log

Aρ

Bρ
if Aρ > 0 and Bρ > 0

0 if Aρ = 0 and Bρ > 0

0 if Aρ = 0 and Bρ = 0

=

Bρh
(
Aρ

Bρ

)
if Bρ > 0

0 if Bρ = 0

where we have introduced the continuous function h : [0,+∞) → [−1/2,+∞), with
h(t) = t log t if t > 0, and h(0) = 0. The function sA,B is clearly continuous on the
open subset U = {ρ ∈ S(H) : Bρ > 0} of the state space S(H). It remains to show
that it is also continuous at all the points of the set Uc = {ρ ∈ S(H) : Bρ = 0}. To this
aim, observe that

A ≤ cmax(A)PA ≤ cmax(A)PB and B ≥ cmin(B)PB ,

where cmax(A) is the maximum eigenvalue of A, cmin(B) is the minimum positive
eigenvalue of B, and we denote by PA and PB the orthogonal projections onto kerA⊥

and kerB⊥, respectively. Since P ρB 6= 0 for all ρ such that Bρ > 0, it follows that

0 ≤ Aρ

Bρ
≤ cmax(A)

cmin(B)
, ∀ρ ∈ U.

Hence, by continuity of h and boundedness of the interval [0, cmax(A)/cmin(B)], there
is a constant M > 0 such that

|sA,B(ρ)| =
∣∣∣∣Bρh(AρBρ

)∣∣∣∣ ≤MBρ, ∀ρ ∈ U.

On the other hand, for ρ ∈ Uc we have sA,B(ρ) = 0. If (ρk)k is a sequence in S(H)
converging to ρ0 ∈ Uc, then |sA,B(ρk) − sA,B(ρ0)| ≤ MBρk −→

k→∞
0, which shows

that sA,B is continuous at ρ0. ut
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2.2. Incompatibility degree, error/disturbance coefficient, and optimal approximate joint
measurements. After introducing the error function S[A,B‖M](ρ), which describes the
total information lost by measuring the bi-observable M in place of A and B in the state
ρ, and after defining its maximum value D

(
A,B‖M

)
over all states, the third step is to

quantify the intrinsic measurement uncertainties between A and B, dropping any refer-
ence to a particular state or approximating joint measurement. When we are interested
in incompatibility, this is done by taking the minimum of the divergence D

(
A,B‖M

)
over all possible bi-observables M ∈M(X×Y). The resulting quantity is the minimum
inefficiency which can not be avoided when the (possibly incompatible) observables A
and B are approximated by the compatible marginals M[1] and M[2] of any bi-observable
M. This minimum can be understood as an “incompatibility degree” of the two observ-
ables A and B.

Definition 3. The entropic incompatibility degree cinc(A,B) of the observables A and
B is

cinc(A,B) = inf
M∈M(X×Y)

D
(
A,B‖M

)
≡ inf

M∈M(X×Y)
sup

ρ∈S(H)

S[A,B‖M](ρ). (10)

The definition is consistent, as obviously cinc(A,B) ≥ 0, and cinc(A,B) = 0 when
A and B are compatible. As the notion of incompatibility is symmetric by exchanging
the observables A and B, we would expect that also the incompatibility degree satisfies
the property cinc(A,B) = cinc(B,A). Indeed, this is actually true, as D

(
A,B‖M

)
=

D
(
B,A‖M′

)
for all M ∈M(X× Y), where M′ ∈M(Y× X) is defined by M′(y, x) =

M(x, y). Note that the symmetry of cinc comes from the fact that, in defining the error
function S[A,B‖M], we have chosen equal weights for the contributions of the two
approximation errors of A and B.

On the other hand, when we deal with the error/disturbance uncertainty relation, our
analysis is restricted to the bi-observables describing sequential measurements of an
approximate version A′ of A, followed by an exact measurement of B. In other words,
we focus on

M(X;B) = {J ∗(B) : J ∈ J(X)}
= {M ∈M(X× Y) : M(x, y) = J ∗x [B(y)] ∀x, y, for some J ∈ J(X)}, (11)

the subset of M(X× Y) consisting of the sequential measurements where the first out-
come set X and the second observable B are fixed. If M = J ∗(B) ∈ M(X;B), then
A′ = M[1] = J ∗· [1] is the observable approximating A, and B′ = J ∗X[B(·)] is the ver-
sion of B perturbed by the measurement of A′. In general, it may equally well be A′ 6= A
and B′ 6= B, unless the observable A can be measured without disturbing B [27].

In order to quantify the measurement uncertainties due to the error/disturbance trade-
off, we then consider the minimum of the entropic divergence D

(
A,B‖M

)
for M ∈

M(X;B). If we read S
(
Aρ‖Mρ

[1]

)
as the error made by J in measuring A in the state ρ,

and S
(
Bρ‖Mρ

[2]

)
as the amount of disturbance introduced byJ on the subsequent meas-

urement of B, then the divergence D
(
A,B‖M

)
expresses the sum error + disturbance

maximized over all states for the sequential measurement M. Minimizing D
(
A,B‖M

)
over all sequential measurements, we then obtain the following entropic quantification
of the error/disturbance tradeoff between A and B.



14 A. Barchielli, M. Gregoratti, A. Toigo

Definition 4. The entropic error/disturbance coefficient ced(A,B) of A followed by B is

ced(A,B) = inf
M∈M(X;B)

D
(
A,B‖M

)
≡ inf

M∈M(X;B)
sup

ρ∈S(H)

S[A,B‖M](ρ). (12)

Similarly to the incompatibility degree, the error/disturbance coefficient is always
nonnegative, and ced(A,B) = 0 when A can be measured without disturbing B, i.e. A
and B are sequentially compatible. Contrary to cinc, we stress that in general the two
indexes ced(A,B) and ced(B,A) can be different, as shown in Remark 1 below.

When the approximate measurement of the first observable A is described by the
instrument J , the measurement of the second fixed observable B could be preceded
by any kind of correction taking into account the observed outcome x [7]. This can be
formalized by inserting a quantum channel Cx in between the measurements of A and
B. As the composition J ′x = Cx ◦ Jx gives again an instrument J ′ ∈ J(X), we then
see that any possible correction is considered when we take the infimum in M(X;B).
The latter fact shows that Definition 4 is consistent, since only by taking into account
all possible corrections we can properly speak of pure unavoidable disturbance and of
error/disturbance tradeoff.

Comparing the two indexes cinc and ced, the inequality cinc(A,B) ≤ ced(A,B) trivi-
ally follows from the inclusion M(X;B) ⊆ M(X × Y). This means that, even if one is
interested in ced, the most symmetric index cinc is at least a lower bound for it. We stress
that the inclusion M(X;B) ⊆ M(X × Y) may be strict in general. For example, there
may exist observables which are compatible with B, but can not be measured before B
without disturbing it. Then, taken such an observable A, a joint measurement of A and B
clearly belongs to M(X× Y) but can not be in M(X;B). When M(X;B) ( M(X× Y),
the incompatibility and error/disturbance approaches definitely are not equivalent. Nev-
ertheless, there is one remarkable situation in which they are the same.

Proposition 3. If B ∈M(Y) is a sharp observable, then M(X;B) = M(X× Y).

Proof. The proof directly follows from the argument at the end of [27, Sect. II.D].
Indeed, for any M ∈M(X× Y), we can define the instrument J ∈ J(X) with

Jx[ρ] =
∑

y∈Y:B(y) 6=0

Tr {ρM(x, y)} B(y)

Tr {B(y)}
.

For such an instrument, the equality M(x, y) = J ∗x [B(y)] is immediate. ut

As an immediate consequence of this result, we have ced(A,B) = cinc(A,B) when-
ever the second measured observable B is sharp.

By Theorem 2 below, the two infima in the definitions of cinc(A,B) and ced(A,B)
are actually two minima. It is convenient to give a name to the corresponding sets of
minimizing bi-observables:

Minc(A,B) = argmin
M∈M(X×Y)

D
(
A,B‖M

)
, Med(A,B) = argmin

M∈M(X;B)

D
(
A,B‖M

)
.

We can say that Minc(A,B) is the set of the optimal approximate joint measurements
of A and B. Similarly, Med(A,B) contains the sequential measurements optimally ap-
proximating A and B.

The next theorem summarizes the main properties of cinc and ced contained in the
above discussion, and states some further relevant facts about the two indexes.
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Theorem 2. Let A ∈ M(X), B ∈ M(Y) be the target observables. For the entropic
coefficients defined above the following properties hold.

(i) The coefficients cinc(A,B) and ced(A,B) are invariant under an overall unitary
conjugation of the observables A and B, and they do not depend on the labelling
of the outcomes in X and Y.

(ii) The incompatibility degree has the exchange symmetry cinc(A,B) = cinc(B,A).
(iii) We have 0 ≤ cinc(A,B) ≤ ced(A,B) ≤ log |X| − inf

ρ∈S(H)
H(Aρ) and

cinc(A,B) ≤ log |Y| − inf
ρ∈S(H)

H(Bρ).

(iv) The sets Minc(A,B) and Med(A,B) are nonempty convex compact subsets of
M(X× Y).

(v) cinc(A,B) = 0 if and only if the observables A and B are compatible, and in this
case Minc(A,B) is the set of all their joint measurements.

(vi) ced(A,B) = 0 if and only if the observables A and B are sequentially compatible,
and in this case Med(A,B) is the set of all the sequential measurements of A
followed by B.

(vii) If B is sharp, then Minc(A,B) = Med(A,B) and cinc(A,B) = ced(A,B).

Proof. (i) The invariance under unitary conjugation follows from the corresponding
property of the entropic divergence (Theorem 1, item (vi)). We will prove it only for
ced, the case of cinc being even simpler. We have

ced(U
∗AU,U∗BU) = inf

M∈M(X;U∗BU)
D
(
U∗AU,U∗BU‖M

)
= inf

M′∈UM(X;U∗BU)U∗
D
(
A,B‖M′

)
,

and, in order to show that ced(U∗AU,U∗BU) = ced(A,B), it only remains to prove the
set equality UM(X;U∗BU)U∗ = M(X;B). If M = J ∗(U∗BU) ∈ M(X;U∗BU),
then, defining the instrument J ′x[ρ] = UJx[U∗ρU ]U∗, ∀ρ, x, we have UMU∗ =
J ′∗(B) ∈ M(X;B), as claimed. In a similar way, the invariance under relabelling of
the outcomes is a consequence of the analogous property of the entropic divergence.

(ii) This property has already been noticed.
(iii) The positivity the inequality between the two indexes have already been noticed.

Then, let U ∈ J(X) be the trivial uniform instrument Ux[ρ] = uX(x)ρ. Taking the
sequential measurement U∗(B) ∈M(X;B), we get U∗(B)ρ = uX ⊗ Bρ and

S
(
Aρ‖U∗(B)ρ[1]

)
+ S

(
Bρ‖U∗(B)ρ[2]

)
= S

(
Aρ‖uX

)
= log |X| −H

(
Aρ
)
,

where the last equality follows from Proposition 1, item (iii). By taking the supremum
over all the states, we get D

(
A,B‖U∗(B)

)
= log |X| − infρ∈S(H)H(Aρ), hence

ced(A,B) ≤ log |X| − infρ∈S(H)H(Aρ) by definition. The last inequality then follows
by item (ii).

(iv) By item (ii) of Theorem 1 and item (iii) just above, D
(
A,B‖ ·

)
is a convex LSC

proper (i.e. not identically +∞) function on the compact set M(X × Y). This implies
that Minc(A,B) 6= ∅ [47, Exerc. E.1.6]. Closedness and convexity of Minc(A,B) are
then easy and standard consequences of D

(
A,B‖ ·

)
being convex and LSC. On the

other hand, the set M(X;B) is a convex and compact subset of M(X × Y); indeed,
this follows from convexity and compactness of J(X) and continuity of the mapping
J 7→ J ∗(B) in the definition (11). The proof that the subset Med(A,B) ⊆M(X;B) is
nonempty, convex and compact then follows along the same lines of Minc(A,B).
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(v) Assume cinc(A,B) = 0. Then Minc(A,B) exactly consists of all the joint meas-
urements of A and B, which therefore turn out to be compatible, as Minc(A,B) 6= ∅
by (iv). Indeed, if M ∈ Minc(A,B), then 0 = cinc(A,B) = D

(
A,B‖M

)
, which gives

S
(
Aρ‖Mρ

[1]

)
= S

(
Bρ‖Mρ

[2]

)
= 0 for all ρ. By Proposition 1, item (ii), this yields

Aρ = Mρ
[1], B = Mρ

[2], ∀ρ, and so A = M[1], B = M[2], which means that M is a joint
measurement of A and B. The converse implication was already noticed in the text.

(vi) Similarly to the previous item, if ced(A,B) = 0, then Med(A,B) consists exactly
of all the sequential measurements of A followed by B. Indeed, by the same argument of
(v), if M ∈ Med(A,B), then M is a joint measurement of A and B; since Med(A,B) ⊆
M(X;B), such a M is also a sequential measurement. As Med(A,B) 6= ∅ by (iv), this
proves that A and B are sequentially compatible. The other implication is trivial and
was already remarked.

(vii) As observed above, if B is sharp, then by Proposition 3 we have M(X;B) =
M(X× Y), which implies the claim. ut

Item (iii) implies that the two indexes cinc and ced are always finite, although the
relative entropy S

(
p‖q
)

is infinite whenever supp q + supp p. Actually, such a feature
of S has a role: because of Theorem 1, item (iii), a bi-observable M is immediately
discarded as a very bad approximation of A and B whenever kerM[1](x) * kerA(x)
for some x, or kerM[2](y) * kerB(y) for some y.

We see in items (v) and (vi) that cinc and ced have the desirable feature of be-
ing zero exactly when the two observables A and B satisfy the corresponding com-
patibility or nondisturbance property. We also stress that, by their very definitions,
cinc(A,B) and ced(A,B) are independent of both the preparations ρ and the approx-
imating bi-observables M, as well as they satisfy the natural invariance properties of
item (i). In view of these facts, we are allowed once more to say that the two bounds
cinc(A,B) and ced(A,B) are proper quantifications of the intrinsic incompatibility and
error/disturbance affecting the two observables A and B.

We stress that the definitions of cinc(A,B) and ced(A,B) are rather implicit. Indeed,
even if we proved that they are strictly positive when A and B are incompatible (or
sequentially incompatible), their evaluation requires the two optimizations “sup” on
the states and “inf” on the measurements. Nevertheless, in some cases explicit com-
putations are possible (even including the evaluation of the optimal approximate joint
measurements) or explicit lower bounds can be exhibited, see Sections 3.2 and 3.3.

Remark 1. Item (vii) of Theorem 2 says that the two indexes coincide in the important
case in which B is sharp. However, this is not true in general, as shown e.g. by the two
examples in Appendix A (taken from [27]). In the first example, dimH = 3, |X| = 2,
|Y| = 5, and we have ced(A,B) > ced(B,A) = cinc(A,B) = 0. The second example is
more symmetric and simpler (|X| = |Y| = 2), and it yields ced(A,B) > cinc(A,B) = 0
and also ced(B,A) > 0.

2.3. Entropic MURs. By definition, the two coefficients (10) and (12) are lower bounds
for the entropic divergence (9) of every bi-observable M from (A,B):

D
(
A,B‖M

)
≥ cinc(A,B), ∀M ∈M(X× Y);

D
(
A,B‖M

)
≥ ced(A,B), ∀M ∈M(X;B).

(13)
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By items (v) and (vi) of Theorem 2, the two inequalities are non trivial and, by item
(iv), both bounds are tight. As D

(
A,B‖M

)
is a state-independent quantification of the

inefficiency of the observable approximations A ' M[1] and B ' M[2], the inequalities
(13) are two state-independent formulations of entropic MURs.

