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1. INTRODUCTION

Time-dependent problems modelled by hyperbolic PDEs can be formulated in terms of boundary
integral equations (BIEs) and solved via the Boundary Element Method (BEM). Successful appli-
cations have been demonstrated, for example, in seismology, in particular for the analysis of
soil-structure interaction, in acoustic, and in the scattering of electromagnetic waves (see, e.g. [1–3]).

The BEM, also when formulated directly in the space–time domain, has attracted particular
interest for various reasons, which among others are its high accuracy, the implicit fulfilment of
the radiation conditions at infinity, the low cost of discretization when problems are defined over
unbounded domains, the simplicity of imposing the interface conditions in problems defined on
multidomains since the continuity and compatibility conditions that have to be satisfied on the inter-
face respectively by the primal unknown function and its derivative can be simply incorporated
because they both appear directly in the boundary integral formulation.

However, one can identify a number of situations where complicated structural features or nonlin-
ear phenomena can be localized in small parts of an otherwise infinite and linear domain. Examples
are provided by regions having nonhomogeneous material properties (e.g. layered soils, [4,5]), con-
stitutive nonlinearities (e.g. elastoplasticity [6]), evolving topology (e.g. linear fracture mechanics
[7]) or even different physics (e.g. in solid–fluid coupling [8] or wave–soil–structure interaction
[9]). In these contexts, the BEM should be understood as complementary rather than concurrent to
standard domain approaches like a general purpose FEM. It should be further stressed that, in many
applications to time-dependent problems, a domain method requires to truncate the discretization at
some distance from the region of interest. In order to avoid spurious wave reflections, specific pro-
visions must be adopted on the truncation surface, such as absorbing boundary conditions (ABCs)
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Figure 1. Transversal section of the spatial domain for the model problem.

or perfectly matched layers (see, e.g. the comparative analysis in [10]). However, these techniques
still suffer from many drawbacks which, on the contrary, could be brilliantly solved by coupling the
FEM with the BEM (a very recent contribution in this direction can be found in [11]).

In the last decades, contributions to BEM–FEM coupling, in the context of hyperbolic problems,
started to appear [12–16], especially analyzing stability issues. However, if the classical BEM is
employed, the range of applicable time step lengths resulting in a stable and accurate solution is
limited. Indeed, accuracy and stability considerations of both the BEM itself and the FEM might
impose requirements on the choice of the time step durations, which may be contradictory (see,
e.g. [17]). This issue has somehow limited new developments. On the contrary, in this work, we
start from a recently developed energetic space–time weak formulation of BIEs related to wave
propagation problems defined on single and multidomains (see in particular [18–21] and references
therein). This technique has shown excellent stability properties, which are crucial in guaranteeing
an efficient coupling with the FEM.

As a consequence, in this investigation, we present a coupling algorithm, which allows a flexible
use of FEM and BEM as local discretization techniques, in order to efficiently treat bounded or
unbounded multidomains. PDEs associated to BIEs will be weakly reformulated by the energetic
approach, and a particular emphasis will be given to theoretical and experimental analyses of the
stability of the proposed method. The paper is structured as follows: in Sections 2 and 3, the model
problem and its energetic weak formulation are introduced; Section 4 is dedicated to the Galerkin
BEM–FEM discretization phase. Energy estimates for the numerical scheme are proved in Section 5
and extensions of the model problem are detailed in Section 6. In Section 7, several numerical results
are presented and discussed before the conclusive Section, which summarizes the main features of
the energetic coupling approach and outlines future investigations.

2. MODEL PROBLEM

Let � � R3 be an open bounded domain, with a sufficiently smooth boundary �N WD @�. Let
�1 [�2 D R3 n� be a decomposition of R3 n�, with �1 unbounded and �2 bounded nonover-
lapping subdomains such that N�1 \ N� D ; and N�1 \ N�2 D � , as illustrated in Figure 1. It should
be remarked that the boundary of the unbounded subdomain �1 reduces to the interface � . We
denote by ui .x, t /, hereafter called pressure, the unknown function in the i -th subdomain and by
pi .x, t / WD �i .@ui=@nx/.x, t /, called traction, the normal gradient of pressure, where nx is the unit
(outward) normal vector and �i is a material parameter for the subdomain �i .

