
On Dynamic State-Space models for fatigue-induced structural
degradation
⇑ Corresponding author. Tel.: +39 02 2399 8213; fax: +39 02 2399 8263.
E-mail address: matteo.corbetta@polimi.it (M. Corbetta).
Matteo Corbetta ⇑, Claudio Sbarufatti, Andrea Manes, Marco Giglio
Polytechnic of Milan, Department of Mechanical Engineering, via La Masa 1, Milan 20156, Italy
Article history:
Received 10 June 2013
Received in revised form 7 November 2013
Accepted 11 November 2013
Available online 20 November 2013
1. Introduction

Structural damage identification and lifetime prediction has
raised increasing interest over the last years. The continuous rise
of maintenance costs of complex systems highlights the necessity
to maximise the operating life of the structures without any per-
formance drop. Moreover, deterioration monitoring stands in
accordance with the strict regulations on safety of dangerous
systems such as bridges [1] nuclear power plants [2] or civil and
military aircrafts [3]. For these reasons, the paper proposes an in-
depth study of Fatigue Crack Growth (FCG) models and their
combination with statistical tools for dynamic processes, both
non-linear and non-Gaussian. A typical model-based approach for
dynamic systems in which a dynamic model describes the ob-
served phenomenon is used. In order to produce an effective mod-
el-based algorithm, at least two different fields have to be studied
in-depth: (i) Damage evolution over structures, and (ii) theory of
random processes. The first one is required to understand all the
possible time-evolution of the fatigue-damage according to the
phenomenological aspects of damage propagation, while the sec-
ond one is essential to account for all the uncertainties that can
be encountered in a real environment. Usually the algorithms able
to produce a lifetime prediction are based on the mathematical
description of the degradation (achieved by point (i)) altered by a
random process (ii), which is heuristically selected. Thanks to this
alteration of the deterministic deterioration process, a statistical
lifetime prediction of the structure is provided. The approach can
be considered as a particular branch of structural reliability and
maintenance technologies having damage tolerance, condition
based or predictive maintenance as the final purpose.

The necessity of a stochastic process for the efficient (and pos-
sibly on-line) lifetime prediction is justified by the wide scatter of
data about fatigue failure of structures. This scatter is due to the
intrinsic uncertainty about the atomic arrangement, the impurity
and the statistical presence of flaws altering the crystal lattice of
materials. Moreover, the uncertainties about the loads and the
measurement of the damage markedly affect the Residual Useful
Life (RUL) estimation of the monitored structure. The scatter in fa-
tigue and fracture data appears also in the case of constant-ampli-
tude loading [4–6] and it markedly grows if the applied load is not
well defined or, in the worst case, has a random spectrum such as
in the case of aeronautical and civil structures [7–10]. Yokobori in
[11,12] highlights the necessity to consider crack nucleation and
crack-induced failure as a stochastic process since 1953. Therefore,
the entire literature about prognostic systems and fatigue life
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prediction of structures involves some degree of stochastic pro-
cesses, in particular if the loads are unknown [13–18]. Uncertainty
on crack propagation parameters has been studied by several
authors [19–22] on the basis of the Virkler’s database [4] which
contains the results of 68 fatigue crack propagations on Al2024-
T3 specimens in which the variability of crack growth velocity
has been highlighted. Wu et al. have considered the dependence
of the specimen orientations on FCG rate [23] and the uncertainties
of crack propagation near the threshold limit [24]. Ray and Tangir-
ala [25,26] described in-depth the variability of the FCG phenome-
non to provide prognostic tools. They have used models for the FCG
rate with additional random noise to produce an estimation of the
probability of failure through Gaussian–Markov process filters or
using the principle of Karhunen–Loève expansion of the crack
length covariance [27]. Instead, approaches based on State-Space
models can be found in [28,29]. Yang and Manning [30] have sta-
tistically analysed the FCG by a stochastic model composed of
the deterministic crack propagation law multiplied by a lognormal
random process x(t) producing a Stochastic Differential Equation
(SDE). The integration of the equation provides the median crack
growth curve and the probability of the critical crack length with
respect to time. Wu et al. [31] have presented stochastic FCG mod-
els built by experimental data. Xiang et al. [32] have proposed a life
prediction algorithm of specimens based on equivalent initial flaw
size concept combined with asymptotic Stress Intensity Factor
(SIF) solution for notch cracks. Farhangdoost et al. [33] propose a
methodology similar to those in [30] using stochastic Markov pro-
cess and taking into account the closure effect. Scafetta et al. [34]
have analysed the correlation of random phenomena inside the
FCG problem on ductile alloys. They have shown that some fea-
tures of the crack dynamics have to be modelled by correlated sto-
chastic processes, while some other characteristics can be
considered as a random noise. Gangloff et al. [35] have made pre-
dictions about FCG on cracked specimen studying the closure and
environmental effects, load frequency and relative interactions.
Newman et al. [36] have studied the FCG on a cracked helicopter
component under variable-amplitude loading by using FASTRAN
software. This complex problem emphasizes the scatter of data
and the uncertainty about FCG and the lifetime prediction. The
threshold SIF variability and the closure effect is affected by many
parameters, since a lot of work has been dedicated to the study of
this particular region of the FCG curve ([24,37–42]). As a conse-
quence, a real component subjected to fatigue loading is also sub-
jected to high fluctuations in fatigue crack propagation.