Since the definition ofD
(
A,B‖M

)
involves a unique supremum over ρ, by Theorem

1, item (iv), we can also reformulate the entropic MURs (13) as statements about the
total loss of information that occurs in one preparation of the system:

∀M ∈M(X× Y), ∃ρ ∈ S(H) : S
(
Aρ‖Mρ

[1]

)
+ S

(
Bρ‖Mρ

[2]

)
≥ cinc(A,B);

∀M ∈M(X;B), ∃ρ ∈ S(H) : S
(
Aρ‖Mρ

[1]

)
+ S

(
Bρ‖Mρ

[2]

)
≥ ced(A,B).

(14)

So, in an approximate joint measurement of A and B, the total loss of information can
not be arbitrarily reduced: it depends on the state ρ, but potentially it can be as large
as cinc(A,B). Similarly, in a sequential measurement of A and B, there is a tradeoff
between the information lost in the first measurement (because of the approximation
error) and the information lost in the second measurement (because of the disturbance):
they both depend on the state ρ, but potentially their sum can be as large as ced(A,B).

The indexes cinc(A,B) and ced(A,B) are state-independent by their very definitions;
however, the corresponding MURs (14) only refer to the worst possible state ρ for the
measurement M at hand. Such a state-dependency is a general feature of MURs [7,
Sect. C]: no MUR can provide a non trivial bound for the error of the approximation
(Aρ,Bρ) ' (Mρ

[1],M
ρ
[2]), holding for all states ρ in any approximate joint measurement

M. Indeed, for a fixed ρ ∈ S(H), the trivial bi-observable M(x, y) = Aρ(x)Bρ(y)1
gives (Aρ,Bρ) = (Mρ

[1],M
ρ
[2]); hence, it perfectly approximates the target observables

in the state ρ whatever criterion one chooses for defining the error.
Here, in some detail, let us compare our MURs with Busch, Lahti and Werner’s ap-

proach based on Wasserstein (or transport) distances (in the following, BLW approach;
see [6–8]). As for BLW, our starting point is just giving a quantification of the error
in the distribution approximation Aρ ' Mρ

[1] (or Bρ ' Mρ
[2]). Anyway, employing the

relative entropy in place of a Wasserstein distance reflects a different point of view, with
some immediate consequences. BLW use a Wasserstein distance d(Aρ,Mρ

[1]) because
they want that the error reflects the metric structure of the underlying outputs X; since
the units of measurement of X and Y may not be homogeneous, this essentially leads to
quantifying the error of the whole couple approximation (Aρ,Bρ) ' (Mρ

[1],M
ρ
[2]) with

the dimensional pair
(
d(Aρ,Mρ

[1]), d(B
ρ,Mρ

[2])
)
. On the contrary, the relative entropy is

homogeneous and scale invariant; thus, it allows us to quantify the error of the couple
approximation (Aρ,Bρ) ' (Mρ

[1],M
ρ
[2]) with the single, dimensionless and scalar total

error S
(
Aρ‖Mρ

[1]

)
+ S

(
Bρ‖Mρ

[2]

)
.

A second difference arises in the quantification of the inefficiency of the observable
approximations A ' M[1] and B ' M[2]. The BLW approach naturally leads to using
the two deviations d(A,M[1]) = supρ d(A

ρ,Mρ
[1]) and d(B,M[2]) = supρ d(B

ρ,Mρ
[2]),

that is, the dimensional couple
(
d(A,M[1]), d(B,M[2])

)
. Instead, the entropic approach

gives the entropic divergence D
(
A,B‖M

)
as a natural, dimensionless and scalar meas-

ure of the approximation inefficiency.
Note that, for fixed M, the divergence D

(
A,B‖M

)
tells us how badly Mρ can ap-

proximate the probabilities Aρ and Bρ when the three observables are measured in one
state ρ, but the same is not true for

(
d(A,M[1]), d(B,M[2])

)
. Indeed, BLW evaluate the



18 A. Barchielli, M. Gregoratti, A. Toigo

worst possible errors separately, so that the two suprema for the Wasserstein distances
d(Aρ1 ,Mρ1

[1]) and d(Bρ2 ,Mρ2
[2]) are attained at possibly different states ρ1 and ρ2.

Now, when MURs are derived, the difference of the two approaches is reflected in
the distinct aims of the respective statements.

For BLW, proving a MUR means showing that the two deviations d(A,M[1]) and
d(B,M[2]) can not both be too small; that is, all the couples

(
d(A,M[1]), d(B,M[2])

)
must lie above some curve in the real plane, away from the origin. One can even look
for the exact characterisation of all the admissible points{(

d(A,M[1]), d(B,M[2])
)
: M ∈M(X× Y)

}
;

this is the uncertainty region (or diagram) of A and B. Then, any constraint on the
shape of the uncertainty region yields a relation between the worst errors occurring in
two separate uses of an approximate joint measurement M: namely, for approximating
A ' M[1] in a first preparation, and B ' M[2] in a second one.

On the other hand, in our entropic approach, proving a MUR amounts to giving
a strictly positive lower bound for D

(
A,B‖M

)
; the sharpest statements are achieved

when cinc(A,B) or ced(A,B) are explicitly evaluated. This is the state-independent for-
mulation (13); it can be further rephrased as the statement (14) about the inefficiency of
an arbitrary approximation (A,B) ' (M[1],M[2]) that occurs in one preparation of the
system, the same for both observables.

2.4. Noisy observables and uncertainty upper bounds. Before trying to exactly com-
pute cinc(A,B) and ced(A,B) in some concrete examples, let us improve their general
upper bound given in Theorem 2, item (iii). For this task, we introduce an important
class of bi-observables M that are known to give good approximations of A and B.
Even if these M were not optimal, we expect that they should have a small divergence
from (A,B) and thus they should give a good upper bound for its minimum.

Two incompatible observables A and B can always be turned into a compatible pair
by adding enough classical noise to their measurements. Indeed, for any choice of trivial
observables TA = pA1, pA ∈ P(X), and TB = pB1, pB ∈ P(Y), the observables
λA+ (1− λ)TA and γB+ (1− γ)TB, which are noisy versions of A and B with noise
intensities 1 − λ and 1 − γ, are compatible for all λ, γ ∈ [0, 1] such that λ + γ ≤ 1
(sufficient condition) [48, Prop. 1]. A bi-observable with the given marginals is

M(x, y) = λA(x)pB(y) + γpA(x)B(y) +
(
1− λ− γ

)
pA(x)pB(y)1.

Anyway, depending on A, B, pA and pB, it may be possible to go outside the region
λ + γ ≤ 1, and so reduce the noise intensities. In the following, for every 0 ≤ λ ≤ 1,
we will consider the couple of equally noisy observables

Aλ(x) = λA(x) + (1− λ)Aρ0(x)1,
Bλ(y) = λB(y) + (1− λ)Bρ0(y)1,

(15)

where ρ0 = (1/d)1 is the maximally chaotic state. Note that, if A is a rank-one sharp
observable, then Aρ0 = uX; a similar consideration holds for B. If λ ≤ 1/2, the two
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observables are compatible, but, depending on the specific A and B, they could be com-
patible also for larger λ. In any case, by (6) and (9) we get the bound

cinc(A,B) ≤ D
(
A,B‖M

)
≤ log

1

λ+ (1− λ)minx∈X Aρ0(x)
+ log

1

λ+ (1− λ)miny∈Y Bρ0(y)
(16)

for all λ ∈ [0, 1] such that Aλ and Bλ are compatible, and any joint measurement M of
Aλ and Bλ. Since the two terms in the right hand side of (16) are decreasing functions
of λ, in order to obtain the best bound we are led to find the maximal value λmax of λ
for which the noisy observables Aλ and Bλ are compatible. This problem was addressed
in [49], where a complete solution was given for a couple of Fourier conjugate sharp
observables. Moreover, it was shown that in the general case a nontrivial lower bound
for λmax can always be achieved by means of optimal approximate cloning [50].

Following the same idea, we are going to find a nontrivial upper bound for cinc(A,B)
by means of the optimal approximate 2-cloning channel

Φ : S(H)→ S(H ⊗H), Φ(ρ) =
2

d+ 1
S2(ρ⊗ 1)S2,

where S2 : H⊗H→ H⊗H is the orthogonal projection of H⊗H onto its symmetric
subspace Sym(H⊗H), defined by S2(φ1⊗φ2) = (φ1⊗φ2+φ2⊗φ1)/2. Performing
a measurement of the tensor product observable A ⊗ B in the state Φ(ρ) then amounts
to measure the bi-observable Mcl = Φ∗(A⊗ B) in ρ; its marginals are (see [51])

Mcl [1] = Aλcl
and Mcl [2] = Bλcl

where λcl =
d+ 2

2(d+ 1)
.

Of course λcl ≤ λmax, but the important point is that λcl > 1/2. Inserting the above
λcl in the bound (16) and using dAρ0(x) = Tr {A(x)}, we obtain

cinc(A,B) ≤ D
(
A,B‖Mcl

)
≤ log

2(d+ 1)

d+ 2 +minxTr {A(x)}
+ log

2(d+ 1)

d+ 2 +miny Tr {B(y)}
,

holding for all observables A and B.
It is worth noticing that the bi-observable Mcl describes a sequential measurement

having B as second measured observable. Indeed, define the instrument J ∈ J(X), with

Jx[ρ] = Tr1 {(A(x)⊗ 1)Φ(ρ)} ,

where Tr1 denotes the partial trace with respect to the first factor. It is easy to check that
Mcl = J ∗(B), so that Mcl ∈Med(X;B). Therefore, the upper bound we have found for
D
(
A,B‖Mcl

)
actually provides a bound also for the entropic error/disturbance coeffi-

cient ced(A,B).
Summarizing the above discussion, we thus arrive at the main conclusion of this

section.
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Theorem 3. For any couple of observables A and B, we have

cinc(A,B) ≤ ced(A,B) ≤ log
2(d+ 1)

d+ 2 +minx∈X Tr {A(x)}

+ log
2(d+ 1)

d+ 2 +miny∈Y Tr {B(y)}
≤ 2 log

2(d+ 1)

d+ k
≤ 2, (17)

where in the second to last expression, k = 2 in general, or even k = 3 if |X| = |Y| = d
and both A and B are sharp with rankA(x) = rankB(y) = 1 for all x, y.

The striking result is that the two uncertainty indexes lie between 0 and 2, independ-
ently of the target observables A and B, the numbers |X| and |Y| of the possible out-
comes, and the Hilbert space dimension d. Note that the bound 2 log[2(d+1)]/(d+ k)
tends to 2 from below as d→∞.

For sharp observables, the bound (17) is much better than the bound given in The-
orem 2, item (iii). However, the case of two trivial uniform observables A = UX and
B = UY is an example where the bound of Theorem 2 is better than the bound (17).

As a final consideration, we will later show that there are observables A and B such
that their compatible noisy versions (15) do not optimally approximate A and B. Equi-
valently, for these observables all the elements M ∈ Minc(A,B) (or M ∈ Med(A,B))
have marginals M[1] 6= Aλ and M[2] 6= Bλ for all λ ∈ [0, 1]. Indeed, an example
is provided by the two nonorthogonal sharp spin-1/2 observables in Section 3.2. The
motivation of this feature comes from the fact that we are not making any extra as-
sumption about our approximate joint measurements, as we optimize over the whole
sets M(X × Y) or M(X;B), according to the case at hand. This is the main difference
with the approach e.g. of [45, 49], where a degree of compatibility is defined by con-
sidering the minimal noise which one needs to add to A and B in order to make them
compatible. It should also be remarked that the non-optimality of the noisy versions is
true also in other contexts [26].

2.5. Connections with preparation uncertainty. The entropic incompatibility degree
and error/disturbance coefficient are the non trivial and tight lower bounds of the en-
tropic MURs stated in Section 2.3. As we recalled in the Introduction, MURs are dif-
ferent from PURs, which have been formulated in the information-theoretic framework
by using different types of entropies (Shannon, Rényi,. . . ) [16–22]. Here we consider
only the Shannon entropy (4), and, to facilitate the connections with our indexes, we
introduce the entropic preparation uncertainty coefficient

cprep(A,B) = inf
ρ∈S(H)

[H(Aρ) +H(Bρ)] . (18)

According to the previous sections, the target observables A and B are general POVMs.
With this definition, the lower bound proved in [18, Cor. 2.6] can be written as

cprep(A,B) ≥ − log max
x∈X, y∈Y

∥∥∥A(x)1/2B(y)1/2∥∥∥2 . (19)

When the observables are sharp, this lower bound reduces to the one conjectured in [16]
and proved in [17].
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Note that the infimum in (18) actually is a minimum, because the two entropies are
continuous in ρ. Moreover, the equality cprep(A,B) = 0 is attained if and only if there
exist two outcomes x and y such that both positive operators A(x) and B(y) have at
least one common eigenvector with eigenvalue 1.

For sharp observables, we immediately deduce that the absence of measurement un-
certainty implies the absence of preparation uncertainty. Indeed, cinc(A,B) = 0 is the
same as A and B being compatible, which in turn is equivalent to the existence of a
whole basis of common eigenvectors {ψi : i = 1, . . . , d} for which both distributions
〈ψi|A(x)ψi〉 and 〈ψi|B(y)ψi〉 reduce to Kronecker deltas [52, Cor. 5.3]. Therefore, we
have the implication cinc(A,B) = 0 =⇒ cprep(A,B) = 0. However, the same rela-
tion fails for general POVMs: for any couple of trivial observables A and B such that
A 6= δx1 or B 6= δy1, we have cinc(A,B) = 0 and cprep(A,B) > 0. On the con-
verse direction, the example of two non commuting sharp observables with a common
eigenspace shows that in general cprep(A,B) = 0 6=⇒ cinc(A,B) = 0. The failure
of this implication exhibits a striking difference between preparation and measurement
uncertainties: actually, the entropic incompatibility degree vanishes if and only if the
two observables are compatible (Theorem 2, item (v)), while in the preparation case
nothing similar happens.

Nevertheless, there exists a link between the entropic incompatibility degree cinc and
the preparation uncertainty coefficient cprep. Indeed, let us consider the trivial uniform
observable U ∈ M(X × Y), with U = (uX ⊗ uY)1 and U[1] = uX1, U[2] = uY1. By
Proposition 1, item (iii), we have

S
(
Aρ‖Uρ[1]

)
+ S

(
Bρ‖Uρ[2]

)
= log |X|+ log |Y| −H(Aρ)−H(Bρ).

By taking the supremum over all states, Definitions 2 and 3 give

cinc(A,B) ≤ D
(
A,B‖U

)
= log |X|+ log |Y| − cprep(A,B).

The final result is the following tradeoff bound:

cinc(A,B) + cprep(A,B) ≤ log |X|+ log |Y| . (20)

Note that this bound is saturated at least in the trivial case A = uX1, B = uY1, for
which we have cprep(A,B) = log |X| + log |Y| and cinc(A,B) = 0. We also remark
that (20) is not the trivial sum of the two upper bounds cinc(A,B) ≤ 2 (Theorem 3)
and cprep(A,B) ≤ log |X|+ log |Y| (following from the definition (18) of cprep and the
bound for the Shannon entropy of Proposition 1, item (i)).

3. Symmetries and uncertainty lower bounds

In quantum mechanics, many fundamental observables are directly related to symmetry
properties of the quantum system at hand. That is, in many concrete situations there is
some symmetry group G acting on both the measurement outcome space and the set
of system states, in such a way that the two group actions naturally intertwine. The
observables that preserve the symmetry structure are usually called G-covariant.