Let us now consider the following wave propagation model problem:

�ui .x, t /� .1=c2i / Rui .x, t /D fi .x, t /, x 2�i , t 2 Œ0,T �, i D 1, 2 (1)

ui .x, 0/D 0, x 2�i , i D 1, 2 (2)

Pui .x, 0/D 0, x 2�i , i D 1, 2 (3)

p2.x, t /D Np.x, t /, x 2 �N , t 2 Œ0,T �, (4)

u1.x, t /D u2.x, t /, p1.x, t /D�p2.x, t /, x 2 � , t 2 Œ0,T �, (5)



where dots denote derivatives with respect to time, ci is the propagation velocity of a perturbation in
the i -th subdomain, Np.x, t / is a given function, the assigned PDE right-hand sides f1.x, t /� 0 and
f2.x, t / are suitably connected and the continuity and equilibrium conditions (5) for the solutions
are imposed at the interface � between the two subdomains.
The unknown functions ui are understood in a weak sense, i.e. ui 2H 1.Œ0,T �IH 1.�i //. Because
the goal of this work is to approximate u1 using a BEM approach and u2 using a FEM technique,
we have to obtain a boundary integral reformulation of the problem (1)–(5) in �1.

Let us consider the boundary integral representation of u1.x, t /, for x 2�1, t 2 Œ0,T �:

u1.x, t /D
1

�1

Z
�

Z t

0

G.r , t � �/p1.�, �/d� d�� �
Z
�

Z t

0

@G

@n�
.r , t � �/u1.�, �/ d� d�� , (6)

where r D krk2 D kx� �k2 and

G.r , t � �/D
c1

4	 r
ıŒc1.t � �/� r� (7)

is the forward fundamental solution of the three-dimensional wave operator, with ıŒ�� as the Dirac
distribution.

Differentiating (6) with respect to t and performing a limiting process for x tending to � , we
obtain the so-called velocity BIE [22],

1

2
Pu1.x, t /D

1

�1
P.Vp1/.x, t /� P.Ku1/.x, t / . (8)

where

Vp1.x, t /D
Z
�

Z t

0

G.r , t � �/p1.�, �/ d� d�� (9)

and

Ku1.x, t /D
Z
�

Z t
0

@G

@n�
.r , t � �/u1.�, �/ d� d�� (10)

D�

Z
�

@r

@n�

Z t
0

G.r , t � �/

�
Pu1.�, �/

c1
C
u1.�, �/

r

�
d� d�� .

Taking into account the presence of the Dirac distribution in the kernels of the aforementioned
boundary integral operators V and K, the time integration can be performed analytically yielding
the following final simplified expressions:

Vp1.x, t /D
Z
�

1

4	r
HŒt �

r

c1
� p1.�, t �

r

c1
/ d�� , (11)

Ku1.x, t /D�
Z
�

1

4	r
HŒt �

r

c1
�
@r

@n�

"
Pu1.�, t � r

c1
/

c1
C
u1.�, t � r

c1
/

r

#
d�� , (12)

where HŒ�� is the Heaviside function.
Now, if we derive with respect to time the expressions (11) and (12), after a straightforward

computation, we obtain

P.Vp1/.x, t /D .V Pp1/.x, t / , P.Ku1/.x, t /D .K Pu1/.x, t / . (13)

Inserting (13) into the BIE (8), we can conclude that problems (1)–(5) in the subdomain �1 can be
rewritten as the following space–time BIE in the boundary unknowns p1.x, t / and u1.x, t / on �:

1

2
Pu1.x, t /D

1

�1
.V Pp1/.x, t /� .K Pu1/.x, t / . (14)

Of course, this problem has to be coupled with the differential one specified for �2, under the cou-
pling conditions (5) at the interface. In particular, here, we are interested in a direct space–time weak
formulation for the coupling of the integro-differential problem on �1 [�2, and this will be done
in the next section.



3. ENERGETIC WEAK FORMULATION FOR THE COUPLING

We start remarking that the solution of (1)–(5) in �1 satisfies the following energy identity:

E�1.u1,T / WD
1

2

Z
�1

�
1

c21
Pu21.x,T /C jru1.x,T /j2

�
dx dt D

1

�1

Z
�

Z T

0

Pu1.x, t /p1.x, t / dt d�x

(15)
which can be obtained by multiplying with Pu1 Equation (1) specified for i D 1 and integrating by
parts over �1 � Œ0,T �.