The need for a stochastic process in order to design an effective
lifetime predictor stands in agreement with analytical and numer-
ical algorithms based on Stochastic Differential Equation or Dy-
namic State-Space (DSS) models for random processes. The
literature about stochastic system evolution and stochastic filter-
ing is at least as extensive as the FCG literature. A series of numer-
ical algorithms and filters have been developed to combine the
model evolution equation with the statistics of the observed phe-
nomenon. This combination merges the information about the
probable evolution of the degradation (in this case, the fatigue
crack propagation) with the direct or indirect measure of the crack
length on the structure. The basic idea is to screen the most prob-
able crack evolution according to the measured crack length to
produce an accurate time to failure or RUL distribution. The main
techniques of interest are based on Bayesian statistics and Monte
Carlo Sampling (MCS), for example, the Markov chain Monte Carlo
(MCMC) or the Bayesian filters. Both of these methods can be used
to produce a reliable failure time distribution given a mathematical
model of the phenomenon exists and sequential measures on the
system are available. One of the most widespread MCMC method
is the algorithm proposed by Metropolis [43] and generalised by
Hastings in 1970 [44], or the Metropolis Adjusted Langevin
Algorithm (Roberts and Rosenthal [45–47] and references therein).
These MCMC techniques are used to identify the actual parameters
of the evolution equations that are roughly known at the beginning
of the process. Inside the field of Bayesian filters, a series of tech-
niques for nonlinear problems with non-Gaussian noise have been
developed starting from the Kalman Filter (KF) ([48] and [49]) up
to the most advanced as Sequential Importance Sampling often
called Particle Filter. Haug [50], Arulampalam et al. [51] and Chen
[52] reported a useful explanation of these different techniques.
Moreover, recent studies on Bayesian filtering focus on techniques
that evaluate the most probable system evolution by means of a
model-degradation equation built by random variable parameters
[53–56]. Interesting and useful applications of Sequential Impor-
tance Sampling on FCG problems can be found in [57–59].

As clearly visible from the quoted works, the scientific commu-
nity studied the problem of Fatigue Crack Growth and stochastic
lifetime prediction for many years. Several methodologies address
the variability of crack growth phenomenon trying to evaluate the
RUL of the structure. One of these methods is the statistical mod-
elling of FCG parameters. Several papers show the application of
this technique using Paris’ equation or more advanced models.
However, an overall dissertation on FCG modelling combined with
Markov chain Monte Carlo methods is missing. Many papers ded-
icated to crack monitoring focus on the mathematical implementa-
tion of the problem, sometimes overlooking the applicability of the
methodologies to real systems. Moreover, some features such as
the artificial noise of simulated models or the parameters defined
in statistical terms are arbitrarily selected in some cases. Again,
one of the main drawbacks of the common Metropolis–Hastings
algorithm, which is the proper selection of the proposal distribu-
tion, is not faced for the problem of fatigue crack propagation. It
is a crucial step for the algorithm development. At the beginning
of the process, the spread of the measures is unknown, so previous
experience and practical considerations drive the selection of the
proposal variance. Given these premises, the present work pro-
vides a full description of the FCG modelling using statistical
parameters and the combination of this stochastic modelling with-
in a Bayesian framework. It tries to make a comprehensive treat-
ment of the matter underlying advantage and drawbacks of the
statistical definition for each model parameter. The different sec-
tions describe all the peculiar features mandatory to develop a
prognostic tool based on statistical parameters and MCS tech-
niques. First, the variability of the crack propagation curves is ex-
pressed as mean and variance of the FCG rate models, defining
the output variability as a function of different uncertainties on
the input variables. Several models with different parameters are
analysed based on this concept, providing brief discussions on
the applicability of the analytical solutions. The approach is suit-
able for Damage Tolerant design introducing a statistical definition
of the crack growth velocity, rather than the standard determinis-
tic curves implemented nowadays. Moreover, it is suitable for the
integration of the FCG rate equation and provides useful informa-
tion to build a Stochastic DSS (SDSS) model for damage propaga-
tion, as presented in this work. The development of the Dynamic
State-Space model for FCG constitutes the second part of the work.
It takes into account the variability of FCG models previously stud-
ied to solve the problem of residual life prediction. The description
of the method and the peculiar variables of interest have been pre-
sented, accounting for the threshold SIF range as random variable,
which is crucial at least in the first part of the damage propagation.
The prognostic tool is based on Metropolis–Hastings algorithm
with a particular adaptive proposal distribution, which is detailed
during the description of the DSS model updating. The application
of this adaptive proposal to fatigue crack propagation monitoring
constitutes an additional novelty of the paper. The method is ap-
plied to simulated fatigue crack propagation, with a preliminary