In the present setting, covariance will help us to find the incompatibility degree
cinc(A,B) and characterize the optimal set Minc(A,B) for a couple of sharp observ-
ables A and B sharing suitable symmetry properties. In Section 3.1 below we provide a
general result in this sense, which we then apply to the cases of two spin-1/2 compon-
ents (Section 3.2) and two observables that are conjugated by the Fourier transform of
a finite field (Section 3.3).
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3.1. Symmetries and optimal approximate joint measurments. We now suppose that the
joint outcome space X × Y carries the action of a finite group G, acting on the left, so
that each g ∈ G is associated with a bijective map on the finite set X×Y. Moreover, we
also assume that there is a projective unitary representation U ofG on H. The following
natural left actions are then defined for all g ∈ G:

- on S(H): gρ = U(g)ρU(g)∗;
- on P(X× Y): gp(x, y) = p(g−1(x, y)) for all (x, y) ∈ X× Y;
- on M(X× Y): gM(x, y) = U(g)M(g−1(x, y))U(g)∗ for all (x, y) ∈ X× Y.

While the two actions on S(H) and P(X × Y) have a clear physical interpretation, the
action on M(X× Y) is understood by means of the fundamental relation

g(Mρ) = (gM)gρ, (21)

which asserts that gM is defined in such a way that measuring it on the transformed state
gρ just gives the translated probability g(Mρ). Note that the parenthesis order actually
matters in (21).

A fixed point M for the action of G on M(X × Y) is a G-covariant observable, i.e.
U(g)M(x, y)U(g)∗ = M(g(x, y)) for all (x, y) ∈ X×Y and g ∈ G. On the other hand,
if M ∈M(X× Y) is any observable, then

MG =
1

|G|
∑
g∈G

gM (22)

is a G-covariant element in M(X× Y), which we call the covariant version of M.
Now we state some sufficient conditions on the observables A,B and the action of

the group G ensuring that the entropic divergence D
(
A,B‖ ·

)
is G-invariant, and then

we derive their consequences on the optimal approximate joint measurements of A and
B.

Note that the relative entropy is always invariant for a group action, that is,

S
(
gp‖gq

)
= S

(
p‖q
)
, ∀p, q ∈ P(X× Y), g ∈ G, (23)

by Proposition 1, (iv). Note also that, for p ∈ P(X × Y), the expression gp[i] = (gp)[i]
is unambiguous, as the action of g is defined on P(X× Y) and not on P(X) or P(Y).

Theorem 4. Let A ∈ M(X), B ∈ M(Y) be the target observables. Let G be a finite
group, acting on X × Y and with a projective unitary representation U on H. Suppose
the group G is generated by a subset SG ⊆ G, such that each g ∈ SG satisfies either
one condition between:

(i) there exist maps fg,X : X → X and fg,Y : Y → Y such that, for all x ∈ X and
y ∈ Y,
(a) g(x, y) = (fg,X(x), fg,Y(y))
(b) U(g)A(x)U(g)∗ = A(fg,X(x)) and U(g)B(y)U(g)∗ = B(fg,Y(y));

(ii) there exist maps fg,X : X → Y and fg,Y : Y → X such that, for all x ∈ X and
y ∈ Y,
(a) g(x, y) = (fg,Y(y), fg,X(x))
(b) U(g)A(x)U(g)∗ = B(fg,X(x)) and U(g)B(y)U(g)∗ = A(fg,Y(y)) .

Then, D
(
A,B‖gM

)
= D

(
A,B‖M

)
for all M ∈M(X× Y) and g ∈ G.



Entropic measurement uncertainty relations 23

Proof. If two elements g1, g2 ∈ G satisfy the above hypotheses, so does their product
g1g2. Since SG generates G, we can then assume that SG = G. In this case, condition
(i.a) or (ii.a) easily implies the relation

gp[1] ⊗ gp[2] = g(p[1] ⊗ p[2]), ∀p ∈ P(X× Y), g ∈ G. (24)

On the other hand, by condition (i.b) or (ii.b), we get

Agρ ⊗ Bgρ = g(Aρ ⊗ Bρ), ∀ρ ∈ S(H), g ∈ G. (25)

For any M ∈M(X× Y), we then have

S[A,B‖g−1M](ρ) = S
(
Aρ ⊗ Bρ‖(g−1M)ρ[1] ⊗ (g−1M)ρ[2]

)
by (8)

= S
(
Aρ ⊗ Bρ‖g−1(Mgρ)[1] ⊗ g−1(Mgρ)[2]

)
by (21)

= S
(
Aρ ⊗ Bρ‖g−1(Mgρ

[1] ⊗Mgρ
[2])
)

by (24)

= S
(
g(Aρ ⊗ Bρ)‖Mgρ

[1] ⊗Mgρ
[2]

)
by (23)

= S
(
Agρ ⊗ Bgρ‖Mgρ

[1] ⊗Mgρ
[2]

)
by (25)

= S[A,B‖M](gρ).

Taking the supremum over ρ and observing that S(H) = gS(H), it follows that
D
(
A,B‖g−1M

)
= D

(
A,B‖M

)
. ut

Remark 2. 1. The occurrence of either hypothesis (i) or (ii) may depend on the gener-
ator g ∈ SG; however, in both cases g does not mix the X and Y outcomes together.

2. Conditions (i.a), (ii.a) are hypotheses about the action of G on the outcome space
X × Y. Note that each one implies that the maps fg,X and fg,Y are bijective. In
particular, one can have some generator g satisfying (ii.a) only if |X| = |Y|.

3. Conditions (i.b), (ii.b) involve also the observables A and B. Even if A and B are not
compatible, they are required to behave as if they were the marginals of a covariant
bi-observable.

4. The symmetries allowed in hypothesis (ii) of Theorem 4 essentially are of permuta-
tional nature. They directly follow from the exchange symmetry of the error func-
tion (7), in which the approximation errors S

(
Aρ‖Mρ

[1]

)
and S

(
Bρ‖Mρ

[2]

)
are equally

weighted.

Corollary 1. Under the hypotheses of Theorem 4,

- the set Minc(A,B) is G-invariant;
- for any M ∈Minc(A,B), we have MG ∈Minc(A,B);
- there exists a G-covariant observable in Minc(A,B).

Proof. Since D
(
A,B‖ ·

)
is G-invariant by Theorem 4, then the set Minc(A,B) is G-

invariant. This fact and the convexity of Minc(A,B) implies that MG ∈Minc(A,B) for
all M ∈ Minc(A,B). Since the latter set is nonempty by Theorem 2, item (iv), it then
always contains a G-covariant observable. ut

Remark 3. Since the covariance requirement reduces the many degrees of freedom in
the choice of a bi-observable M ∈M(X×Y), we expect that the larger is the symmetry
group G, the fewer amount of free parameters will be needed to describe a G-covariant
element M. This will be a big help in the computation of cinc(A,B), as Corollary 1
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allows to minimize D
(
A,B‖ ·

)
just on the set of G-covariant bi-observables. More

precisely, under the hypotheses of Theorem 4,

cinc(A,B) = min
M∈M(X×Y)
MG-covariant

max
ρ∈S(H)
ρ pure

{
S
(
Aρ‖Mρ

[1]

)
+ S

(
Bρ‖Mρ

[2]

)}
,

where the minimum has to be computed only with respect to the parameters describing
a G-covariant bi-observable M. In particular, it is only the dependence of the marginals
M[1] and M[2] on such parameters that comes into play. Of course, solving this double
optimization problem yields the value of cinc(A,B) and all the covariant optimal joint
measurement of A and B, but not the whole optimal set Minc(A,B).

In the cases of two othogonal spin-1/2 components (Section 3.2.1) and two Fourier
conjugate observables (Section 3.3), covariance will reduce the number of parameters
to just a single one.

If B is not sharp, the two sets Minc(A,B) and Med(A,B) may be different, and we
need a specific corollary for Med(A,B). Indeed, stronger hypotheses are required to
ensure that the sequential measurement set M(X;B) is G-invariant.

Corollary 2. Under the hypotheses of Theorem 4, and supposing in addition that all
the generators g ∈ SG enjoy only condition (i) of that theorem,

- the set M(X;B) is G-invariant;
- the set Med(A,B) is G-invariant;
- for any M ∈Med(A,B), we have MG ∈Med(A,B);
- there exists a G-covariant observable in Med(A,B).

Proof. We know that D
(
A,B‖ ·

)
is G-invariant by Theorem 4, and so we only have to

prove that M(X;B) is G-invariant; then the subsequent claims follow as in Corollary 1.
Since we can assume SG = G, any element g ∈ Gmaps a sequential measurement M =
J ∗(B) to another sequential measurement J ′∗(B), due to condition (i) of Theorem 4:

gM(x, y) = U(g)M
(
g−1(x, y)

)
U(g)∗ = U(g)M

(
f−1g,X(x), f

−1
g,Y(y)

)
U(g)∗

= U(g)J ∗
f−1
g,X(x)

[
B(f−1g,Y(y))

]
U(g)∗

= U(g)J ∗
f−1
g,X(x)

[
U(g)∗B(y)U(g)

]
U(g)∗ =: J ′∗(B)(x, y).

ut

Remark 4. Corollary 2 does not admit elements g satisfying condition (ii) of Theorem
4 because this hypothesis alone can not guarantee the G-invariance of the set M(X;B).
Of course, it works for a sharp B, but it could fail, for example, for a trivial B. Indeed,
take X = Y and A = B = UX; then M(X;B) = {M ∈ M(X × Y) : M(x, y) =
M1(x)uX(y), ∀x, y, for some M1 ∈M(X)}, and M[2](y) = B(y) has rank d for every
M ∈ M(X;B) and y ∈ Y. Nevertheless, if g satisfies (ii.a), then (ii.b) is obvious,
but g could send a sequential measurement M outside M(X;B). Indeed, (gM)[2](y) =

U(g)M1

(
f−1g,X(y)

)
U(g)∗ has rank equal to the rank of M1

(
f−1g,X(y)

)
, which can be

chosen smaller than d.
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3.2. Two spin-1/2 components. As a first application of Theorem 4 and its corollaries,
we take as target observables two spin-1/2 components along the directions defined by
two unit vectors a and b in R3. They are represented by the sharp observables

A(x) =
1

2
(1+ xa · σ) , B(y) =

1

2
(1+ y b · σ) , (26)

where σ = (σ1 , σ2 , σ3) is the vector of the three Pauli matrices on H = C2, and
X = Y = {−1,+1}. Let α ∈ [0, π] be the angle formed by a and b; by item (i) of
Theorem 2, the coefficient cinc(A,B) does not depend on the choice of the values of the
outcomes, and this allows us to take α ∈ [0, π/2]. Indeed, when α > π/2, it is enough
to change y → −y and b→ −b to recover the previous case. Without loss of generality,
we take the two spin directions in the ij-plane and choose the i- and j-axes in such a
way that the bisector of the angle formed by a and b coincides with the bisector n of
the first quadrant;m is the bisector of the second quadrant. This choice is illustrated in
Figure 1, where α ∈ [0, π/2], a 2

1 + a 2
2 = 1, and

a = a1i+ a2j, b = a2i+ a1j, n =
i+ j√

2
, m =

j − i√
2
,

a1 =

√
1 + sinα

2
∈
[

1√
2
, 1

]
, a2 =

cosα√
2(1 + sinα)

∈
[
0,

1√
2

]
.

(27)

O i
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j
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b

α
π
4
− α

2
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a2

a2

a1

Figure 1. The unit vectors a and b characterizing the target spin-1/2 observables (26).

In the next part, we will see that the compatible observables optimally approximat-
ing the two target spins (26) are noisy versions of another two spin-1/2 components;
however, in general their directions may be different from the original a and b. For this
reason, we need to introduce the family of observables Ac,Bc ∈M({+1,−1}), with

Ac(x) =
1

2
[1+ x (c1σ1 + c2σ2)] , Bc(y) =

1

2
[1+ y (c2σ1 + c1σ2)] , (28)

where c = c1i+ c2j, ci ∈ R. Note that the components of c appear in Ac and Bc in the
reverse order; moreover, A = Aa and B = Ba. Formula (28) defines two observables if
and only if |c| ≤ 1, that is, c belongs to the disk

C =
{
c1i+ c2j : c

2
1 + c22 ≤ 1

}
. (29)
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Note that, for |c| = 1, the observable Ac is sharp, and it is the spin-1/2 component
along the direction c; on the other hand, for |c| ∈ (0, 1), Ac is a noisy version of Ac/|c|
with noise intensity 1− λ = 1− |c| (cf. (15)). Analogue considerations hold for Bc.

3.2.1. Entropic incompatibility degree and optimal measurements. When the angle
between the spin directions a and b is α = π/2, the target observables become the two
orthogonal spin-1/2 components along the i- and j-axes:

A(x) = X(x) =
1

2
(1+ xσ1), B(y) = Y(y) =

1

2
(1+ yσ2). (30)

In Appendix B.2, we use Theorem 4 and the many rotational symmetries of these ob-
servables to drastically simplify the problem of finding both the value of cinc(X,Y) and
the explicit expression of a bi-observable in Minc(X,Y). Remarkably, it also turns out
that Minc(X,Y) is a singleton set. Indeed, the following theorem is proved.

Theorem 5. Let X and Y be the two orthogonal spin-1/2 components (30). Then, there
is a unique optimal approximate joint measurement of X and Y, that is the bi-observable

M0(x, y) =
1

4

(
1+

x√
2
σ1 +

y√
2
σ2

)
, (31)

i.e. Minc(X,Y) = {M0}. If ρe is the projection on any eigenvector of σ1 or σ2, then

cinc(X,Y) = S[X,Y‖M0](ρe) = log
[
2
(
2−
√
2
)]
' 0.228447 . (32)

Note that M0(x, y) is a rank-one operator for all (x, y) ∈ X× Y, and its marginals

M0 [1](x) =
1

2

(
1+

x√
2
σ1

)
, M0 [2](y) =

1

2

(
1+

y√
2
σ2

)
turn out to be the noisy versions X1/

√
2, Y1/

√
2 of the target observables X, Y (cf. (15)).

When the two spin directions a and b are not orthogonal, the system loses the 180◦

rotational symmetries around the i- and j-axes. According to Remark 3, this makes the
evaluation of cinc(A,B) a more difficult task. The best we can do is to express cinc(A,B)
as the solution of a maximization/minimization (minimax) problem for an explicit func-
tion of two parameters. The analysis of the symmetries of two nonorthogonal spin-1/2
components, and the consequent proof of the next theorem are given in Appendix B.1.

Theorem 6. Let A and B be the spin-1/2 components (26) with the angle α ∈ [0, π/2].
For all φ ∈ [0, 2π), γ ∈ [−1, 1] and x, y ∈ {−1,+1}, define

ρ(φ) =
1

2
(1+ cosφσ1 + sinφσ2) , c(γ) =

i+ γj√
2

, (33)

Mγ(x, y) =
1

4

[
(1 + γxy)1+

1√
2
(xσ1 + yσ2) +

γ√
2
(yσ1 + xσ2)

]
. (34)

Then, Mγ ∈M(X× Y), and we have

cinc(A,B) = min
γ∈[−1,1]

max
φ∈[0,2π)

S[A,B‖Mγ ](ρ(φ)), (35)

S[A,B‖Mγ ](ρ) = S
(
Aρ‖Aρc(γ)

)
+ S

(
Bρ‖Bρc(γ)

)
. (36)

Moreover, γ solves the minimization problem (35) if and only if Mγ ∈Minc(A,B).
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In Section 3.2.2, we provide a numerical evaluation of the entropic incompatibility
degree (35) for some angles α ∈ [0, π/2]. Moreover, using the family of approximate
joint measurements in (34), we analytically find a lower bound for cinc(A,B). Note
that, for α ∈ (0, π/2), it is not clear if there is a unique γ solving (35), and if the set
Minc(A,B) is only made up of the corresponding bi-observables Mγ (see also Remark
7 in Appendix B.1).