Then, taking into account the nature of Equation (14), its energetic weak formulation is defined
as follows:

find u1 2H 1.Œ0,T �IH
1
2 .�// and p1 2 L2.Œ0,T �IH�

1
2 .�// such that

1

2
< Pu1, q1 >D

1

�1
< V Pp1, q1 > �<K Pu1, q1 >, 8q1 2 L

2.Œ0,T �IH�
1
2 .�//, (16)

where < �, �>D< �, �>L2.Œ0,T ���/.
For the energetic weak formulation in �2, let us multiply the differential Equation (1), specified

for i D 2, for the time derivative of test functions v2 2 H 1.Œ0,T �IH 1.�2// and integrate by parts
in space obtaining, after a multiplication by the coefficient �2:

��2A.u2, v2/C< p2j� , Pv2j� >D �2F.v2/�< Np, Pv2j�N >�N , (17)

where

A.u2, v2/ WD
Z T

0

Z
�2

�
r Pv2.x, t / � ru2.x, t /C

1

c22
Pv2.x, t / Ru2.x, t /

�
dx dt , (18)

F.v2/ WD
Z T

0

Z
�2

Pv2.x, t /f2.x, t / dx dt (19)

and < �, �>�ND< �, �>L2.Œ0,T ���N /.
Now, remembering the interface conditions (5), we finally obtain the following energetic weak
formulation of the coupled problem8<
:

1
�1
< V Pp1, q1 > �<K Pu2j� , q1 > �12 < Pu2j� , q1 >D 0, 8q1 2 L

2.Œ0,T �IH�
1
2 .�//

�2A.u2, v2/C< p1, Pv2j� >D��2F.v2/C< Np, Pv2j�N >�N , 8v2 2H 1.Œ0,T �IH 1.�2//

.

(20)
At every time instant, the unknowns are p1 over the interface � and u2 in N�2. Further, let us note
that in the particular case �1 D �2 and c1 D c2, the first equation in (20) can be regarded as a weak
ABC to reduce an unbounded domain to a computational bounded one, avoiding spurious incoming
reflections: this property will be shown in Section 7 by means of several numerical results.

Let us conclude this section with some energy considerations. Choosing v2 D u2, in (18), one
gets

A.u2,u2/D E�2.u2,T / . (21)

With the same choice for the second equations in (20), which involves all the problem unknowns,
and remembering (15), the following relation appears

�1 E�1.u1,T /C�2 E�2.u2,T /D��2F.u2/C< Np, Pu2j�N >�N , (22)

from which one can deduce a priori stability estimates for regular solutions.



4. SPACE–TIME GALERKIN DISCRETIZATION

For time discretization, we consider a uniform decomposition of the time interval Œ0,T � with time
step � t D T=N�t ,N�t 2NC, generated by the N�t C 1 time-knots

tk D k � t , k D 0, � � � ,N�t ,

and we choose piecewise constant shape functions for the time approximation of p and piecewise
linear shape functions for the time approximation of u although higher-degree shape functions can
be used. In particular, time shape functions, for k D 0, � � � ,N�t � 1, will be defined as

N k.t/DHŒt � tk��HŒt � tkC1� (23)

for the approximation of p1 and as

O k.t/DR.t � tk/�R.t � tkC1/, (24)

for the approximation of u2, where R.t � tk/D
t�tk
�t

HŒt � tk� is the ramp function.
For the space discretization, we consider the bounded subdomain �2 (suitably approximated by

a domain of polyhedral type) and a mesh T�2,�x D ¹e1, � � � , eM�x º constituted by M�x tetrahedra,
with diam.ei / � �x, ei \ ej D ; if i ¤ j and such that

SM�x
iD1 ei D �2. The mesh T� ,�x on the

interface will be the restriction of T�2,�x to � and therefore the collection of M� nonoverlapping
triangles.

The functional background compels one to choose spatially shape functions belonging to L2.�/
for the approximation of p and to C 0.�2/ for the approximation of u. Hence, we will choose
piecewise constant basis functions N'j .x/, j D 1, � � � ,M� related to T� ,�x for the approximation of
p over the interface and piecewise linear continuous functions O'j .x/, j D 1, � � � ,M�2 related to
T�2,�x for the approximation of u in �2. The approximate solutions of the problem at hand will be
expressed as

p1.x, t /'
N�t�1X
kD0

N k.t/ N̂ k.x/ WD
N�t�1X
kD0

N k.t/

M�X
jD1

N̨kj N'j .x/ , (25)

u2.x, t /'
N�t�1X
kD0

O k.t/ Ô k.x/ WD
N�t�1X
kD0

O k.t/

M�2X
jD1

Ǫkj O'j .x/ . (26)

The Galerkin BEM–FEM discretization coming from energetic weak formulation (16) produces the
linear system

E˛D b , (27)

where matrix E has a block lower triangular Toeplitz structure, because its elements depend on the
difference �hk WD th � tk , and in particular, they vanish if th < tk . Each block has dimensions
M WDM� CM�2 . If we denote by E.`/ the block obtained when �hk D `�t , `D 0, : : : ,N�t �1,
the linear system can be written as