Fig. 1. Observed crack propagations on aluminium panels compared with the FCG
simulation based on the NASGRO model.
analysis of the threshold SIF range updating, for the purposes of
RUL prediction. The final step forward of the work is represented
by the application of the prognostic tool for the real-time estima-
tion of the residual life of real portions of helicopter fuselages, sub-
jected to fatigue load, however in a laboratory environment. The
algorithm is tested on four different crack propagations, highlight-
ing the effectiveness and the robustness of the method for real
structures.

The paper organises as follows: Section 2 shows a statistical
description of several FCG rate models, starting from the sim-
plest equation defined by Paris and Erdogan [60] up to the
most advanced NASGRO equation [61]. Focusing on the NAS-
GRO model, different kind of uncertainties are studied sepa-
rately, in order to underline some statistical features of the
sigmoid curve describing the crack velocity as a function of
the SIF range. Section 3 provides the implementation of the sto-
chastic FCG equations into a Dynamic State-Space model suit-
able for the numerical resolution and the real-time updating
of the residual lifetime prediction. Section 4 firstly shows the
application of the methodology to simulated crack propagations
with a discussion about the updating of the FCG parameters;
then the algorithm is tested on a real aluminium helicopter pa-
nel subjected to fatigue load in a laboratory environment. The
SDSS model of the crack evolution is updated by means of a
Metropolis–Hastings algorithm with a particular adaptive pro-
posal distribution used to improve the performance into the
framework of crack propagation monitoring. The lifetime pre-
diction is compared with the actual residual useful life of the
structures. The conclusive section (Section 5) summarises the
main novelties introduced by this work, the lifetime prediction
performances of the proposed technique and finally the advan-
tages and drawbacks of the method for real-time crack propa-
gation monitoring. An appendix is also provided at the end of
the paper to show the analytical formulations used to evaluate
the statistics of the crack propagation velocity related to differ-
ent FCG rate models.

2. Stochastic modelling of Fatigue Crack Growth

This section provides a detailed statistical insight to the fatigue
crack propagation models. The mathematical quantities within
these models are statistically defined after a very brief introduction
about FCG. The treatment is made as general as possible in the
beginning, with a final application to the most advanced crack
growth equation, which is analysed distinguishing among different
types of uncertainty. The dependence of the fatigue crack propaga-
tion on the stress affecting the crack tip is a concept generally ac-
cepted by the scientific community [62–64]. Several models
describe the phenomenological aspects of crack propagation. With-
in these models, the SIF range near the crack tip drives the crack
growth; nevertheless a direct dependence on the crack length also
exists. Consequently, the crack propagation velocity with respect
to the applied fatigue load is usually described by ordinary differ-
ential Eq. (1) that inherently includes the formulation of SIF range.

dy
dt
¼ /ðyÞ ð1Þ

where y is the crack length, t denotes the increasing time and / is
the function used to describe the FCG process. The number of
necessary parameters and variables is allied with the model
complexity. The analytical or numerical resolution of (1) produces
the expected time to reach selected certain crack length. The most
common and easy way is to use the Paris’ equation to describe /
and integrate the Eq. (1) using the method of variable separation
to calculate the failure cycle Nf (2). Considering constant-amplitude
loading.
Nf ¼
Z yf

y0

dy
/ðyÞ ð2Þ

where y0 and yf are the starting and the final crack length, respec-
tively. Unfortunately, the estimations provided by deterministic
models are not sufficient to produce a reliable residual life assess-
ment for any real component. This concept is evidenced by Fig. 1,
which shows some results of the fatigue crack propagation on heli-
copter aluminium panels, a similar configuration is analysed in
[65,66]. The results of the crack evolutions are compared with the
theoretical crack propagation obtained by computer simulations
with the NASGRO equation. The large differences between experi-
mental data and simulation are clearly visible. Thus a probabilistic
assessment of the possible crack evolutions is mandatory for struc-
tural maintenance strategies, safety of structures and advanced
real-time prognostic tools. Further information about these experi-
mental tests is provided in Section 4, in which the experimental
data is used to validate the proposed methodology.