The noisy spin-1/2 components Ac(γ) and Bc(γ) appearing in (36) are the two mar-
ginals of the bi-observable Mγ in (34). When Mγ is optimal, we stress that for α 6= π/2
they may not be noisy versions of the target observables A and B. Indeed, in Table 1
below and the subsequent discussion, we numerically show this for the case α = π/4.

It is worth noticing that every bi-observable (31) or (34) can be rewritten as a mixture
(convex combination) of two sharp joint measurements of compatible spin components,
along the bisector n in the case of the first bi-observable, and along the bisector m for
the other one. More precisely, we introduce the sharp bi-observables

M+(x, y) =

[
1

2
(1+ xn · σ)

] [
1

2
(1+ yn · σ)

]
≡ An(x)Bn(y),

M−(x, y) =

[
1

2
(1− xm · σ)

] [
1

2
(1+ ym · σ)

]
≡ A−m(x)B−m(y).

(37)

Then, we have

M0 =
1

2
(M+ +M−), Mγ =

1 + γ

2
M+ +

1− γ
2

M−. (38)

In terms of M0, the bi-observable Mγ can be expressed also as the mixture

Mγ =

{
γM+ + (1− γ)M0 if γ ≥ 0,

|γ|M− + (1− |γ|)M0 if γ ≤ 0.

3.2.2. Numerical and analytical results for nonorthogonal components. In the case of
two arbitrarily oriented spin components, the minimax problem (35), giving cinc and
γ for the optimal bi-observable Mγ , is hard to be solved analytically. Nevertheless, the
double optimization over the angle φ and the parameter γ can be tackled numerically,
and the resulting cinc(A,B) for 100 equally distant values α in the interval [0, π/2] are
plotted in Figure 2.

A good analytical lower bound for cinc(A,B) can be found by fixing a trial state
ρ(φ), considering the bi-observables Mγ of (34), and then minimizing the error func-
tion S[A,B‖Mγ ](ρ(φ)) with respect to γ ∈ [−1, 1]. Indeed, equation (35) yields the
inequality cinc(A,B) ≥ minγ∈[−1,1] S[A,B‖Mγ ](ρ(φ)) for all φ ∈ [0, 2π). A conveni-
ent choice for φ, suggested by the results in the case of two orthogonal components,
is to take φ ∈ {π/4 ± α/2, 5π/4 ± α/2}, so that the corresponding state ρ(φ) is any
eigenprojection of a · σ or b · σ; say we take the eigenprojection ρe = ρ(π/4 − α/2)
of a · σ with positive eigenvalue. Then, we get

cinc(A,B) ≥ min
γ∈[−1,1]

S[A,B‖Mγ ](ρe) =: LB(α). (39)

In Appendix B.3, the explicit expression of S[A,B‖Mγ ](ρe) is given in (80), its min-
imum over γ is computed and, for α 6= π/2, it is found at the point

γ =

√
2`− a2
a1

, (40)
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Figure 2. Dots: numerical evaluations of cinc(A,B) as a function of α. Continuous line: the analytical lower
bound LB(α) in (43).

where

` =
1

2
√
2 a2

(√
u2 + 8(1 + u)a 2

2 − u
)
, (41)

u =

(
a1 +

1√
2

)
a 2
1 − a 2

2√
2

=
(
1 +
√
1 + sinα

) sinα

2
. (42)

In particular, the value (40) for γ, together with the fact that the bi-observable Mγ

has marginals Mγ [1] = Ac(γ) and Mγ [2] = Bc(γ), show that the marginals of the bi-
observable giving the lower bound (39) are not noisy versions of the target observables
A and B; indeed, c(γ) 6∝ a in this case. Finally, the lower bound turns out to be

LB(α) = − logw+
1

2
(1 + cosα) log

1 + cosα

1 + `
+
1

2
(1− cosα) log

1− cosα

1− `
, (43)

with

w =
1

2
+

√
u2 + 8(1 + u)a 2

2

4
√
2 a1

+
sinα

8

(
3√
2 a1
− 1

)
. (44)

The plot of LB(α) is the continuous line in Figure 2.
For α = 0, the target observables are compatible and cinc(A,B) = 0. For α→ 0 the

previous formulae give u = 0, ` = 1, c(γ) = a ≡ n, and one can check that also the
lower bound (43) vanishes, as it must be.

For two orthogonal components, i.e. α = π/2, the expression (43) gives the exact
value (32) of the entropic incompatibility degree, and it is not only a lower bound. This
value can be computed by going to the limit α→ π/2 in (43), or directly by Remark 8
in Appendix B.3.

For α ∈ (0, π/2), Figure 2 shows that the analytical lower bound (43) is not so far
from the numerical value.
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We now compare our optimal approximate joint measurements with other proposals
coming from different approaches. Of course, every approximate joint measurement
M that is optimal with respect to some other criterium will have a divergence from
the target observables (A,B) larger or equal than cinc(A,B). We stress that the other
two proposals we will consider yield optimal bi-observables of the form Mγ , in which
however the parameter γ is different from ours.

We have seen that, when α = π/2, the incompatibility degree of A and B, as well
as their unique optimal approximate joint measurement M0, can be evaluated analytic-
ally. In this special case, it turns out that M0 is optimal also with respect to the other
criteria we are going to consider in this section. However, as already said, this is not
true for general α. In order to show it, we fix the angle α = π/4, and compare the
results of the different criteria in Table 1. We also add a LB column summarizing
the parameters for the analytical lower bound (39). The rows provide: (1) the para-
meter γ characterizing the measurement Mγ ; (2) the angle characterizing the pure state
ρ(φ) at which S[A,B‖Mγ ] is computed, that is the trial angle π/4 − α/2 in the first
column, and the angle maximizing S[A,B‖Mγ ](ρ(φ)) in the other ones; (3) the value
of S[A,B‖Mγ ](ρ(φ)) for the parameters chosen in (1) and (2), which gives LB(π/4)
in the first column and the entropic divergence D

(
A,B‖Mγ

)
in the other ones. The

Table 1. Incompatibility degree and its bounds for α = π/4.

criterium LB cinc BLW NV
measurement: γ ' 0.795559 0.743999 0.541195 0.414213

state: φ ' 0.392699 0.282743 0.391128 0.416889
value: S[A,B‖Mγ ](ρ(φ)) ' 0.110081 0.120035 0.160886 0.212079

description of the columns is as follows.
LB: The choice of the parameters is the one described in the computation of the

analytical lower bound for cinc. The parameter γ comes from (40), the angle φ = π/8
corresponds to the trial state ρe = ρ(π/8) (i.e. the eigenprojection of a·σ for α = π/4),
and the corresponding value of S[A,B‖Mγ ](ρe) is the lower bound LB(π/4).
cinc: The parameters are chosen following the relative entropy approach to MURs.

They are the numerical solution of the minimax problem (35). Thus, the value of
S[A,B‖Mγ ](ρ(φ)) is the one found numerically for cinc(A,B), i.e. the dot at α = π/4
in Figure 2; γ is the corresponding minimum point giving the optimal approximate joint
measurement Mγ of A and B; the angle φ corresponds to the state at which the error
function S[A,B‖Mγ ] attains its maximum.

BLW: As discussed in Section 2.3, in [6–8] a different approach is proposed. In
particular, its application to the case of two spin-1/2 components is given in [9] (see
also [26], where the same final results are obtained in a slightly different context). There,
the authors find a strictly positive lower bound for the sum d(A,M[1])

2 + d(B,M[2])
2,

which holds for all approximate joint measurements M. Moreover, they find a couple
of compatible observables (Ac,Bc) saturating the lower bound, and thus optimally ap-
proximating the target observables (A,B); this couple is given by a vector c yielding
compatible Ac and Bc, and lying as close as possible to the target direction a. Referring
to Figure 3 in Appendix B.1, this amounts to requiring that c is the orthogonal projec-
tion of a on the right edge of the square Q in the ij-plane; such a square is the region
of the plane where the approximating observables Ac and Bc are compatible (see Pro-
position 4, item (ii), in Appendix B.1). Using the parametrization c(γ) given in (33) for
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the right edge of Q, we see that this approach fixes γ =
√
2a2. The entropic divergence

of the corresponding bi-observable Mγ from (A,B) and the angle of the state ρ(φ) at
which it is attained are the content of the BLW column.

NV: At the end of Section 2.4, we briefly discussed the proposal of [45, 49] to use
approximating joint measurements whose marginals are noisy versions (NV) of the two
target observables. In this approach, one approximates the target observables by means
of a compatible couple (Ac,Bc) with c ‖ a. Still making reference to Figure 3 in the
appendix, the best choice is then picking c as large as possible; in this way, c lies where
the right edge of the compatibility square Q intersects the line joining a and the origin.
With our parametrization c(γ) of the edge, this implies γ = a2/a1. The results for
this choice (together with the corresponding maximizing state) are reported in the last
column.

3.3. Two conjugate observables in prime power dimension. We now consider two com-
plementary observables in prime power dimension, realized by a couple of MUBs that
are conjugated by the Fourier transform of a finite field. In general, the construction of a
maximal set of MUBs in a prime power dimensional Hilbert space by using finite fields
is well known since Wootters and Fields’ seminal paper [53]; see also [54, Sect. 2] for
a review, and [55–57] for a group theoretic perspective on the topic.

Let F be a finite field with characteristic p. We refer to [58, Sect. V.5] for the basic
notions on finite fields. Here we only recall that p is a prime number, and F has cardin-
ality |F| = pn for some positive integer n. We need also the field trace tr : F → Zp
defined by trx =

∑n−1
k=0 x

pk (see [58, Sect. VI.5] for its definition and properties).
We consider the Hilbert space H = `2(F), with dimension d = pn, and we let our

target observables be the two sharp rank-one observables Q and P with outcome spaces
X = Y = F, given by

Q(x) = | δx 〉 〈 δx | , P(y) = |ωy 〉 〈ωy | , ∀x, y ∈ F. (45)

In this formula, δx is the delta function at x, and

ωy(z) =
1√
d
e

2πi
p tr yz ≡ (F ∗δy)(z) with Fφ(z) =

1√
d

∑
t∈F

e−
2πi
p tr ztφ(t). (46)

Since | 〈 δx |ωy 〉 | = 1/
√
d for all x and y, the two orthonormal bases {δx}x∈F and

{ωy}y∈F satisfy the MUB condition. In particular, as a consequence of the bound in
[17], their preparation uncertainty coefficient (18) is

cprep(Q,P) = log d. (47)

In (46), the operator F : H → H is the unitary discrete Fourier transform over the
field F. The observables Q and P are then an example of Fourier conjugate MUBs, as
P(y) = F ∗Q(y)F for all y ∈ F.

The definitions (45) and (46) should be compared with the analogous ones for MUBs
that are conjugated by means of the Fourier transform over the cyclic ring Zd, see
e.g. [59]. In the latter case, the Hilbert space is H = `2(Zd), and the operator F in (46)
is replaced by

Fφ(z) = 1√
d

∑
t∈Z

e−
2πi
d ztφ(t) (48)
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(cf. [59, Eq. (4)]; note that no field trace appears in this formula). The two definitions
are clearly the same if F coincides with the cyclic field Zp (i.e. n = 1 and so d = p),
but they are essentially different in general. Indeed, as observed in [54, Sect. 5.3], they
are inequivalent already for d = 22.

The following theorem is the main result of this section.

Theorem 7. For the two sharp observables Q and P defined in (45), we have

log
2
√
d√

d+ 1
≤ cinc(Q,P) = max

ρ∈S(H)
ρ pure

[
S
(
Qρ‖Qρλ0

)
+ S

(
Pρ‖Pρλ0

)]
≤ 2 log

2(d+ 1)

d+ 3
, (49)

where Qλ0
= λ0Q+(1−λ0)UF and Pλ0

= λ0P+(1−λ0)UF are the uniformly noisy
versions of the observables Q and P with noise intensity

1− λ0 =

√
d

2(
√
d+ 1)

. (50)

An optimal approximate joint measurement M ∈Minc(A,B) is given by

M0(x, y) =
1

2(d+
√
d)
|ψx,y 〉 〈ψx,y | with ψx,y = δx + e−

2πi
p tr xyFδ−y. (51)

If p 6= 2, then M0 is the unique optimal approximate joint measurement of Q and P, i.e.
Minc(Q,P) = {M0}.

As in the case of the two spin-1/2 components, the proof of this theorem relies on
a detailed study of the symmetries of the pair of observables (Q,P), and a subsequent
application of Theorem 4. The symmetries and the proof of the theorem are given in
Appendix C. Here we briefly comment on its statements and provide a simple example.

Remark 5. 1. Since Q and P are sharp, the inequality (49) also gives a bound for the
index ced(Q,P) = cinc(Q,P).

2. The two bounds in (49) are not asymptotically optimal for d → ∞, as the lower
bound tends to 1 while the upper bound goes to 2.

3. The value in (50) is the minimal noise intensity making the two uniformly noisy
observables Qλ0

and Pλ0
compatible [59, Prop. 5 and Ex. 1].

4. In the terminology of [24, 25], the bi-observable in (51) is the covariant phase-
space observable generated by the state [

√
d/(2
√
d+2)] |ψ0,0 〉 〈ψ0,0 | = dM0(0, 0)

(see (86) and the discussion below it for further details on covariant phase-space
observables).

5. Our choice of using the field F instead of the ring Zd in defining the Fourier operator
in (46), and the consequent restriction to only prime power dimensional systems,
comes from the fact that the resulting MUBs (45) share dilational symmetries that
are not present in the F-conjugate ones. These extra symmetries drastically reduce
the number of parameters to be optimized for finding an element of Minc(A,B) (see
Remark 10.2 for further details).
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6. The uniqueness property of the optimal approximate joint measurement M0 in odd
prime power dimensions should be compared with the measurement uncertainty re-
gion for two qudit observables found in [10, Sect. 5.3]. In particular, we remark that
there is a whole family of covariant phase-space observables saturating the uncer-
tainty bound of [10, Eq. (38)]. Our optimal bi-observable M0 just corresponds to one
of them, that is, the one generated by the state ρ = dM0(0, 0).

7. When d = 2n with n ≥ 2, it is not clear whether or not the set Minc(Q,P) is made
up of a unique bi-observable. However, in the simplest case d = 2 we have already
shown that Minc(Q,P) = {M0} (see Theorem 5).

Example 1 (Two orthogonal spin-1/2 components). Let us consider as target observ-
ables the two sharp spin-1/2 components X,Y ∈ M({+1,−1}) associated with the
first two Pauli matrices, defined in (30). This is the easiest example of two Fourier
conjugate MUBs. To see this, take the cyclic field F = Z2 ≡ {0, 1}, corresponding
to the choice d = p = 2, n = 1, trx = x, and identify the observables Q(x) =
X ((−1)x) and P(y) = Y ((−1)y) (x, y = 0, 1) by setting σ1 = |δ0〉〈δ0| − |δ1〉〈δ1|,
and σ2 = |δ0〉〈δ1| + |δ1〉〈δ1|. With this identification, the discrete Fourier transform
becomes F = (σ1 + σ2) /

√
2 ≡ i exp{−iπn · σ/2}. We have already found in (31)

the optimal joint observable of X and Y, together with the value of the entropic incom-
patibility degree. These are precisely the bi-observable and the lower bound found in
Theorem 7.

4. Entropic measurement uncertainty relations for n observables

Uncertainty relations have been studied also in the case of more than two observables,
see e.g. [13,19,22] for the case of entropic PURs. Both our entropic coefficients (10) and
(12) (and the related MURs) can be generalized to the case of n > 2 target observables.
However, in the case of ced(A1, . . . ,An) an order of observation has to be fixed, and one
needs to point out the subset of the observables for which imprecise measurements are
allowed (the analogues of the observable A in the binary case of ced(A,B)) from those
observables that are kept fixed and get disturbed by the other measurements (similar to
B in ced(A,B)). Thus, different definitions of ced are possible in the n-observable case.
This leads us to generalize only the entropic incompatibility degree cinc(A1, . . . ,An),
whose definition is straightforward and gives a lower bound for ced, independently of
its possible definitions.