0
BBBB@

E.0/ 0 0 � � � 0

E.1/ E.0/ 0 � � � 0

E.2/ E.1/ E.0/ � � � 0

� � � � � � � � � � � � 0

E.N�t�1/ E.N�t�2/ � � � E.1/ E.0/

1
CCCCA

0
BBBBB@

˛.0/

˛.1/

˛.2/

...
˛.N�t�1/

1
CCCCCAD

0
BBBBB@

b.0/

b.1/

b.2/
...

b.N�t�1/

1
CCCCCA (28)

where

˛.`/ D
�
˛
.`/
j

�
, b.`/ D

�
b
.`/
j

�
, `D 0, : : : ,N�t � 1I j D 1, : : : ,M ,



and the unknowns are organized as follows:

˛.`/ D
�
N̨` 1, � � � , N̨`M� , Ǫ` 1, � � � , Ǫ`M�2

�>
.

Note that each block has a symmetric 2� 2 block substructure of the type

E.`/ D

"
E.`/� E.`/� ,FEM

E.`/FEM,� E.`/FEM

#
(29)

where we can recognize the contribution of the coupling on the interface � and of the pure energetic
FEM inside �2, and it presents a highly sparse structure.
The solution of (28) is obtained with a block forward substitution, that is, at every time instant
t` D `�t , `D 0, � � � ,N�t � 1, one computes

z.`/ D b.`/ �
X̀
jD1

E.j /˛.`�j /

and then solves the reduced linear system

E.0/˛.`/ D z.`/ . (30)

Procedure (30) is a time-marching technique, where the only matrix to be inverted is the nonsingu-
lar block E.0/; therefore, the LU factorization needs to be performed only once and saved. At each
time step, the solution of (30) requires only forward and backward substitution phases, whereas all
the other blocks are used to update at every time step the right-hand side. Owing to this procedure,
we can construct and store only the blocks E.0/, � � � ,E.N�t�1/ , with a considerable reduction of
computational cost and memory requirement.
Now, referring to the left-hand sides of the weak problem (20), after an analytic integration in the
time variable, we have the following results.

Matrix elements coming from the discretization of < V Pp1, q1 > are of the form

�
1

4	

1X
˛,ˇD0

.�1/˛Cˇ
Z
�

N'i .x/
Z
�

1

r
HŒ�hC˛,kCˇ �

r

c1
� N'j .�/ d�� d�x, (31)

whereas matrix elements coming from the discretization of <K Pu2j� , q1 > are of the form

�
1

4	�t

1X
˛,ˇD0

.�1/˛Cˇ�hC˛,kCˇ

Z
�

N'i .x/
Z
�

1

r
HŒ�hC˛,kCˇ�

r

c1
�

r � n�
r2
O'j j� .�/ d�� d�x. (32)

We observe in (31) and (32) space singularities of type O.r�1/ as r ! 0, which are typical of
weakly singular kernels related to 3D elliptic problems, and also the presence of the Heaviside
function, which analytically represents the wave front propagation. We refer the interested reader
to [20, 21] for the description of the accurate and fast evaluation of such types of double integrals
on the interface � . Further, it is simple to prove that, because of the chosen time basis functions,

expressions (31) and (32) vanish for ` such that t` � diam
�
�
[
�2

�
=c1C� t ; this cut-off prop-

erty is important to drastically decrease the computation of the time-marching procedure, especially
in the context of 3D problems.

For what concerns matrix elements coming from < Pu2j� , q1 >, one has

ıhk

Z
�

O'j j� .x/ N'i .x/ d�x , (33)

where ıhk is the Kronecker symbol. An analogous result holds for the discretization of < p1, vP2j� >.

 



Finally, matrix elements coming from A.v2,u2/ will be of the type

%hk

Z
�2

r O'j .x/ � r O'i .x/ d�xC
1

c22


hk

.�t/2

Z
�2

O'j .x/ O'i .x/ d�x , (34)

where

%hk D

8<
:

1
2

, hD k
1, h > k

0, elsewhere
and 
hk D

8<
:

1, hD k
�1, hD kC 1
0, elsewhere

, (35)

Hence, they involve the evaluation of standard stiffness and mass matrices elements related to the
bounded subdomain �2.