Two main techniques are typically implemented to predict the
residual life of cracked structures. The first one is based on the
FCG equation in (1), multiplied by stochastic processes taken into
account during the integration procedure [27,28,30] or used in dy-
namic filter techniques [25,26]. These random processes are gener-
ated according to previously obtained experimental data, user’s
experience or heuristic considerations. The other method is based
on the statistical description of the FCG rate parameters as just pre-
sented in [18,20–22,67–71]. The statistical considerations within
these works are heavily interrelated with the implemented mod-
els. Nevertheless, a general treatment on the combination of FCG
modelling within Bayesian frameworks is missing. Thus, the para-
graph investigates a wide range of possible random variables with-
in the field of FCG models, underlying some statistical features of
the Eq. (1). The dissertation provides advantages, drawbacks and
practical problems related to the statistical definition of the em-
ployed parameters. It provides a statistical definition of crack
growth rate, useful for Damage Tolerance strategies, and certainly
more reliable than the standard deterministic equations. Obvi-
ously, the result of probabilistic crack propagation analysis is
dependent on the employed mathematical model. However, the
proposed methodology is suitable for the application to any fatigue
degradation process without restrictions. In all generality, the FCG
rate models are constituted of:

(i) Empirical parameters of the FCG equation (model
uncertainty).

(ii) Typical features of the material (material uncertainty).
(iii) Time-varying variables (environmental and physics

uncertainty).



The variability of the empirical parameters has been demon-
strated by means of Virkler’s data [4], at least for the two parame-
ters describing the log-linear regime. Intuitively, the empirical
parameters are estimated through regressions or other numerical
techniques with an intrinsic uncertainty on the output related to
the error of the model itself. This is the reason why it is defined
as a model uncertainty, too. The features of the material represent
the second source of uncertainty. The considerations about the
material variability are similar of those made for the empirical
parameters. However, they represent the variability of physical
quantities, rather than the uncertainty related to the data-fitting
practise. The uncertainties related to the time-dependent variables
is mainly associated to the variability of the loads acting on the
structure and the uncertainty related to the crack length, especially
for automatic measurement systems1. Starting from these consider-
ations, the ordinary differential Eq. (1) becomes an SDE. If the empir-
ical parameters, the material properties and the time-varying
variables are respectively collected in the vectors #, g, f the SDE as-
sumes the form in (3).

dY
dt
¼ /ðH;H;ZðY; tÞÞ ð3Þ

where the capital letters state random variables. Y represents the
crack length, H is the random vector of empirical parameters, H
is the random vector of material properties and Z(Y, t) is the random
vector of the time-dependent variables. Intuitively, it should be pos-
sible to evaluate the prediction intervals of the output dY/dt based
on the statistical definition of the input variables. Nonetheless,
one has to overcome the nonlinearity of the model in order to pro-
vide a statistical definition of the output. The analytical formulation
of the output variability given the statistics of the input parameters
is proposed hereafter. As explained above, the statistical evaluation
of crack growth velocity can be applied for the optimisation of ad-
vanced maintenance strategies. In addition, this analysis highlights
which parameters should be statistically defined, and checks
whether a closed form solution of mean and variance exists. If the
analytical solution does not exist, the FCG with statistical definition
of parameters can be implemented in Dynamic State-Space models
suitable for the numerical resolution via MCS.

Different FCG models are accounted for, highlighting the formu-
lation of the variance, given different parameters and material
properties are provided as input. In order to produce a closed form
solution of the problem, three main hypotheses are considered: (i)
the random variables contemplated in the dissertation are sup-
posed normally distributed or log-normally distributed, (ii) the
time-varying variables, that is SIF range and maximum applied
SIF are supposed to be deterministic (zero variance), and (iii) the
amplitude of the load is assumed constant, so that the crack veloc-
ity can be evaluated per load cycle dY/dN instead of the crack incre-
ment in time dY/dt. Thus the vector of time-varying variables
becomes deterministic at determined time Z(Y, t) = f(y, t). If the
hypotheses cannot be satisfied or a closed form solution does not
exist, the propagation of uncertainties within the FCG framework
can be solved according with the Monte Carlo method presented
in this paper (Section 4) or other numerical techniques.
2.1. Paris’ model