4.1. Entropic incompatibility degree and MURs. Let A1, . . . ,An be n fixed observables
with outcome sets X1, . . . ,Xn, respectively. As usual, we assume that all the sets Xi
are finite. The observables with outcomes in the product set X1···n = X1 × · · · × Xn
are called multi-observables, and we use the notation M(X1···n) for the set of all such
observables. If M ∈ M(X1···n), its i-th marginal observable is the element M[i] ∈
M(Xi), with

M[i](x) =
∑

xj∈Xj :j 6=i

M(x1, . . . , xi−1, x, xi+1, . . . , xn).

The notion of compatibility straightforwardly extends to the case of n observables.
As in the n = 2 case, we regard any M ∈ M(X1···n) as an approximate joint meas-

urement of A1, . . ., An. For all ρ ∈ S(H), the total amount of information loss in the
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distribution approximations Aρi ' Mρ
[i], i = 1, . . . , n, is the sum of the respective relat-

ive entropies. Then, we have the following generalization of Definitions 1, 2 and 3.

Definition 5. For any multi-observable M ∈ M(X1···n), the error function of the ap-
proximation (A1, . . . ,An) ' (M[1], . . . ,M[n]) is the state-dependent quantity

S[A1, . . . ,An‖M](ρ) =

n∑
i=1

S
(
Aρi ‖M

ρ
[i]

)
. (52)

The entropic divergence of M ∈M(X1···n) from (A1, . . . ,An) is

D
(
A1, . . . ,An‖M

)
= sup
ρ∈S(H)

S[A1, . . . ,An‖M](ρ). (53)

The entropic incompatibility degree of the observables A1, . . . ,An is

cinc
(
A1, . . . ,An

)
= inf

M∈M(X1···n)
D
(
A1, . . . ,An‖M

)
. (54)

We still denote by

Minc(A1, . . . ,An) = argmin
M∈M(X1···n)

D
(
A1, . . . ,An‖M

)
the set of the optimal approximate joint measurements of A1, . . . ,An. As in the case
with n = 2, the optimality of a multi-observable M depends only on its marginals M[i],
since the entropic divergence itself depends only on such marginals.

We have the following extension of Theorems 1, 2 and 3.

Theorem 8. Let Ai ∈ M(Xi), i = 1, . . . , n, be the target observables. The error func-
tion, entropic divergence and incompatibility degree satisfy the following properties.

(i) The function S[A1, . . . ,An‖M] : S(H) → [0,+∞] is convex and LSC, ∀M ∈
M(X1···n).

(ii) The function D
(
A1, . . . ,An‖ ·

)
: M(X1···n)→ [0,+∞] is convex and LSC.

(iii) For any M ∈M(X1···n), the following three statements are equivalent:
(a) D

(
A1, . . . ,An‖M

)
< +∞,

(b) kerM[i](x) ⊆ kerAi(x) ∀x, ∀i,
(c) S[A1, . . . ,An‖M] is bounded and continuous.

(iv) D
(
A1, . . . ,An‖M

)
= max

ρ∈S(H)
ρ pure

S[A1, . . . ,An‖M](ρ), where the maximum can be

any value in the extended interval [0,+∞].
(v) The quantities S[A,B‖M](ρ), D

(
A1, . . . ,An‖M

)
and cinc(A1, . . . ,An) are in-

variant under an overall unitary conjugation of the state ρ and the observables
A1, . . . ,An and M, and they do not depend on the labelling of the outcomes in
X1, . . . ,Xn.

(vi) cinc(Aσ(1), . . . ,Aσ(n)) = cinc(A1, . . . ,An) for any permutation σ of the index set
{1, . . . , n}.

(vii) The entropic incompatibility coefficient cinc(A1, . . . ,An) is always finite, and it
satisfies the bounds

cinc(A1, . . . ,An) ≤
n∑
i=1

log |Xi| − inf
ρ∈S(H)

n∑
i=1

H(Aρi ), (55)
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cinc(A1, . . . ,An) ≤
n∑
i=1

log
n(d+ 1)

d+ n+ (n− 1)minx∈Xi Tr {Ai(x)}

≤ n log n(d+ 1)

d+ n
≤ n log n. (56)

(viii) The set Minc(A1, . . . ,An) is a nonempty convex compact subset of M(X1···n).
(ix) cinc(A1, . . . ,An) = 0 if and only if the observables A1, . . . ,An are compatible,

and in this case Minc(A1, . . . ,An) is the set of all the joint measurements of
A1, . . . ,An.

(x) If An+1 ∈ M(Xn+1) is another observable, then we have cinc(A1, . . . ,An+1) ≥
cinc(A1, . . . ,An).

Proof. The proofs of items (i)–(vi), (viii) and (ix) are straightforward extensions of the
analogous ones for two observables.

In item (vii), the upper bound (55) follows by evaluating the entropic divergence of
the uniform observable U = (uX1

⊗ · · · ⊗ uXn)1 from (A1, . . . ,An):

cinc(A1, . . . ,An) ≤ D
(
A1, . . . ,An‖U

)
= sup
ρ∈S(H)

n∑
i=1

S
(
Aρi ‖uXi

)
= sup
ρ∈S(H)

n∑
i=1

[log |Xi| −H(Aρi )] by Proposition 1, item (iii);

this yields (55).
The upper bound (56) follows by using an approximate cloning argument, just as in

the case of only two observables. Indeed, the optimal approximate n-cloning channel is
the map

Φ : S(H)→ S(H⊗n), Φ(ρ) =
d!n!

(d+ n− 1)!
Sn(ρ⊗ 1⊗(n−1))Sn,

where Sn is the orthogonal projection of H⊗n onto its symmetric subspace Sym(H⊗n)
[50]. Evaluating the marginals of the multi-observable Mcl = Φ∗(A1 ⊗ · · · ⊗ An), we
obtain the noisy versions

Mcl [i] = Ai λcl
, where λcl =

d+ n

n(d+ 1)

(see [51]). Since cinc(A1, . . . ,An) ≤ D
(
A1, . . . ,An‖Mcl

)
, a computation similar to

the one for obtaining the bound (17) in Section 2.4 then yields the bounds (56).
Finally, in order to prove item (x), take any M′ ∈M(X1 × · · · × Xn+1), and let

M(x1, . . . , xn) =
∑

x∈Xn+1

M′(x1, . . . , xn, x).

We have M′[i] = M[i] for all i = 1, . . . , n, hence

cinc(A1, . . . ,An) ≤ D
(
A1, . . . ,An‖M

)
= sup

ρ

n∑
i=1

S
(
Aρi ‖M

ρ
[i]

)
≤ sup

ρ

n+1∑
i=1

S
(
Aρi ‖M

′ρ
[i]

)
= D

(
A1, . . . ,An+1‖M′

)
.
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Item (x) then follows by taking the infimum over M′. ut

The monotonicity property (x), which is specific of the many observable case, is an-
other desirable feature for an incompatibility coefficient: the amount of incompatibility
cannot decrease when an extra observable is added.

Remark 6 (MURs). Theorem 8 gives the following extension of the entropic MURs (13)
and (14):

D
(
A1, . . . ,An‖M

)
≥ cinc(A1, . . . ,An), ∀M ∈M(X1···n), (57)

∀M ∈M(X1···n), ∃ρ ∈ S(H) :

n∑
i=1

S
(
Aρi ‖M

ρ
[i]

)
≥ cinc(A1, . . . ,An). (58)

Finally, suppose the product space X1···n carries the action of a finite symmetry
group G, which also acts on the quantum system Hilbert space H by means of a pro-
jective unitary representation U . These actions then extend to the set of states S(H),
the set of probabilities P(X1···n) and the set of multi-observables M(X1···n) exactly as
in Section 3.1. Similarly, for any M ∈ M(X1···n), we can define its covariant version
MG. Then, the content of Theorem 4 and Corollary 1 can be translated to the case of n
observables as follows.

Theorem 9. Let Ai ∈ M(Xi), i = 1, . . . , n, be the target observables. Suppose the
finite group G acts on both the output space X1···n and the index set {1, . . . , n}, and it
also acts with a projective unitary representation U on H. Moreover, assume that G is
generated by a subset SG ⊆ G such that, for every g ∈ SG and i ∈ {1, . . . , n}, there
exists a bijective map fg,i : Xi → Xgi for which

(a) g(x1, . . . , xn)gi = fg,i(xi) for all (x1, . . . , xn) ∈ X1···n,
(b) UgAi(xi)U∗g = Agi(fg,i(xi)) for all xi ∈ Xi.

Then,

- D
(
A1, . . . ,An‖gM

)
= D

(
A1, . . . ,An‖M

)
for all M ∈M(X1···n) and g ∈ G;

- the set Minc(A1, . . . ,An) is G-invariant;
- for any M ∈Minc(A1, . . . ,An), we have MG ∈Minc(A1, . . . ,An);
- there exists a G-covariant observable in Minc(A1, . . . ,An).

Proof. As in the proof of Theorem 4, it is not restrictive to assume that SG = G. For
all p ∈ P(X1···n), condition (a) implies

gp[i](xi) =
∑
xj∈Xj
s.t. j 6=i

gp(x1, . . . , xn) =
∑

xgj∈Xgj
s.t. gj 6=i

p(fg−1,g1(xg1), . . . , fg−1,gn(xgn))

=
∑
yj∈Xj

s.t. gj 6=i

p(y1, . . . , yn) where yj = fg−1,gj(xgj)

=
∑
yj∈Xj

s.t. j 6=g−1i

p(y1, . . . , yn) = p[g−1i](yg−1i)

= p[g−1i](fg−1,i(xi)),
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and hence

(gp[1] ⊗ · · · ⊗ gp[n])(x1, . . . , xn) =
n∏
i=1

gp[i](xi) =

n∏
i=1

p[g−1i](fg−1,i(xi))

=

n∏
i=1

p[i](fg−1,gi(xgi)) = g(p[1] ⊗ · · · ⊗ p[n])(x1, . . . , xn).

Therefore,
gp[1] ⊗ · · · ⊗ gp[n] = g(p[1] ⊗ · · · ⊗ p[n]). (59)

On the other hand, by condition (b) we have Agρi (xi) = Aρg−1i(fg−1,i(xi)), and then

(Agρ1 ⊗ · · · ⊗ Agρn )(x1, . . . , xn) =

n∏
i=1

Aρg−1i(fg−1,i(xi)) =

n∏
i=1

Aρi (fg−1,gi(xgi))

= g(Aρ1 ⊗ · · · ⊗ Aρn)(x1, . . . , xn),

that is,
Agρ1 ⊗ · · · ⊗ Agρn = g(Aρ1 ⊗ · · · ⊗ Aρn). (60)

Having established (59) and (60), the proof of the equality D
(
A1, . . . ,An‖gM

)
=

D
(
A1, . . . ,An‖M

)
follows along the same lines of the proof of Theorem 4. The re-

maining statements are then proved as in Corollary 1. ut

In the next section we will use Theorem 9 to solve the case of n = 3 orthogonal
target spin-1/2 components. This is the basic example of a maximal set of d+ 1 MUBs
in a d-dimensional Hilbert space. It is an open problem whether similar arguments lead
to find the incompatibility index cinc(Q1, . . . ,Qd+1) of a maximal set of d + 1 MUBs
Q1, . . . ,Qd+1 whenever such a set of MUBs is known to exist, that is, for all prime
powers d.

4.2. Three orthogonal spin-1/2 components. Let the target observables A1, A2, A3 be
three mutually orthogonal spin-1/2 components, that is, the sharp observables X, Y,
Z ∈ M({+1,−1}) associated with the three Pauli matrices; the observables X,Y are
given in (30), and

Z(z) =
1

2
(1+ zσ3) , ∀z ∈ Z = {+1,−1}. (61)

Then, we have the following three-spin version of Theorem 5.

Theorem 10. Let X, Y and Z be the three orthogonal spin-1/2 components (30), (61).
Then, for the following two tri-observables M0,M1 ∈M(X× Y× Z)

M0(x, y, z) =
1

8

[
1+

1√
3
(xσ1 + yσ2 + zσ3)

]
(62)

M1(1, 1,−1) = 2M0(1, 1,−1), M1(1,−1, 1) = 2M0(1,−1, 1),
M1(−1, 1, 1) = 2M0(−1, 1, 1), M1(−1,−1,−1) = 2M0(−1,−1,−1),

M1(x, y, z) = 0 otherwise,
(63)
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we have M0,M1 ∈ Minc(X,Y,Z). If ρe is the projection on any eigenvector of σ1, σ2
or σ3, then, for i = 0, 1,

cinc(X,Y,Z) = S[X,Y,Z‖Mi](ρe) = log
(
3−
√
3
)
' 0.342497 . (64)

The description of the symmetry group of X, Y and Z, and the consequent application
of Theorem 9 yielding the proof of Theorem 10, are provided in Appendix B.4.

Note that, differently from the case with only n = 2 spins, for n = 3 orthogonal
spin-1/2 components there is not a unique optimal approximate joint measurement. It
should be also remarked that, although M0 6= M1, both optimal approximate joint
measurements given in (62), (63) have the same marginals, so that S[X,Y,Z‖M0] =
S[X,Y,Z‖M1]. Indeed, they are the equally noisy observbles

M0[1] = M1[1] = X 1√
3
, M0[2] = M1[2] = Y 1√

3
, M0[3] = M1[3] = Z 1√

3
. (65)

The construction of the tri-observable M1 is taken from [60, Sect. VI]. It is an open
question whether

(
X1/
√
3,Y1/

√
3,Z1/

√
3

)
is the unique triple of compatible observ-

ables optimally approximating (X,Y,Z); see also Remark 9 in Appendix B.4 for further
comments.

5. Conclusions

We have formulated and proved entropic MURs for discrete observables in a finite-
dimensional Hilbert space. In doing so, we have considered target observables A and
B described by general POVMs, not only sharp observables. Our formulation employs
the relative entropy to quantify the total amount of information that is lost when A
and B are approximated with the marginals M[1] and M[2] of a bi-observable M. Such
an information loss is the state-dependent error (8); maximizing it over all states ρ
and then minimizing the result over the bi-observables M, we have derived our MURs
(14): for every approximating bi-observable M, there is always a state ρ such that the
total information loss of the approximation (Aρ,Bρ) ' (Mρ

[1],M
ρ
[2]) is not less than

a minimal threshold c(A,B), independent of M and strictly positive when the target
observables are incompatible.

Minimizing over different sets of bi-observables yields MURs with different mean-
ings. If M varies over all the POVMs on the product set of the A- and B-outcomes,
then the resulting index cinc(A,B) is the minimal error potentially affecting all pos-
sible approximate joint measurements of A and B. On the other hand, if M is only
allowed to vary over the subset of all the sequential measurements of an approxima-
tion of A followed by B, we obtain the minimal information loss ced(A,B) due to the
error/disturbance tradeoff. We have proved that the two indexes remarkably coincide
when the second observable B is sharp; we have also given explicit examples, involving
general POVMs, where the two indexes actually differ.

The two coefficients cinc and ced play a double role: on the one side, they are the
lower bounds of our entropic MURs, as just described above; on the other side, they
also properly quantify the degree of (total or sequential) incompatibility of the target
observables. The latter interpretation is justified since cinc and ced only depend on A
and B, as well as by the remarkable properties of the two indexes (Theorem 2). In
particular, the existence of an index allows to establish whether a couple of observables
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is more or less incompatible than another one. For instance, the incompatibility degree
of two spin-1/2 components grows by increasing the angle between their directions, as
naturally expected (see Figure 2).