5. ENERGY ESTIMATES FOR THE NUMERICAL SCHEME

Let us consider the second energetic weak equation in (20), which involves all the problem
unknowns, and, to simplify the following notation, Np D 0. Now, using (25) and (26) as approximate
solutions and v2.x, t /D O h.t/ Ô h.x/ as test function, we obtain

�2

N�t�1X
kD0

"
.r Ô h,r Ô k/L2.�2/

Z T

0

PO h.t/ O k.t/ dt C
. Ô h, Ô k/L2.�2/

c22

Z T

0

PO h.t/
RO k.t/ dt

#

C

N�t�1X
kD0

. Ô hj� , N̂ k/L2.�/

Z T

0

PO h.t/ N k.t/ dt D �2 . Ô h,Fh/L2.�2/ ,

(36)

where Fh.x/D�
R T
0
PO h.t/ f2.x, t / dt .

Performing analytically time integrals in the left-hand side of (36), we get

�2

h�1X
kD0

.r Ô h,r Ô k/L2.�2/C
�2

2
.r Ô h,r Ô h/L2.�2/C

�2

c22

Ô
h,
Ô
h � Ô h�1

� t2

!
L2.�2/

C . Ô hj� , N̂ h/L2.�/ D �2 . Ô h,Fh/L2.�2/ .

(37)

At this stage, we need to observe that, from (25) and (26),

p1.x, th/' p
h
1 WD

N̂
h.x/, u2.x, th/' u

h
2 WD

h�1X
kD0

Ô
k.x/ I (38)

Hence, we can rewrite the numerical scheme (37) as

�2 r
�
uhC12 � uh2

�
,r
uhC12 C uh2

2

!
L2.�2/

C
�2

c22
uhC12 � uh2 ,

uhC12 � 2 uh2 C u
h�1
2

� t2

!
L2.�2/

C
�
uhC1
2j�
� uh2j� ,ph1

�
L2.�/

D �2

�
uhC12 � uh2 ,Fh

�
L2.�2/

.

(39)

Remark 1
Here, we want to stress the fact that the proposed energetic weak formulation, after time integration,
can be regarded as a Newmark scheme for the differential part of the coupling. In fact, in the first
two terms in the left-hand side of (39), we can recognize a semidiscretization in time for the problem
in the subdomain �2, operated through the cited technique with parameters � D 1

2
, � D 1 in the

notation of [23]. This particular Newmark scheme is implicit, unconditionally stable and first-order
accurate in � t .



Now, having set k � k D k � kL2.�i /, let us introduce the discrete energy in the subdomain
�i , i D 1, 2, at the time instant thC1, defined as

EhC1i WD
1

2

"
1

c2i
k
uhC1i � uhi

� t
k2CkruhC1i k2

#
I (40)

further, we observe that

.r.uhC12 � uh2/,r.u
hC1
2 C uh2//L2.�2/ D kru

hC1
2 k2 � kruh2k

2

and

.uhC12 � uh2 ,uhC12 � 2 uh2 C u
h�1
2 /L2.�2/ D ku

hC1
2 � uh2k

2 � .uhC12 � uh2 , uh2 � u
h�1
2 /L2.�2/

� kuhC12 � uh2k
2 �

1

2
kuhC12 � uh2k

2 �
1

2
kuh2 � u

h�1
2 k2 D

1

2
kuhC12 � uh2k

2 �
1

2
kuh2 � u

h�1
2 k2 .

Combining these results with (39) and (40), we finally obtain for the discrete energy in the
subdomain �2

�2 ŒEhC12 � Eh2 �C .uhC12j�
� uh2j� ,ph1 /L2.�/ � �2 .u

hC1
2 � uh2 ,Fh/L2.�2/ . (41)

Now, applying Cauchy–Schwarz inequality to the right-hand side of (41), we get

�2 ŒEhC12 � Eh2 �C .uhC12j�
� uh2j� ,ph1 /L2.�/ � �2� t

p
2 k
uhC12 � uh2p
2 c2� t

k kc2 Fhk , (42)

from which, remembering (40), we deduce

�2 ŒEhC12 � Eh2 �C .uhC12j�
� uh2j� ,ph1 /L2.�/ � �2� t EhC12 C�2 c

2
2

� t

2
kFhk

2 . (43)

Let us now sum inequality (43), for hD 0, � � � ,n� 1, with n�N�t , observing that E02 D 0:

�2 En2 C� t
n�1X
hD0

uhC1
2j�
� uh

2j�

� t
,ph1

!
L2.�/

6 �2� t En2 C�2� t
n�1X
hD0

Eh2 C�2 c22
� t

2

n�1X
hD0

kFhk
2 .