Sometimes, the transformation of (1) in logarithmic form make
easier the analytical evaluation of the variance associated to the
crack propagation velocity. Suppose to start from the Paris–Erdo-
gan law defined by the well-known parameters C, m and the SIF
1 One can think to apply the prognostic methodology herein described to estimate
the RUL of a component based on the statistical output provided by a real time
Structural Health Monitoring system [84].
range acting on the crack tip [60]. The two distributions
Nðllog C ;r2

log CÞ, Nðlm;r2
mÞ define the statistics of log C, m correlated

by the coefficient qlogC,m [70]. The closed form solution of the log-
arithmic crack propagation velocity llog dY=dN;r2

log dY=dN are defined
in (4) and (5), as presented in [72]. A more detailed explanation
of the equation is available in the appendix.

llog dY=dN ¼ llog C þ lM log DK ð4Þ

r2
log dY=dN ¼ r2

log C þ log DKrMðlog DKrM þ 2qlog C;Mrlog CÞ ð5Þ

2.2. Forman’s model

The Paris’ formulation is very simple and widely studied. On the
other hand, it overrate the crack growth rate of the threshold re-
gion and underrate the crack rate in the unstable crack propagation
zone. Moving towards more advanced models, Forman et al. [73]
suggest a model capable of describing the region III of the sigmoid
curve (6), namely the critical region. Similarly to the treatment
made for Paris’ law, Eqs. (7) and (8) shows the mean and variance
associated to Forman’s model.

dy
dN
¼ CDKm Kmax

KC � Kmax
ð6Þ

llog dY=dN ¼ llog C þ lM log DK þ Kmax � llogðKC�KmaxÞ ð7Þ

r2
log dY=dN ¼ r2

log C þ log DKrM½log DKrM þ 2ðqlog C;Mrlog C

� qM;logðKC�KmaxÞrlogðKC�KmaxÞÞ�þ

þrlogðKC�KmaxÞðrlogðKC�KmaxÞ � 2qlog C;logðKC�KmaxÞrlog CÞ ð8Þ

Notwithstanding the logarithmic transformation of (6), the evalua-
tion of the variance associated to the model is not easy. In fact, the
critical SIF KC and the maximum applied SIF Kmax remain in the
same logarithm, thus the evaluation of the correct variance
r2

log dY=dN requires the knowledge of the terms r2
logðKC�KmaxÞ and the

correlation coefficients qlog C;logðKC�KmaxÞ and qM;logðKC�KmaxÞ. Unfortu-
nately, the calculation of the latter variance and correlation coeffi-
cients are not trivial even if the critical SIF is normally or log-
normally distributed. As a consequence, an approximated formula-
tion using delta method is presented hereafter.

The delta method (explained in the appendix) is a common
technique to approximate nonlinear functions of several random
variables. The mean and variance of (6) approximated with the del-
ta method are shown in (9) and (10). See the appendix for more
information about this method and for the full description of the
analytical calculations.

ldY=dN �
lCDKlM Kmax

lKC
� lKmax

ð9Þ

r2
dY=dN �

DKlM Kmax

lKC
� Kmax

!2

r2
C þ ðlC log DKÞ2r2

M þ
l2

C

ðlKC
� KmaxÞ2

r2
KC

"

þ2qC;MðlC log DKÞrCrM

i
þ

�2
DKlM Kmax

lKC
� Kmax

!2
qC;KC

lCrCrKC

ðlKC
� KmaxÞ

þ
qM;KC

ðl2
C log DKÞrMrKC

ðlKC
� KmaxÞ

" #
ð10Þ
2.3. McEvily’s model

Forman’s model does not take into account the zone I of the
crack growth rate curve. The so-named threshold region is funda-
mental from a RUL viewpoint, because most of the life of a cracked
structure is spent in the first and second region of the sigmoid
curve and relatively few cycles in the unstable or critical region



(III). The model proposed by McEvily, in its first formulation, allows
accounting for the threshold effect on the Fatigue Crack Growth
rate [74]. The expression is only useful for the lower portion of
the curve as just highlighted in [75]. Eq. (11) shows The formula-
tion for inert atmosphere, supposing the load ratio R = 0.

dy
dN
¼ 8

pE2 ðDK2 � DK2
th;0Þ ð11Þ

The mean and variance of the model should be evaluated according
to the two material properties statistically defined, that is the Elas-
tic modulus and the threshold SIF range. However, the formulation
of the exact two moments of the model is not easy because of the
ratio between E and DKth,0 raised to the power of two. Furthermore,
the same problems of Forman’s law are found in the McEvily’s mod-
el; the logarithmic transformation does not simplify the formula-
tion because the variance and the correlations of the term
logðDK2 � DK2

th;0Þ should be evaluated. Then, the approximation of
the moments with the delta method is presented. The resulting
mean (12) and variance (13) are shown afterwards.