Due to the double optimization in the definitions of cinc(A,B) and ced(A,B), it
is not easy to explicitly compute them and their corresponding optimal approximate
joint measurements. Anyway, in Theorem 4 we have shown how one can use general
symmetry arguments in order to simplify the problem. We have then applied this method
to two spin-1/2 components (Theorems 5 and 6), and two Fourier conjugate MUBs in
prime power dimension (Theorem 7).

A peculiar feature of our MURs is that in several cases there is actually a unique
optimal approximate joint measurement. Indeed, in the two spin and MUB examples,
we have uniqueness for all the cases in which we have managed to completely charac-
terize the sets Minc and Med of the optimally approximating joint measurements. We
conjecture that this is still true also for the two nonorthogonal spin-1/2 components, and
the Fourier conjugated MUBs in even prime power dimensions, for which up to now
we have only partial results.

One nice aspect of our approach is that it naturally and easily generalizes to more
than two observables. We have done this extension only for the entropic incompatibil-
ity degree cinc (Theorems 8 and 9), as the multi-observable interpretation of ced is less
transparent. As an application, we have computed the index cinc for three orthogonal
spin-1/2 components X, Y and Z; although in this case there is still a unique covari-
ant approximate joint measurement, the main difference with the two spin case is that
Minc(X,Y,Z) is not a singleton set now.

Many problems still remain open, as it is not clear how to analytically or at least
numerically compute cinc and ced and the corresponding optimal approximate joint
measurements for an arbitrary couple of target observables. Explicit results would be
desirable for physically relevant observables other than those considered in Sections
3.2, 3.3 and 4.2 (e.g. two or more spin-s components with s > 1/2, two or more
MUBs in arbitrary dimensions and possibly not Fourier conjugate, etc.). A possible
generalization is to include also systems in presence of “quantum memories”; indeed,
this extension has recently been studied in the case of entropic PURs [22,61,62]. More
importantly, the theory we have developed is restricted to discrete observables in a
finite-dimensional Hilbert space. The bound cinc(A1, . . . ,An) ≤ n log n appearing in
(17) and (56), which is independent of the number of the outcomes and the dimension
of H, suggests that it would be possible to generalize the theory to arbitrary observables
in a separable Hilbert space. However, this is not a straightforward extension; indeed,
the first results on position and momentum [34] already show that the error function (7)
needs to be restricted to only particular classes of states, in order to avoid cinc = +∞,
merely due to classical effects.

A. Examples of compatible but not sequentially compatible observables

First example from [27]. Apart from an exchange of A and B and some explicit com-
putations, this example is taken from [27, Sect. III.C, and the end of Sect. III.A]. With
H = C3, X = {1, 2} and Y = {1, . . . , 5}, the two target observables are defined by

A(1) =
1

2

2 0 0
0 0 0
0 0 1

 , A(2) =
1

2

0 0 0
0 2 0
0 0 1

 ;
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B(1) =
1

4

 2 0 −
√
2

0 0 0
−
√
2 0 1

 , B(2) =
1

10

0 0 0
0 1 −2
0 −2 4

 , B(3) =
1

2

0 0 0
0 1 0
0 0 0

 ,

B(4) =
1

10

0 0 0
0 4 2
0 2 1

 , B(5) =
1

4

 2 0
√
2

0 0 0√
2 0 1

 .

These two observables are compatible, and one can check that a joint observable is

M(1, 1) = B(1), M(1, 5) = B(5), M(2, 2) = B(2), M(2, 3) = B(3),

M(2, 4) = B(4), M(1, 2) = M(1, 3) = M(1, 4) = M(2, 1) = M(2, 5) = 0.

This implies cinc(A,B) = 0. Moreover, in [27, Sect. III.C] it is proved that: (1) there
exists an instrument implementing B which does not disturb A; (2) any instrument im-
plementing A disturbs B. By Theorem 2, item (vi), this implies ced(B,A) = 0 and
ced(A,B) > 0.

Second example from [27]. This is the first example of [27, Sect. III.A], which we
report in the particular case in which the noise parameters are fixed and equal; let us
call them λ, with λ ∈

(
1
2 ,

2
3

]
. The observables are two-valued (X = Y = {1, 2}),

and they are built up by using two noncommuting orthogonal projections P and Q:
[P,Q] 6= 0. The joint observable M and its marginals are given by

M(1, 1) = (1− λ)1, M(1, 2) = (2λ− 1)P, M(2, 1) = (2λ− 1)Q,

M(2, 2) =

(
1− 3

2
λ

)
(P +Q) +

λ

2
(1− P + 1−Q) ,

A(1) = M[1](1) = λP + (1− λ)(1− P ), A(2) = M[1](2) = λ(1− P ) + (1− λ)P,

B(1) = M[2](1) = λQ+ (1− λ)(1−Q), B(2) = M[2](2) = λ(1−Q) + (1− λ)Q.

The observables A and B are compatible by construction, and so cinc(A,B) = 0. In [27],
it is proved that there does not exist any instrument implementing A which does not
disturb B; it follows that ced(A,B) > 0 and, by exchanging P and Q, ced(B,A) > 0.

B. Symmetries and proofs for target spin-1/2 components

In this appendix, we describe the symmetry groups for two arbitrary and three ortho-
gonal spin-1/2 components. Then, by using Theorem 4, we prove our main Theorems 6
(Appendix B.1), 5 (Appendix B.2) and 10 (Appendix B.4), and we provide the missing
calculations in Section 3.2.2. Since the proof of Theorem 5 follows from Theorem 6
with the angle α = π/2, here we prefer to reverse the order of the two proofs.
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B.1. Incompatibility degree and optimal measurements for two spin-1/2 components.
In this section, A and B are the spin-1/2 components defined in (26), with directions
spanning an arbitrary angle α ∈ [0, π/2]; the respective outcome spaces are X = Y =
{−1,+1}. The symmetry group of A and B is the order 4 dihedral group D2 ⊂ SO(3)
generated by the rotations SD2

= {Rn(π), Rm(π)}, i.e. the 180◦ rotations around the
bisectors n and m of the first two quadrants (see Figure 1). Here and in the following,
our reference for the discrete subgroups of the rotation group is [63, pp. 77–79]. The
natural action of the group D2 on the outcome space X× Y is given by

Rn(π) (x, y) = (y, x), Rm(π) (x, y) = (−y,−x), ∀(x, y) ∈ X× Y. (66a)

We then see that condition (ii.a) of Theorem 4 is satisfied for all g ∈ SD2
. As the

representation U of D2 on C2, we take the restriction of the usual spin-1/2 projective
representation of SO(3); this gives

U
(
Rn(π)

)
= e−iπn·σ/2 ≡ −in ·σ, U

(
Rm(π)

)
= e−iπm·σ/2 ≡ −im ·σ. (66b)

It is easy to see that the observables A and B satisfy the relations

U
(
Rn(π)

)
A(x)U

(
Rn(π)

)∗
= B(x), U

(
Rm(π)

)
A(x)U

(
Rm(π)

)∗
= B(−x),

U
(
Rn(π)

)
B(y)U

(
Rn(π)

)∗
= A(y), U

(
Rm(π)

)
B(y)U

(
Rm(π)

)∗
= A(−y).

(67)

This implies that also condition (ii.b) of Theorem 4 is fulfilled for all g ∈ SD2 . Then,
because of Remark 3, in order to find cinc(A,B), we are led to study the most general
form of a D2-covariant bi-observable and its marginals.

Proposition 4. Let the dihedral group D2 act on X × Y and H as in (66). Then, the
following facts hold.

(i) The most general D2-covariant bi-observable on X× Y is

M(x, y) =
1

4
[(1 + γxy)1+ (c1x+ c2y)σ1 + (c2x+ c1y)σ2] , (68)

with γ ∈ R and c = c1i+ c2j ∈ R2 such that
√
2 |c1 + c2| − 1 ≤ γ ≤ 1−

√
2 |c1 − c2| . (69)

The marginals of M are M[1] = Ac and M[2] = Bc, with Ac, Bc defined in (28).
(ii) Equation (28) defines the marginals of a D2-covariant bi-observable on X × Y if

and only if the vector c belongs to the square

Q = {c1i+ c2j : |c1| ≤ 1/
√
2, |c2| ≤ 1/

√
2}. (70)

Proof. (i) The set M(X×Y) is a subset of the linear space L(C2)X×Y = CX×Y⊗L(C2),
where the set of the 16 products between one of the functions 1, x, y, xy and one of
the operators 1, σ1, σ2, σ3 provides a basis of linearly independent elements. Then, the
most general bi-observable on X×Y is a linear combination of such products; it is easy
to see that the covariance under the rotation Rn(π)Rm(π) implies the vanishing of the
coefficients of the products x1, y1, xyσ1, xyσ2, 1σ1, 1σ2, xσ3, yσ3. By taking into
account also the normalization and selfadjointness conditions, we are left with

M(x, y) =
1

4
[(1 + γxy)1+ (c1x+ c2y)σ1 + (c′1x+ c′2y)σ2 + (c3 + c4xy)σ3] ,
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with real coefficients γ, ci and c′i. By imposing the covariance under Rn(π), we get
c′1 = c2, c′2 = c1, c3 = c4 = 0, and (68) is obtained. Finally, since Rm(π) =
Rn(π)Rm(π)Rn(π), the bi-observable (68) is covariant with respect to the whole
group D2. To impose the positivity of the operators M(x, y), it is enough to study
the diagonal elements and the determinant of the 2 × 2–matrix representing (68). The
positivity of the diagonal elements ∀(x, y) gives γ ∈ [−1, 1]. By the positivity of the
determinant,

(1 + γxy)
2 ≥ (c1x+ c2y)

2
+ (c2x+ c1y)

2
, ∀(x, y) ∈ X× Y.

The latter two conditions are equivalent to (69). Evaluating the marginals of (68) im-
mediately yields the observables (28).

(ii) We begin by noticing that c ∈ Q is equivalent to
√
2 |c1 + c2| − 1 ≤ 1−

√
2 |c1 − c2| . (71)

For the marginals Ac and Bc of a D2-covariant bi-observable, inequalities (69) trivially
imply (71), and so c ∈ Q holds; alternatively, the same result follows from [26, Prop.
3]. Conversely, if Ac and Bc are as in (28) with c ∈ Q, then by (71) we can always
find γ as in (69). The D2-covariant bi-observable corresponding to γ, c1, c2 then has
marginals Ac and Bc. ut

Now we tackle the problem of evaluating the lower bound cinc(A,B) and finding the
optimal covariant approximate joint measurements of the target spin-1/2 components
(26). By Remark 3 and Proposition 4,

cinc(A,B) = min
M∈M(X×Y)
M D2-covariant

max
ρ∈S(H)
ρ pure

{S
(
Aρ‖Mρ

[1]

)
+ S

(
Bρ‖Mρ

[2]

)
}

= min
c∈Q

max
ρ∈S(H)
ρ pure

{S
(
Aρ‖Aρc

)
+ S

(
Bρ‖Bρc

)
},

(72)

where Q is the square (70). Thus, the value of cinc(A,B) can be found by minimizing
the function

D(c) = max
ρ∈S(H)
ρ pure

{
S
(
Aρ‖Aρc

)
+ S

(
Bρ‖Bρc

)}
(73)

for c ranging inside Q.
Note that the domain of the function D can be extended to the whole disk C intro-

duced in (29). In the domain C, D(c) = 0 if and only if Ac = A and Bc = B, which is
equivalent to c = a. The regions C and Q in the ij-plane are depicted in Figure 3.

We are now ready to prove our main result for the case of A and B being two ar-
bitrary spin-1/2 components. Indeed, the key point is that, by convexity arguments, the
minimization of the function D over the square Q fixes c1 = 1/

√
2. This consider-

ably simplifies the search of an optimal D2-covariant bi-observable, as it reduces the
involved parameters from the number of three (see (68)) to a single one (see (34)).

Proof (of Theorem 6). By (72), we have

cinc(A,B) = min
c∈Q

D(c). (74)

Let us start with the case α 6= 0. For c ∈ Q, the observables Ac and Bc are compat-
ible, and D(c) = D

(
A,B‖M

)
for any of their joint measurements M. By Theorem 1,
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Q

C

c1

c2

O

a

c

cλ

Figure 3. The existence disk (29) for the observables Ac

and Bc, and their compatibility square (70). The disk is the
domain of the function D defined in (73), and the square
is the subset over which D is minimized in (74).

item (iii), D(c) is finite if and only if kerAc(x) ⊆ kerA(x) and kerBc(y) ⊆ kerB(y)
for all x, y. In turn, this is equivalent to c not being any of the vertices V of the square
Q, since Ac = |c|Ac/|c| + (1− |c|)UX and Bc = |c|Bc/|c| + (1− |c|)UY. Therefore,
in the minimum (74) we can assume that c /∈ V , and so D(c) < +∞.

The mappings c 7→ Aρc and c 7→ Bρc are affine on the disk C for all ρ ∈ S(H),
which, together with the convexity of the relative entropy, implies that the mappings
c 7→ S

(
Aρ‖Aρc

)
and c 7→ S

(
Bρ‖Bρc

)
are convex; hence, such are their sum and the

supremum D in (73). Moreover, we have already noticed that D(c) = 0 if and only if
c = a.

Making reference to Figure 3, let us take c ∈ Q \ V and introduce the line segment
joining c and a: cλ = (1 − λ)c + λa, λ ∈ [0, 1]. By defining D(λ) = D(cλ), a
simple convexity argument (see Lemma 2 below) shows that the function λ 7→ D(λ)
is finite and strictly decreasing on [0, 1]. Then, the minimum of D(cλ) with respect
to cλ ∈ Q is attained where the line segment crosses the right side of the square, i.e.
for (cλ)1 = 1/

√
2. This is true for every point c in the set Q \ V . Therefore, the

points c minimizing (74) need to be on the right edge {1/
√
2i + c2j : |c2| ≤ 1/

√
2}

= {c(γ) : γ ∈ [−1, 1]} of the square Q; in the second equality, we have used the
parametrization in (33). In conclusion,

cinc(A,B) = min
γ∈[−1,1]

D (c(γ)) . (75)

Note that (75) is true also in the case α = 0 (compatible A and B), for which we have
D(c(1)) = 0.

Now, for γ ∈ [−1, 1], define Mγ as in (34). Then, Mγ has the form (68) with
c = c(γ). In particular, since γ, c1 = 1/

√
2 and c2 = γ/

√
2 satisfy (69), item (i)

of Proposition 4 implies that Mγ is a POVM, and Mγ [1] = Ac(γ) and Mγ [2] = Bc(γ).
Equation (36) then follows from the definition (7) of the error function. Moreover, by
(36) and (73), we have D

(
A,B‖Mγ

)
= D(c(γ)), hence Mγ ∈ Minc(A,B) if and only

if γ attains the minimum in (75).
In order complete the proof, it only remains to show that the minimization problem

(75) is equivalent to (35). Indeed, for ρ = (1+ v · σ)/2 and ρ′ = (1+ v′ · σ)/2, with
v = (v1 , v2 , v3) and v′ = (v1 , v2 , 0), we have S[A,B‖Mγ ](ρ) = S[A,B‖Mγ ](ρ

′) by
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(36). Therefore, by defining ρ(φ) as in (33),

D(c(γ)) = max
ρ∈S(H)
ρ pure

S[A,B‖Mγ ](ρ) by (36), (73)

= max
φ∈[0,2π)

S[A,B‖Mγ ](ρ(φ)).