(44)
Let us note that, remembering the coupling conditions (5) on the interface � and (15), for the second
term in the left-hand side of (44), it holds, for sufficiently small � t ,

� t

n�1X
hD0

uhC11 � uh1
� t

,ph1

!
L2.�/

'

Z
�

Z tn

0

Pu1.x, t /p1.x, t / dt d�x D �1 E�1.u1, tn/ , (45)

Hence, we can write

� t

n�1X
hD0

uhC11 � uh1
� t

,ph1

!
L2.�/

D �1 En1 � 0 (46)

and finally from (44) to (46),

�2 .1�� t/ En2 C�1 En1 6 �2� t
n�1X
hD0

Eh2 C�2 c22
� t

2

n�1X
hD0

kFhk
2 . (47)

For the discrete energy in the subdomain �2, we obtain, under the natural assumption � t < 1,

En2 �
� t

1�� t

n�1X
hD0

Eh2 C
c22 � t

2.1�� t/

n�1X
hD0

kFhk
2 (48)



and applying at last the discrete Gronwall’s Lemma [23], we deduce, for every time instant tn, the
following upper bound:

En2 �
c22 � t

2.1�� t/

n�1X
hD0

kFhk
2 exp

�
tn

1�� t

�
. (49)

If we finally consider the discrete energy in the subdomain �1, from (47), we can write

En1 �
�2

�1
� t

"
n�1X
hD0

Eh2 C
c22
2

n�1X
hD0

kFhk
2

#
(50)

and using (49) to bound from above every term in the first sum on the right-hand side of (50), we
succeed in proving a complete stability result for our numerical scheme.

6. EXTENSIONS OF THE MODEL PROBLEM

The model problem described in Section 2 has been selected to formally analyse the stability of
the corresponding energetic discretization without having to introduce a heavy notation. Numerical
results reported in the next section will confirm the proposed theory.

Anyway, together with benchmarks related to (1)–(5), we will also treat more general test prob-
lems on both bounded and unbounded domains. In particular, a Neumann boundary condition
p1.x, t / D Np1.x, t / will be assigned on a portion �1,N of the boundary of the subdomain �1. In
this case, we will consider also the usual traction BIE on that part of the boundary, that is,

1

2
Np1.x, t /DK�p1.x, t /��1Du1.x, t / , (51)

where
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and
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Taking into account the nature of Equation (51) and having set < �, � >�1,ND< �, � >L2.Œ0,T ���1,N /
,

the energetic weak formulation of the coupled problem will be8̂̂̂
ˆ̂<
ˆ̂̂̂̂
:
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(54)
in the unknowns:

u1 2H
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2.Œ0,T �IH�
1
2 .�// and u2 2H

1.Œ0,T �IH 1.�2//.

In this context, the choice (24) for the time approximation of ui , i D 1, 2 is no longer optimal,
because the cut-off property of the matrix part related to the discretization of the operator D does
not hold anymore.



Instead, it is expedient to consider, for k D 0, � � � ,N�t � 1, the following hat-shaped time
shape function

O k.t/DR.t � tk/� 2R.t � tkC1/CR.t � tkC2/ , (55)

which preserves the cut-off property of all BEM matrix blocks related to the unknown u1; hence, in
particular, as proved in [21], of the elements coming from the discretization of < Du1, Pv1 >�1,N ,
which, after a regularizing procedure of the hypersingular bilinear form [24, 25] and an analytical
integration in time, are of the form
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(57)
Matrix elements coming from the discretization of <K�p1, Pv1 >�1,N have an expression similar to
(32). In any case, we are still in presence of space singularities of type O.r�1/ as r! 0.

7. NUMERICAL RESULTS

To validate the proposed energetic approach, we address some numerical examples obtained imple-
menting the energetic weak formulation (20) and its extensions, in order to account also for bounded
domains or situations in which the boundary of the unbounded subdomain�1 does not contain only
the interface � , as described in the previous section.

The mesh of the analysis domain has been created with the code GMSH [26]. Linear four-node
tetrahedra and linear three-node triangles have been employed for the FEM and BEM subdomains,
respectively. In the current version, a strong coupling has been enforced, in the sense that the inter-
face mesh between the two subdomains is conformal, that is, triangles for � coincide with faces of
the tetrahedra for �2, as well as the time–space interpolation adopted.

Several critical issues deserve some comments. The matrix elements coming from the BEM part
of the coupling are computed as described in [20, 21]. In particular, time integrals are performed
analytically obtaining, as already said, formulas (31) and (32)–(56). The resulting double space
integrals contain only weakO.r�1/ singularities and are evaluated as follows. The outer space inte-
gral over the source element is performed numerically. A Gauss–Hammer rule with seven nodes
has been employed, even if a faster rule with three nodes typically yields very accurate overall
results. On the contrary, the inner integral is evaluated analytically if the projection of the source
point on the plane of the field element is close to the element itself; otherwise, the wave front is
approximated numerically using standard interpolation procedures and a fully numerical integration
based on Gauss–Hammer quadrature rule with seven nodes is employed. The choices of the number
of quadrature nodes has been done on the basis of the accurate analysis on this issue performed
in [21].