ldY=dN �
8

pl2
E

ðDK2 � l2
DKth;0
Þ ð12Þ

r2
dY=dN �

�16
pl2

E

� �2 ðDK2 � l2
DKth;0
Þ

l2
E

2

r2
E þ l2

DKth;0
r2

DKth;0
þ

2lDKth;0
ðDK2 � l2

DKth;0
ÞqE;DKth;0

rErDKth;0

lE

2
4

3
5

ð13Þ

The application of (13) is feasible if the correlation among the
Young modulus and the threshold SIF range is available, or it can
be evaluated. Otherwise, an approximated variance neglecting the
correlation term remains valid for the (approximated) estimation
of the statistical crack growth velocity in the first region and part
of the second region of the sigmoid.

2.4. NASGRO model

The more advanced NASGRO model [61] is able to cover the en-
tire FCG rate from the threshold up to unstable crack propagation
[7,36,61,65–67]. Moreover, it accounts for the closure effect stud-
ied by Newman [41]. Consequently, NASGRO formulation (14) rep-
resents the state of the art of the crack velocity equations and it is
used in the following part of the paper as the reference FCG model.

dy
dN
¼ C

1� f
1� R

DK
� �m ð1� DKth

DK Þ
p

1� Kmax
KC

� �q ð14Þ

C, m, p and q are empirical parameters, f is the crack opening func-
tion, R is the load ratio, Kmax is the maximum SIF during the load cy-
cle, KC is the critical SIF value, DK and DKth are the SIF range and the
threshold SIF range, respectively. The two additional parameters p
and q, together with the threshold SIF range DKth and the critical
SIF KC governs the first and the third region of the sigmoid curve
[61]. The dependence of DKth from the crack length and the thresh-
old SIF range for null load ratio (DKth,0) and the dependence of KC

from the fracture toughness KIC in plane strain condition is also
highlighted within NASGRO formulation [61]. Eq. (15) shows the
logarithmic form of NASGRO law.

log
dy
dN
¼ log C þm log

1� f
1� R

DK
� �

þ p

� log 1� DKthðDKth;0Þ
DK

� �
� q log 1� Kmax

KCðKICÞ

� �
ð15Þ

In the most general case, all the material properties and the empir-
ical parameters are statistically defined. On the other hand, the ex-
act analytical calculation of mean and variance is unfeasible
because of the high nonlinearity of the model, also in its logarithmic
form. Delta method was used in the previous models to provide the
approximated mean and variance of the crack growth rate model
that unfortunately cannot be easily solved accounting for all the
random variables. Before applying delta method to NASGRO equa-
tion, some simplifying hypothesis are proposed hereafter. For the
best author knowledge, statistical studies about the two parameters
p and q are missing. Moreover, the variability of threshold SIF range
DKth,0 and fracture toughness KIC (two material properties) mark-
edly affects the uncertainty of the first and third region of the
FCG rate rather than the variability of p and q. Roughly speaking,
the threshold SIF range and KC are the vertical asymptotes (and con-
sequently, the limits of the domain) of NASGRO. As a consequence,
the parameters p and q are considered deterministic afterwards.
According to the above considerations, the approximated formula-
tions of NASGRO mean and variance are expressed in (16) and
(17). See the appendix for the complete mathematical treatment
of the variance.