By inserting this expression into (75), we get the desired equivalence. ut

Remark 7. The last proof shows that the bi-observables Mγ given by (34) with γ yield-
ing the minimum in (35) actually exhaust all D2-covariant elements in Minc(A,B).
Indeed, for the most general D2-covariant bi-observable M parameterized with γ and
c as in (68), we have D

(
A,B‖M

)
= D(c) > cinc(A,B) if c1 6= 1/

√
2, or, equival-

ently, M 6= Mγ . However, it is not clear whether any optimal bi-observables needs to
be D2-covariant, and, if this is the case, the minimum (35) is attained at a unique γ.

In the proof Theorem 6, we have made use of the following lemma, which will turn
out useful also later.

Lemma 2. Let a ≤ 0, and suppose D : [a, 1]→ [0,+∞] is a convex function such that
D(1) = 0 and D(0) < +∞. Then, D is nonincreasing on the interval [a, 0], and it is
finite and strictly decreasing on [0, 1].

Proof. For a ≤ x < y < 1, the convexity of D implies

D(y) ≤ 1− y
1− x

D(x) +
y − x
1− x

D(1) =
1− y
1− x

D(x). (76)

In particular, D(y) ≤ D(x), and, choosing x = 0, D(y) < +∞ for all y ∈ (0, 1).
Then, another application of (76), now with 0 ≤ x < y < 1, yields D(y) < D(x).
Since the latter inequality implies D(x) > 0, for all x ∈ [0, 1), its extension to y = 1 is
clear. ut

B.2. The case of two orthogonal components. When the target observables are the
orthogonal spin-1/2 components X and Y in (30), the symmetries of our system in-
crease from D2 to the enlarged dihedral group D4. Here we recall that D4 ⊂ SO(3)
is the order 8 group of the 90◦ rotations around the k-axis, together with the 180◦

rotations around i, j, n and m; clearly, D2 ⊂ D4. Now, the two rotations SD4 =
{Ri(π), Rn(π)} generate D4; for instance, we have Rj(π) = Rn(π)Ri(π)Rn(π),
Rm(π) = Ri(π)Rn(π)Ri(π), Rk(π/2) = Rm(π)Rj(π).

The action of the group element Rn(π) on X × Y, H, A = X and B = Y is still
given by (66) and (67); we have already seen that these actions satisfy condition (ii) of
Theorem 4. Further, by introducing the natural actions

Ri(π) (x, y) = (x,−y), U
(
Ri(π)

)
= e−iπ i·σ/2 ≡ −i i · σ, (77)

we have

U
(
Ri(π)

)
X(x)U

(
Ri(π)

)∗
= X(x), U

(
Ri(π)

)
Y(y)U

(
Ri(π)

)∗
= Y(−y).

In particular, we see that Ri(π) fulfills condition (i) of the same theorem. Therefore, all
g ∈ SD4

satisfy the hypotheses of Theorem 4.
Again, in view of Remark 3, now we look for the general expression of a D4-

covariant bi-observable.
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Proposition 5. Let the dihedral group D4 act on X× Y and H by (66) and (77). Then,
the most general D4-covariant bi-observable on X × Y is given by (68) with γ = 0,
c2 = 0 and |c1| ≤ 1/

√
2, that is,

M(x, y) =
1

4
[1+ c1 (xσ1 + yσ2)] , |c1| ≤ 1/

√
2. (78)

Proof. By applying the extra transformation (77) to theD2-covariant bi-observable (68)
we get

Ri(π)M(x, y) = U
(
Ri(π)

)
M(x,−y)U

(
Ri(π)

)∗
=

1

4
[(1− γxy)1+ (c1x− c2y)σ1 − (c2x− c1y)σ2] .

In order to have covariance also under this transformation, it must be γ = 0 and c2 = 0;
then, condition (69) reduces to the inequality in (78). ut

We are now ready to prove our main theorem for two orthogonal spin components.

Proof (of Theorem 5). By Theorem 4, there is at least one D4-covariant bi-observable
M ∈Minc(X,Y), which is necessarily of the form (78) by Proposition 5. Comparing it
with (34), we see that they coincide if and only if c1 = 1/

√
2 and γ = 0, and in this

case both of them equal M0 in (31). Thus, by Theorem 6, γ = 0 solves the minimization
problem (35), and M0 is the unique D4-covariant element in Minc(X,Y). In particular,
by (35) and (36) we have

cinc(X,Y) = max
φ∈[0,2π)

S[A,B‖M0](ρ(φ))

S[A,B‖M0](ρ(φ)) = s̃(cosφ) + s̃(sinφ),
(79)

where we have introduced the function

s̃(v) =
1

2

∑
k=±1

(1 + kv) log
1 + kv

1 + kv/
√
2
, |v| ≤ 1.

In (79), the best way to maximize s̃(cosφ) + s̃(sinφ) is by means of a suitable integral
representation. Namely, by direct inspection, we have

s̃(v) =
1

2 ln 2

∫ 1

1√
2

2v2(1− λ)
1− λ2v2

dλ.

Then, by differentiation and simple computations, we get

f(φ) =
d

dφ
(s̃(cosφ) + s̃(sinφ))

= − sin(4φ)

2 ln 2

∫ 1

1/
√
2

λ2(1− λ)(2− λ2)
(1− λ2(sinφ)2)2 (1− λ2(cosφ)2)2

dλ.

The integrand is nonnegative for all λ ∈ [1/
√
2, 1] and φ ∈ [0, 2π). We then see that

f(φ) < 0 for 0 < φ < π/4, f(π/4) = 0, f(φ) > 0 for π/4 < φ < π/2. So, for
φ ∈ [0, π/2], the point φ = π/4 gives a minimum of s̃(cosφ) + s̃(sinφ), while we
have two equal maxima at φ = 0 and φ = π/2; as s̃ is a continuous even function on
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[−1, 1], the maximum (79) is attained at φ = 0, π/2, π, 3π/2. Such angles correspond
to ρ(φ) being the eigenprojections of σ1 or σ2; this gives the first equality in (32). Then,
in the last two ones, the numerical values follow by direct computation.

Finally, we still have to prove the uniqueness of M0 in the set Minc(X,Y). Let
M be any bi-observable in Minc(X,Y). By Corollary 1, its covariant version MD4

is
still in Minc(X,Y), and hence MD4

= M0 since M0 is the unique D4-covariant ele-
ment of Minc(X,Y). Definition (22) implies gM(x, y) ≤ |D4|MD4

(x, y) for all g
and x, y, hence in particular M(x, y) ≤ |D4|MD4(x, y) = 8M0(x, y) for all x, y.
Since M0(x, y) has rank 1, it must then be M(x, y) = f(x, y)M0(x, y), ∀x, y, for
some nonnegative coefficients f(x, y). Writing f in the linear basis 1, x, y, xy of
CX×Y, the normalization constraint

∑
x,yM(x, y) =

∑
x,y f(x, y)M0(x, y) = 1 gives

f(x, y) = 1 + εxy for some real parameter ε. For all x, y, we have the positivity
constraint M(x, y) = f(x, y)M0(x, y) ≥ 0, which implies f(x, y) ≥ 0; this gives
−1 ≤ ε ≤ 1.

Summing up, if M ∈ Minc(X,Y), then M(x, y) = (1 + εxy)M0(x, y) for some
ε ∈ [−1, 1]. Let us show that the only possible parameter is ε = 0. Indeed, the marginals
of M are

M[1] = Ac(ε), M[2] = Bc(ε), with c(ε) =
i+ εj√

2
.

Their distributions in the state ρe = (1+ σ1) /2 are

Mρe
[1] =

1√
2
δ1 +

(
1− 1√

2

)
uX, Mρe

[2] =
ε√
2
δ1 +

(
1− ε√

2

)
uY.

On the other hand, we have Xρe = δ1 and Yρe = uY, so that

cinc(X,Y) = D
(
X,Y‖M

)
≥ S[X,Y‖M](ρe) = S

(
Xρe‖Mρe

[1]

)
+ S

(
Yρe‖Mρe

[2]

)
= log

2
√
2

1 +
√
2
+ S

(
Yρe‖Mρe

[2]

)
= cinc(X,Y) + S

(
Yρe‖Mρe

[2]

)
,

which implies S
(
Yρe‖Mρe

[2]

)
= 0. Hence, Yρe = Mρe

[2], and ε = 0 then follows. ut

B.3. A lower bound for the incompatibility degree. In order to compute the lower bound
(39), we have to minimize the following quantity over γ:

S[A,B‖Mγ ](ρe) = log
2

1 + (a1 + a2γ)/
√
2
+

1 + 2a1a2
2

log
1 + 2a1a2

1 + (a1γ + a2)/
√
2

+
1− 2a1a2

2
log

1− 2a1a2

1− (a1γ + a2)/
√
2
. (80)

By setting ` = (a1γ + a2)/
√
2 and f(`) = (ln 2)S[A,B‖Mγ ](ρe), we get

f(`) = ln
2
√
2 a1√

2 a1 +
√
2 a2`+ a 2

1 − a 2
2

+
1

2
(1 + 2a1a2) ln

1 + 2a1a2
1 + `

+
1

2
(1− 2a1a2) ln

1− 2a1a2
1− `

, (81)
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whose derivative is

f ′(`) = −
√
2 a2√

2 a1 +
√
2 a2`+ a 2

1 − a 2
2

+
`− 2a1a2
1− `2

.

Remark 8. For α = π/2, i.e. a1 = 1 and a2 = 0, we immediately get that the expression
(81) has a unique minimum at ` = 0, which gives γ = 0 and the value (32) for the
incompatibility degree.

For α 6= π/2, the zeros of f ′(`) satisfy the algebraic equation `2 + u`/(
√
2 a2) −

1 − u = 0, where u is defined in (42). By solving the algebraic equation and studying
the sign of the derivative, we find that the minimum of (81) is at the point (41) and that
the corresponding value of γ is (40). By using this result and 2a1a2 = cosα, we get the
lower bound (43).

B.4. Incompatibility degree and optimal measurements for three orthogonal spin-1/2
components. Here the target observables are X, Y and Z defined in (30) and (61). Their
symmetry group is the order 24 octahedron groupO ⊂ SO(3), generated by the 90◦ ro-
tations around the three coordinate axes: SO = {Ri(π/2), Rj(π/2), Rk(π/2)}. Note
that for the dihedral groups introduced before we have D2 ⊂ D4 ⊂ O. Let us denote
the three generators of O by g1 = Ri(π/2), g2 = Rj(π/2), g3 = Rk(π/2). By using
again the spin-1/2 projective representation of SO(3), which we now restrict to O, we
have the relations

Ug1X(x)U
∗
g1 = X(x), Ug1Y(y)U

∗
g1 = Z(y), Ug1Z(z)U

∗
g1 = Y(−z),

Ug2X(x)U
∗
g2 = Z(−x), Ug2Y(y)U

∗
g2 = Y(y), Ug2Z(z)U

∗
g2 = X(z),

Ug3X(x)U
∗
g3 = Y(x), Ug3Y(y)U

∗
g3 = X(−y), Ug3Z(z)U

∗
g3 = Z(z).

Moreover, the natural action of O on the outcome space X× Y× Z = {+1,−1}3 is

g1 (x, y, z) = (x,−z, y), g2 (x, y, z) = (z, y,−x), g3 (x, y, z) = (−y, x, z),

and the action on the index set is

gii = i, g12 = 3, g13 = 2, g21 = 3, g23 = 1, g31 = 2, g32 = 1.

Then, the hypotheses of Theorem 9 are satisfied by setting

fg1,1(x) = x, fg1,2(y) = y, fg1,3(z) = −z, fg2,1(x) = −x,

fg2,2(y) = y, fg2,3(z) = z, fg3,1(x) = x, fg3,2(y) = −y, fg3,3(z) = z.

Therefore, we can apply Theorem 9 in order to prove the main result of Section 4.2.

Proof (of Theorem 10). By similar arguments as in the proofs of Propositions 4 and 5,
one can prove that the most general O-covariant tri-observable in M(X × Y × Z) has
the form

M(x, y, z) =
1

8
[1+ c(xσ1 + yσ2 + zσ3)] with |c| ≤ 1√

3
. (82)

Writing its marginals as

M[1] = Xc, M[2] = Yc, M[3] = Zc,
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we have

D
(
X,Y,Z‖M

)
= max
ρ∈S(H)
ρ pure

[
S
(
Xρ‖Xρc

)
+ S

(
Yρ‖Yρc

)
+ S

(
Zρ‖Zρc

)]
for all c ∈ [−1/

√
3, 1/
√
3]. Denote by D(c) the right hand side of the previous equa-

tion; then, the functionD can be extended to all c’s such that Xc, Yc and Zc define three
POVMs on {−1,+1}. In particular, it is naturally defined also in the interval (1/

√
3, 1],

where Xc, Yc and Zc are the equally noisy versions of the sharp observables X, Y and
Z (cf. (15)). We thus obtain a function D : [−1/

√
3, 1] → [0,+∞]. The mappings

c 7→ Xρc , c 7→ Yρc and c 7→ Zρc are affine on the interval [−1/
√
3, 1], which, together

with the convexity of the relative entropy, implies that such are the sum and the su-
premum in D. Moreover, D(0) = D

(
X,Y,Z‖UX×Y×Z

)
< +∞ and D(1) = 0. Then,

by Lemma 2, the divergence D
(
X,Y,Z‖M

)
, with M given by (82), attains its unique

minimum when c = 1/
√
3; for such c, M = M0 defined in (62). Since Minc(X,Y,Z)

contains at least one O-covariant tri-observable by Theorem 9, then M0 is the unique
O-covariant element in Minc(X,Y,Z). The fact that also M1 given by (63) is optimal
follows since M0 and M1 have the same marginals (see (65)).

For the optimal approximate joint measurements M0 and M1, we have

cinc(X,Y,Z) = D
(
X,Y,Z‖Mi

)
= max
ρ∈S(H)
ρ pure

S[X,Y,Z‖Mi](ρ)

= max
ρ∈S(H)
ρ pure

[
S
(
Xρ‖Xρ

1/
√
3

)
+ S

(
Yρ‖Yρ

1/
√
3

)
+ S

(
Zρ‖Zρ

1/
√
3

)]
= max
φ∈[0,2π)
θ∈[0,π)

[s̃(cosφ sin θ) + s̃(sinφ sin θ) + s̃(cos θ)] , (83)

where we have used the parametrization ρ = (1 + cosφ sin θ σ1 + sinφ sin θ σ2 +
cos θ σ3)/2, inserted the marginals (65) of M0, and introduced the function

s̃(v) =
1

2

∑
k=±1

(1 + kv) log
1 + kv

1 + kv/
√
3
=

1

2 ln 2

∫ 1

1√
3

2v2(1− λ)
1− λ2v2

dλ, |v| ≤ 1.

By using the integral representation of s̃,

∂

∂φ

(
s̃(cosφ sin θ) + s̃(sinφ sin θ) + s̃(cos θ)

)
= − sin(4φ)(sin θ)4

2 ln 2

∫ 1

1/
√
3

λ2(1− λ)(2− λ2)
(1− λ2v 2

1 )
2
(1− λ2v 2

2 )
2 dλ;

similar computations give the derivative with respect to θ. By the same arguments as
in the case of two components, we obtain that in (83) the maximum is attained at all
angles φ, θ corresponding to ρ being an eigenprojection of σ1, σ2 or σ3. This fact and a
final straightforward computation give (64). ut

Remark 9. The last proof actually shows that M0 given in (62) is the uniqueO-covariant
optimal approximate joint measurement of X, Y and Z.
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C. Symmetries and proofs for two Fourier conjugate MUBs

The natural symmetry group for the two Fourier conjugate observable Q and P of (45)
is the group of the translations in the finite phase-space of the system, together with all
its symplectic transformations; as usual, we identify the latter symplectic group with the
group SL(2,F) of the 2× 2 matrices with entries in F and unit determinant. However,
just a smaller subgroup of SL(2,F) will be enough for us. Namely, for all a ∈ F∗ =
F \ {0}, we denote by d(a) and f(a) the SL(2,F)-matrices

d(a) =

(
a 0
0 a−1

)
, f(a) =

(
0 a
−a−1 0

)
.