The energetic BEM–FEM coupling requires, at every time step, the solution of the linear system
(30) whose matrix E.0/ is nonsymmetric but highly sparse. Among the various efficient commercial
tools apt to address this task, we have here selected the Pardiso code [27].

We remark that also the contributions E.k/ coming from the discretization of the convolution
integrals are sparse and are stored either in memory or on the disk with a sparse format stocking.
These simple provisions considerably reduce the cost of the time convolution and allow for the sim-
ulation of rather large-scale problems. The issue associated with the time consuming evaluation of
double space integrals has been here mitigated by resorting to an OpenMP parallelization on shared
memory architectures, although different strategies, including, for example, fast approaches, are
under consideration.



Figure 2. Meshes employed for example 1 and pressure chart at time t D 40.

7.1. Bar under tension

We first consider the classical benchmark (see for instance [25]) of a bar of height equal to 10 and
square cross section with side equal to 2. On the lower surface, the Dirichlet boundary data Nu D 0
is enforced, whereas the upper surface is subjected to a uniform Neumann condition Np DHŒt�. On
the lateral surface, Np D 0 is assumed. Here, we fix �1 D �2 D 1 and c1 D c2 D 1, together with
f2.x, t /D 0.

The lower half �2 (FEM subdomain) has been discretized with tetrahedra imposing a uniform
mesh size �x D 0.25 (average length of element sides). The upper part �1 is modelled using the
BEM, and the surface mesh is coarsened, from the interface to the bar top, by imposing a mesh
size �x D 0.5 on the upper surface. The time interval of the analysis has been set to Œ0, 200�, and
different time steps have been tested, as clarified in the sequel. Figure 2 presents the mesh employed
and the pressure distribution on the surface at time t D 40.

This benchmark is well known to be extremely challenging for standard BEM analysis in terms
of stability properties when the time step decreases below a certain threshold. In [20], these issues
have been solved using a pure BEM energetic formulation and the same robust and stable behaviour
appears to be preserved also in the current energetic coupling with FEM. Indeed, in Figures 3–5, we
collect the plots for pressure (at a point on the upper surface and at the interface) and tractions (at
a point of the interface) using largely different time steps. No instabilities can be observed and no
spurious wave reflections are produced at the discretized interface.

7.2. Spherical cavity in an unbounded domain

As a second benchmark, we consider a spherical cavity of radius RC D 3 embedded in an infinite
linear and homogeneous medium. The�2 region is defined by RC � r �RI , with RI D 5, and the
interface � is the spherical surface with radius r DRI . Here, �1 D �2 D 1 and f2.x, t /D 0.

The mesh adopted is depicted in Figure 6 and has an average side length �x D 0.5 and �x D 1
on the inner surface and on the interface, respectively. In a first set of analyses, where c1 D c2 D 1,
the inner surface is subjected to a uniform traction Np D HŒt�. The analytical solution is endowed
with spherical symmetry and can be obtained following the same scheme as in [20], obtaining

u.r/D
R2C
r
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1� e.r�RC�t/=RC

�
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Figure 3. Example 1. Pressure evolution at bar-top for different time steps.

Figure 4. Example 1. Pressure evolution at interface for different time steps.

Figure 5. Example 1. Traction evolution at interface for different time steps.



Figure 6. Mesh adopted for example 2.

Figure 7. Example 2. Chart of pressure distribution and time history for pressure at inner radius.

A spherical wave travels with unit speed from the inner surface towards infinity and traverses the
interface at time t D RI � RC . The time interval of the analysis has been set to Œ0, 40�. Figure 7
presents the pressure chart at the end of the analysis and the pressure history at a point of the inner
surface.

In Figure 8, on the contrary, the time histories of the tractions at the interface for a broad range
of time steps are collected. Also, in this case, no reflections are observed, and even if the traction
history presents some oscillations for small�t , these never explode into instabilities. In this specific
example, the boundary elements placed on the interface act as an absorbing layer preventing waves
from being reflected backwards. The effectiveness of the coupling procedure in this sense can be
measured by comparing the present solution with the case of a finite domain with no absorbing con-
ditions (see, e.g. [20]). In this latter situation, a train of waves keep travelling and bouncing between
the inner and outer surface; these reflections are on the contrary virtually absent in the example
analysed herein, independently of the time step adopted.