llog dY=dN � llog C þ lM log
1� f
1� R

DK
� �

þ p

� log 1�
DKth lDKth;0

� �
DK

0
@

1
A� q

� log 1� Kmax

KC lKIC

� �
0
@

1
A ð16Þ
r2
logdY=dN �r2

logC þ log
1� f
1�R

DK
� �2

r2
M

þp2x2
0 DK

lDKth;0
x0

DKx1
�1

� �
x1

� ��2

r2
DKth;0

þq2 Kmax

l2
KIC

a0
þ a2

l6
KIC

a1a2
0

" #2
Kmax

lKIC
a0
�1

!�2

r2
KIC

þ2log
1� f
1�R

DK
� �

qlogC;MrlogCrM

þ2px0 DK
lDKth;0

x0

DKx1
�1

� �
x1

� ��1

qlogC;DKth;0
rlogCrDKth;0

þ2q
Kmax

l2
KIC

a0
þ a2

l6
KIC

a1a2
0

" #
Kmax

lKIC
a0
�1

!�1

qlogC;KIC
rlogCrKIC

þ2log
1� f
1�R

DK
� �

px0 DK
lDKth;0

x0

DKx1
�1

� �
x1

� ��1

qM;DKth;0
rMrDKth;0

þ2log
1� f
1�R

DK
� �

q
Kmax

l2
KIC

a0
þ a2

l6
KIC

a1a2
0

" #

� Kmax

lKIC
a0
�1

!�1

qM;KIC
rMrKIC

þ2px0 DKx1

lDKth;0
x0

DKx1
�1

� �
Kmax

lKIC
a0
�1

!" #�1

q
Kmax

l2
KIC

a0
þ a2

l6
KIC

a1a2
0

" #

�qDKth;0 ;KIC
rDKth;0

rKIC ð17Þ

The terms x0, x1, a0, a1, a2 depend on some constants highlighted
in the appendix. Although the initial hypothesis largely simplify
the most general case, the application of Eq. (17) remains unfeasi-
ble. As a matter of fact, the terms related to the first derivative of
log / with respect to the vertical asymptotes, that is o log //
o DKth,0, o log //o KIC tends to infinity when the applied DK
approaches DKth or KC, respectively. It means that the first order
Taylor expansion is not sufficient to correctly describe the variabil-
ity of NASGRO law close to the limits of its domain. Unfortunately,
the second or higher orders of the Taylor expansion produce very
complicated formulation of the variance, and the method becomes
not viable for practical applications. For that reason, the definition
of a statistical FCG model requires further simplifications to obtain
a closed form solution of the equation, otherwise numerical



techniques should be implemented. A simple statistical study of
NASGRO is presented afterwards. A splitting of the variability asso-
ciated to empirical parameters and material properties is provided.
It permits evaluating the uncertainty of the model related to the
two categories separately. Basically, the additional underlying
hypothesis in the next sub Sections 2.5 and 2.6 is the neglecting
of any correlation between material properties and empirical
parameters.

2.5. Uncertainty of empirical parameters

Starting from the previous considerations about the FCG rate
models, the mean and the variance are evaluable according to
the statistics of the empirical parameters. Belonging to the vector
H. The most common parameters defined in statistical terms are
log C and m describing the linear zone of the crack propagation
velocity. Sometimes, simplified methods with one statistical
parameter are implemented in literature. For instance, Beretta
and Villa [22] propose a simplified approach using a fixed value
for m and log(C) defined as a random variable, or a fixed value
for log(C) and m as a random variable. However, the two random
variables can be easily taken into account in the FCG equations,
as visible in the Eqs. (18) and (19) for mean and variance of NAS-
GRO model, respectively.

llog dY=dN ¼ llog C þ lM log
1� f
1� R

DK
� �

þ p log 1�
DKth DKth;0

� 	
DK

� �� �

� q log 1� Kmax

KC KICð Þ

� �� �
ð18Þ

r2
log dY=dN ¼ r2

log C þ log
1� f
1� R

DK
� �� �2

r2
M þ 2qlog C;Mrlog CrM

� log
1� f
1� R

DK
� �

ð19Þ

The standard formula llogdY/dN ± zarlogdY/dN yield to the prediction
intervals associated to the FCG rate at different confidence levels.
Fig. 2 shows the average NASGRO curve with the confidence bands
related to the statistics of C and m for the Al2024-T6 shown in
Table 1. The mean values come from the NASGRO manual [61]
while the variances of log C, m and the correlation coefficients are
already defined in [4,20–22] for the Paris’ equation. All the bands
Fig. 2. NASGRO model with probabilistic definition of C and m parameters.
converge to the threshold SIF range from one side and the critical
SIF from the other side, because the two material properties are
considered deterministic within this subsection.

2.6. Uncertainty of material properties

The material properties involved in the FCG process can be han-
dled in the same way as the other material characteristics used in
stress analyses: ultimate tensile strength or fatigue stress limit, etc.
All of these properties are statistically defined in the design phase
of structures and reliability analyses, so the properties related to
the FCG should be handled using the same approach. As it is men-
tioned above, the two main material features affecting the fatigue
crack propagation are the threshold SIF range for R = 0 and the frac-
ture toughness in plane strain condition. A statistical description of
DKth,0 has been adopted by Beretta and Villa [22] analysing some
data obtained from specimens of A4T steel. The same consider-
ations can be made for the statistical definition of the plane strain
toughness KIC or whatever other property is considered in the FCG
model. In this context, DKth,0 and KIC are defined as the only two
material properties statistically defined, so they belong to the vec-
tor H. If the DKth,0 and KIC are normally distributed, the mean vec-
tor and covariance matrix in (20) provide the exact statistical
description of H.