Then, the set H = {d(a), f(a) | a ∈ F∗} is an order 2(d − 1) subgroup of the or-
der d(d2 − 1) group SL(2,F). It naturally acts by left multiplication on the additive
abelian group V = F2 of the F-valued 2-entries column vectors u = (u1, u2)

T . We
can then form the semidirect product group G = H o V , whose composition law is
(h,u)(k,v) = (hk, k−1u+ v).

The group G has a natural left action on the joint outcome space X × Y = F2: by
writing the points of X× Y = F2 as columns, we have

(h,u)

(
x
y

)
= h

(
x+ u1
y + u2

)
. (84)

In this context, the joint outcome space X × Y is called the finite phase-space of the
system, and the subgroup V ⊂ G is the group of its translations (d(1),u). The elements
(d(a),0) ∈ H are diagonal symplectic transformations, while (f(1),0) just reverses
the components x and y changing the sign of x (see e.g. [57] for more details on finite
phase-spaces and their symmetries).

On the other hand, the group G has also a natural projective unitary representation
on H. In order to describe it, we first introduce the following unitary operators:

W (u)φ(z) = e
2πi
p tru2(z−u1)φ(z − u1), ∀u ∈ F2,

D(a)φ(z) = φ(a−1z), ∀a ∈ F∗ = F \ {0}.

The operators W (u) constitute the Weyl operators associated with the phase-space
translations, and D(a) are the squeezing operators by the nonzero scalars. Collected
together with the Fourier transform F , they satisfy the composition rules

W (u)W (v) = e
2πi
p tru2v1W (u+ v), D(a)D(b) = D(ab),

F 2 = D−1, FD(a)F ∗ = D(a−1),

D(a)W (u)D(a)∗ =W (d(a)u), FW (u)F ∗ = e−
2πi
p tru1u2W (f(1)u).

Setting

U(d(a),u) = D(a)W (u), U(f(a),u) = D(a)FW (u),

we obtain a projective unitary representation of G on H. It is easily checked that

U(d(a),u)Q(x)U(d(a),u)∗ = Q(a(x+ u1)),

U(d(a),u)P(y)U(d(a),u)∗ = P(a−1(y + u2)),

U(f(a),u)Q(x)U(f(a),u)∗ = P(−a−1(x+ u1)),

U(f(a),u)P(y)U(f(a),u)∗ = Q(a(y + u2)).

(85)
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The action (84) satisfies conditions (i.a) / (ii.a) of Theorem 4, with SG = G.
Moreover, by (85) the two sharp observables A = Q and B = P satisfy conditions
(i.b) / (ii.b) of the same theorem. Therefore, by Corollary 1 we conclude that the set
Minc(Q,P) contains a G-covariant element M0.

Since in particular the bi-observable M0 is covariant with respect to the group V of
the phase-space translations, it must be of the form

Mτ (x, y) =
1

d
W ((x, y)T )τW ((x, y)T )∗, ∀x, y ∈ F, (86)

i.e. M0 = Mτ0 for some state τ0 ∈ S(H) [42, Theor. 4.5.3]. According to [24, 25],
we call an observable Mτ of the form (86) the V -covariant phase-space observable
generated by the state τ . Since M0 is alsoH-covariant andH is the stability subgroup of
G at (0, 0), we see that τ0 = dM0(0, 0) can be any state commuting with the restriction
U |H of the representation U to H .

By [64, Props. 1 and 2], the marginals of a V -covariant phase-space observable Mτ

are

Mτ [1](x) =
∑
z∈F

Qτ (z − x)Q(z), Mτ [2](y) =
∑
z∈F

Pτ (z − y)P(z). (87)

Now, the fact that τ0 commutes with U |H and the covariance relations (85) imply

Qτ0(x) = Tr [τ0U(f(−1),0)Q(x)U(f(−1),0)∗] = Pτ0(x), ∀x ∈ F,

Qτ0(x) = Tr [τ0U(d(a),0)Q(x)U(d(a),0)∗] = Qτ0(ax), ∀x ∈ F, a ∈ F∗.

By the second relation, the probability Qτ0 is constant on the two subsets {0} and F∗
of F, which are the orbits of the action of the multiplicative group F∗ on F. Therefore,
we can write Qτ0 as a linear combination of the two functions δ0 and uF − δ0/d. The
normalization of Qτ0 requires

Qτ0 = λ0δ0 + (1− λ0)uF

for some real λ0. On the other hand, we must have λ0 ∈ [−1/(d − 1) , 1] by the
positivity constraint. Equations (87) with τ = τ0 then give

M0 [1] = λ0Q+ (1− λ0)UF =: Qλ0
, M0 [2] = λ0P+ (1− λ0)UF =: Pλ0

,

where UF is the trivial uniform observable on F. If λ0 ≥ 0, then Qλ0 and Pλ0 have
the simple physical interpretation as uniformly noisy versions of Q and P with noise
intensities 1 − λ0, as it was explained in Section 2.4 (cf. (15)). However, we can not
exclude that λ0 takes its value in the negative interval [−1/(d − 1) , 0), where this
interpretation does not apply.

We finally come to the proof of our main result for two Fourier conjugate target
observables.

Proof (of Theorem 7). For λ ∈ [0, 1], a straightforward extension of the argument in
[59, Prop. 5] from the cyclic field Zp to the finite field F yields that the minimal noise
intensity making the two noisy observables Qλ and Pλ compatible is

1− λ ≥ 1− λ∗ =
√
d

2(
√
d+ 1)

(88)
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(see also Example 1 therein). Moreover, the same extension also proves that when in the
previous bound the equality is attained, Qλ∗ and Pλ∗ have a unique joint measurement
in the whole set M(X×Y); it is the V -covariant phase-space observable Mτ∗ generated
by the pure state

τ∗ =

√
d

2(1 +
√
d)
|ψ0,0 〉 〈ψ0,0 | ,

with ψ0,0 given in (51). As a consequence, for the two marginals Qλ0 and Pλ0 of the
optimal approximate joint measurement M0, the inequalities −1/(d − 1) ≤ λ0 ≤ λ∗
must hold. Note that the state τ∗ commutes with U |H , hence it is a valid candidate for
generating the G-covariant phase-space observable M0.

Now, by optimality of M0 we have

cinc(Q,P) = D
(
Q,P‖M0

)
= sup

ρ

[
S
(
Qρ‖Qρλ0

)
+ S

(
Pρ‖Pρλ0

)]
=: D(λ0).

The map λ 7→ D(λ) = supρ
[
S
(
Qρ‖Qρλ

)
+ S

(
Pρ‖Pρλ

)]
is defined for all λ ∈ R such

that Qλ and Pλ are two POVMs. By affinity, these λ’s form an interval I , which neces-
sarily contains the subinterval [0, 1]. On the interval I , the function D is nonnegative;
moreover, the mappings λ 7→ Qρλ and λ 7→ Pρλ are affine on I , which, together with the
convexity of the relative entropy, implies that such are the sum and the supremum in D.
Since D(0) = D

(
Q,P‖UX×Y

)
< +∞ and D(1) = 0, by Lemma 2 the function D is

nonincreasing on I , and finite and strictly decreasing on [0, 1]. This fact and inequality
(88) for compatible Qλ and Pλ then imply λ0 = λ∗. Moreover, the fact that Mτ∗ is the
unique joint observable of Qλ∗ and Pλ∗ imposes τ0 = τ∗, that is M0 = Mτ∗ , which is
(51). Therefore, Mτ∗ is the unique G-covariant observable in Minc(Q,P), and

cinc(Q,P) = D(λ∗) = sup
ρ

[
S
(
Qρ‖Qρλ∗

)
+ S

(
Pρ‖Pρλ∗

)]
.

The first inequality in (49) then follows by evaluating the sum inside the sup at any
eigenprojection ρ = | δx 〉 〈 δx | of Q. On the other hand, the second inequality is the
general bound for cinc(Q,P) given in (17).

We finally prove the uniqueness of the optimal approximate joint measurement (51)
in the case p 6= 2. If M is any observable in the optimal set Minc(Q,P), its covariant
version MG is still in Minc(Q,P) by Corollary 1, hence MG = Mτ∗ by the previous part.
By (22), M(x, y) ≤ |G|MG(x, y) = |G|Mτ∗(x, y) for all x, y. Since Mτ∗(x, y) has rank
1, it must then be M(x, y) = f(x, y)Mτ∗(x, y) for some function f : F2 → [0, |G|]. The
two normalization requirements

∑
x,yMτ∗(x, y) = 1 and

∑
x,y f(x, y)Mτ∗(x, y) =∑

x,yM(x, y) = 1 impose constraints on the coefficients f(x, y). If d = pn is odd,
these constraints are enough to imply that f(x, y) = 1 for all x, y. Indeed, this follows
since in this case the observable Mτ∗ is informationally complete. For d = p odd, this
is proved in [59, Prop. 9]. In the more general case d = pn odd, the same proof still
holds, as it relies on the fact that the inverse Weyl transform of τ∗

τ̂∗(u) := Tr {τ∗W (u)}

=

√
d

2(1 +
√
d)

[
δ0(u1) + δ0(u2) +

1√
d

(
e−

2πi
p tru1u2 + 1

)]
is nonzero for all u ∈ F2 (see [65, Prop. 12]). The uniqueness statement is thus proved,
and this concludes the proof of Theorem 7. ut
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Remark 10. 1. In the case p = 2, the above proof only shows that M0 defined in (51) is
the unique G-covariant observable in the set Minc(Q,P).

2. In the proof of Theorem 7, the dilational symmetries {d(a) | a ∈ F∗} simplified the
problem of characterizing the set Minc(Q,P), reducing it to the optimization of the
single parameter λ.
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25. Busch, P., Lahti, P., Pellonpää, J.-P., Ylinen, K.: Quantum Measurement (Springer, Berlin, 2016).
26. Busch, P., Heinosaari, T.: Approximate joint measurements of qubit observables, Quantum Inf. Comp. 8

(2008) 797–818.
27. Heinosaari, T., Wolf, M.M.: Nondisturbing quantum measurements, J. Math. Phys. 51 (2010) 092201.
28. Heinosaari, T., Miyadera, T.: Universality of sequential quantum measurements, Phys. Rev. 91 (2015)

022110.
29. Appleby, D.M.: Error principle, Internat. J. Theoret. Phys. 37 (1998) 2557–2572.
30. Appleby, D.M.: Quantum Errors and Disturbances: Response to Busch, Lahti and Werner, Entropy 18

(2016) 174.



52 A. Barchielli, M. Gregoratti, A. Toigo

31. Buscemi, F., Hall, M.J.W., Ozawa, M., Wilde, M.M.: Noise and disturbance in quantum measurements:
an information-theoretic approach, Phys. Rev. Lett. 112 (2014) 050401.

32. Abbot, A.A., Branciard, C.: Noise and disturbance of Qubit measurements: An information-theoretic
characterisation, Phys. Rev. A 94 (2016) 062110.

33. Coles, P.J., Furrer, F.: State-dependent approach to entropic measurement-disturbance relations, Phys.
Lett. A 379 (2015) 105–112.

34. Barchielli, A., Gregoratti, M., Toigo, A.: Measurement uncertainty relations for position and momentum:
Relative entropy formulation, Entropy 19 (2017) 301.

35. Burnham, K.P., Anderson D.R.: Model Selection and Multi-Model Inference, 2nd edition (Springer, New
York, 2002).

36. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edition (Wiley, Hoboken, New Jersey,
2006).

37. Ohya, M., Petz, D.: Quantum entropy and its use (Springer, Berlin, 1993).
38. Barchielli, A., Lupieri, G.: Instruments and channels in quantum information theory, Optics and Spec-

troscopy 99 (2005) 425–432.
39. Barchielli, A., Lupieri, G.: Quantum measurements and entropic bounds on information transmission,

Quantum Inf. Comput. 6 (2006) 16–45.
40. Barchielli, A., Lupieri, G.: Instruments and mutual entropies in quantum information, Banach Center

Publ. 73 (2006) 65–80.
41. Maccone, L.: Entropic information-disturbance tradeoff, Europhys. Lett. 77 (2007) 40002.
42. Davies, E.B.: Quantum Theory of Open Systems (Academic, London, 1976).
43. Holevo, A.S.: Quantum Systems, Channels, Information (de Gruiter, Berlin, 2012).
44. Heinosaari, T., Ziman, M.: The mathematical language of quantum theory: From uncertainty to entan-

glement (Cambridge University Press, Cambridge, 2012).
45. Heinosaari, T., Miyadera, T., Ziman, M.: An invitation to quantum incompatibility, J. Phys. A: Math.

Theor. 49 (2016) 123001.
46. Topsøe, F.: Basic concepts, identities and inequalities — the toolkit of Information Theory, Entropy 3

(2001) 162–190.
47. Pedersen, G.K.: Analysis now (Springer-Verlag, New York, 1989).
48. Busch, P., Heinosaari, T., Schultz, J., Stevens, N.: Comparing the degrees of incompatibility inherent in

probabilistic physical theories, Europhys. Lett. 103 (2013) 10002.
49. Heinosaari, T., Schultz, J., Toigo, A., Ziman, M.: Maximally incompatible quantum observables, Phys.

Lett. A 378 (2014) 1695–1699.
50. Keyl, M., Werner, R.F.: Optimal cloning of pure states, testing single clones, J. Math. Phys. 40 (1999)

3283–3299.
51. Werner, R.F.: Optimal cloning of pure states, Phys. Rev. A 58 (1998) 1827–1832.
52. P. Lahti, Coexistence and Joint Measurability in Quantum Mechanics, Int. J. Theor. Phys. 42 (2003)

893–906.
53. Wootters, W.K., Fields, D.B.: Optimal state-determination by mutually unbiased measurements, Ann.

Physics 191 (1989) 363–381.
54. Durt, T., Englert, B.-G., Bengtsson, I., Zyczkowsky, K.: On mutually unbiased bases, Int. J. Quantum

Inf. 8 (2010) 535–640.
55. Bandyopadhyay, S., Boykin, P.O., Roychowdhury, V., Vatan, F.: A new proof for the existence of mutu-

ally unbiased bases, Algorithmica 34 (2002) 512–528.
56. Appleby, D.M.: Properties of the extended Clifford group with applications to SIC-POVMs and MUBs,

arXiv:0909.5233.
57. Carmeli, C., Schultz, J., Toigo, A.: Covariant mutually unbiased bases, Rev. Math. Phys. 28 (2016)

1650009.
58. Lang, S.: Algebra, 3rd edition, Graduate Texts in Mathematics, 211 (Springer, New York, 2002).
59. Carmeli, C., Heinosaari, T., Toigo, A.: Informationally complete joint measurements on finite quantum

systems, Phys. Rev. A 85 (2012) 012109.
60. Heinosaari, T., Jivulescu, M.A., Reitzner, D., Ziman, M.: Approximating incompatible von Neumann

measurements simultaneously, Phys. Rev. A 82 (2010) 032328.
61. Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence

of quantum memory, Nat. Phys. 6 (2010) 659.
62. Frank, R. L., Lieb, E.H.: Extended Quantum Conditional Entropy and Quantum Uncertainty Inequalities,

Commun. Math. Phys. 323 (2013) 487–495.
63. Weyl, H.: Symmetry (Princeton University Press, Princeton, 1952).
64. Carmeli, C., Heinosaari, T., Toigo, A.: Sequential measurements of conjugate observables, J. Phys. A:

Math. Theor. 44 (2011) 285304.
65. Carmeli, C., Heinosaari, T., Schultz, J., Toigo, A.: Tasks and premises in quantum state determination, J.

Phys. A: Math. Theor. 47 (2014) 075302.