Further, in Figure 9, we have reported the approximate solution at inner radius r D RC , fixing
different velocities in the two subdomains: we deduce that until the perturbation is inside �2, pres-
sure behaves as in a monodomain with the physical constants of �2; then, when the wavefront has



Figure 8. Example 2. History of interface tractions for different time steps.

Figure 9. Example 2. Pressure history at inner radius for simulations on bidomains.

completely left the interface � , pressure tends to behave as in a monodomain with the physical con-
stants of�1. For c1 D 1, c2 D 2, convergence is from below; for c1 D 1, c2 D 0.5, the approximate
solution converges oscillating.

All the obtained numerical results are similar to those found in [19], for an analogous exterior 2D
bidomain, using an energetic BEM–BEM coupling.



Figure 10. Example 2. Pressure history due to a point source.

Figure 11. Example 3. Column on a half-space; mesh adopted.

In order to test the performance of the proposed formulation in a more general setting, where,
differently from previous examples, waves impinge on the interface also at oblique angles, a second
set of analyses is run assuming a different loading. A point source of intensity HŒt� is applied to a
node of the inner surface, whereas Np D 0 elsewhere at r D RC . Here, we fix �1 D �2 D 1 and
c1 D c2 D 1. In Figure 10, we plot the pressure distribution at the end of the analysis T D 20,
whereas on the right the time history of pressure at the points of the surfaces r D 3.8 and r D 5, at
the minimum distance from the source. Also, in this case, no spurious reflections can be observed.

7.3. Column resting on a half space

The formulation developed and implemented in this work employs the fundamental solution for the
unbounded space (7) and cannot be applied as it is to problems where a finite domain rests on a
half-space. However, this type of simulation is the greatest interest, especially in view of its applica-
tions to problems in seismology (see, e.g. [17]). As well known, however, a simple provision allows
to address also this situation, as depicted in Figure 11, where a column modelled by FEM rests on
a semi-infinite space. Together with the interface, also a portion of the free surface of the infinite
domain has to be modelled by BEM, and on the BEM nodes, where the mesh is truncated, the con-
dition Nu D 0 is enforced. The strategy is very robust and a little sensitive to the truncation distance
and to the size of the elements employed on the free surface.



Figure 12. Example 3. Pressure history at a point on the top surface of the column.

In the specific case here analysed, the bar has a height equal to 5 and a square cross section with
a side equal to 2. The truncation distance has been set equal to 10. The upper surface is subjected to
a uniform Neumann condition Np D HŒt�, whereas on the lateral surface and on the BEM surface,
Np D 0 is assumed. We also fix unitary parameters and velocities and trivial source terms. The time

interval of the analysis has been set to Œ0, 100�, that is, much larger than the time of travel of possible
reflected waves from the artificial truncation line of the surface mesh. However, no spurious reflec-
tion can be appreciated, and the maximum amplitude of the pressure on the column upper surface,
depicted in Figure 12, slowly and smoothly decreases as a result of the energy dissipation of waves
radiating to infinity.

8. CONCLUSIONS AND PERSPECTIVES

A novel BEM–FEM coupling procedure has been proposed, resting on a recently developed ener-
getic BEM formulation. A model problem of wave propagation in an unbounded domain has been
analysed first; after discussing the discretization strategy adopted, the stability of the numerical
scheme has been proved. A fully three-dimensional implementation has been developed in a more
general context, also allowing for the analysis of bounded domains. All the presented numerical
results have confirmed the excellent stability properties of the adopted coupling scheme, even in the
most challenging benchmarks.

In particular, the proposed coupling strategy can be seen as an accurate form of ‘ABC’ for prob-
lems in dynamics defined on unbounded domains and discretized via a classical domain technique
such as the FEM. Indeed, in all the performed numerical tests, artificial waves reflected at the inter-
face are virtually absent for a broad range of time steps employed in the time integration and of
mesh refinement levels.

In this paper, only strong coupling and conformal meshes have been considered. In order to
exploit the higher accuracy of the BEM, one should relax the interface conditions and introduce
weak time–space coupling conditions, which are currently under investigation.

To make the methodology applicable to truly large-scale problems, special care should be also
devoted to numerical issues concerning computing time in order to speed up the evaluation of mul-
tiple surface integrals and of the time convolution. One of the first approaches for a fast evaluation
of the retarded potentials related to scattering problems was published in [28], employing a plane



wave expansion of the respective integral kernel. This idea was later extended to elastodynamics
in [29]. An alternative methodology, which also extends the time domain formulations to problems
where the time domain fundamental solution is not known, is the so-called convolution quadrature
method based BEM [30], recently investigated also in [11]. The analysis of these and alternative
options will be the topic of future research.
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