lH ¼ EðHÞ ¼ lDKth;0
lKIC

� �
; RH ¼ COVðHÞ

¼
r2

DKth;0
rDKth;0 ;KIC

rDKth;0 ;KIC r2
KIC

" #
¼ 20:808 0

0 3565

� �
ð20Þ

As shown above the derivatives of NASGRO model with respect to
DKth,0 and KIC tends to infinity, so it is difficult to evaluate the global
variance of the model even if the other parameters are determinis-
tic. However, under the hypothesis that the two material properties
are uncorrelated, the boundaries of the crack velocity can be
approximated in an easy way. In particular, the confidence bands
of each parameters are combined to produce the confidence band
of the crack growth rate. The upper and lower boundaries of the
crack propagation velocity are shown in Fig. 3. The mean and vari-
ance of the threshold SIF range and fracture toughness are ex-
pressed in Table 1. The statistics of DKth,0 is extrapolated from the
results of [37] for R = 0.05 (assuming negligible the difference of
the variance between R = 0 and R = 0.05) while the variance of the
fracture toughness is inferred by simple considerations of the range
available in [76]. All the other empirical parameters of the equation
are defined deterministically based on NASGRO database. This
method does not take into account the correlation between the ver-
tical asymptotes and the parameters describing the Paris’ regime.
However, it can be considered an acceptable approximation to solve
the dY/dN near the threshold or the critical region if no other ad-
vanced methods are available.

After all these consideration, the definition of the SDE for the fa-
tigue crack propagation can be formulated according to (3). Cer-
tainly, the simplified method where the different sources of
uncertainties are split introduces some errors. First, the correlation
among the material properties and the empirical constants is lost.
Second, it prevents the formulation of a closed form solution of the
whole variance of the model, and in any case the numerical inte-
gration is not trivial. It remains useful to predict the crack velocity
interval given a series of parameters statistically defined, and it can
be implemented into whatever maintenance approach based on
crack propagation process. Therefore, a Dynamic State-Space mod-
el with the Stochastic definition of NASGRO equation is developed
in section 3. It is solvable with numerical methods based on MCMC
theory as presented in this paper, or other techniques based on
Bayesian statistics. Both the methodologies can be used; the



Table 1
Parameters used for prior and proposal distributions for the simulated FCG.

Parameter l r2 qlog(C),m qlogðCÞ;DKth;0
qm;DKth;0

log(C) (logðmm=cycle � ðMPa
ffiffiffiffiffiffiffiffiffi
mm
p

Þ1=mÞ) –26.76 0.9966 0.9979 0 –

m (–) 3.2 0.0346 0.9979 – 0
DKth;0 ðMPa

ffiffiffiffiffiffiffiffiffi
mm
p

Þ 103 20.808 – 0 –
KIC ðMPa

ffiffiffiffiffiffiffiffiffi
mm
p

Þ 1042 3565 – – –

Fig. 3. NASGRO model with probabilistic definition of DKth,0 and KIC parameters.
provided analytical formulation of mean and variance of FCG over-
look some correlations and uncertainties that are present in the
real phenomenon. It could provide useful information regarding
the crack evolution in post-processing studies. The second method,
based on a DSS definition and a well-known Monte Carlo algo-
rithm, provides a full description of the possible crack propagation
evolution, but requires higher computational costs.
3. Dynamic State-Space model for fatigue crack propagation

Many definitions of Dynamic State-Space models are present in
the literature, mainly in the field of Bayesian filters and mathemat-
ical dissertations [50,52,57,77–78]. In this context, the definition of
a discrete dynamic equation governing the crack propagation is
considered, as already presented in [57–59] for crack monitoring
via Bayesian filters. The purpose of the DSS model is to link the dif-
ferent states of the crack evolution in time to produce a swarm of
possible crack lengths (the state of the system) according to the
FCG model and its probabilities. Starting from the statistical defini-
tion of the FCG rate in Section 2, the next step is the definition of
the possible crack evolutions according to the model namely from
the statistical dy/dN to the probability distribution of the RUL. The
following explanation is referred to the case of constant amplitude
fatigue load, in which R and Smax lose the time dependence. How-
ever, the treatment can be extended to the variable-amplitude load
condition with some complications [79].

3.1. Stochastic definition of DSS models

To stochastically define the Dynamic State-Space models the
random variable Y describing the crack length in the discrete
time domain has to be considered. At the general kth step, the
Dynamic State-Space model linking the current crack length Yk

with the previous crack length yk-1 assumes the general formula-
tion in Eq. (21).
Yk ¼ wðyk�1;H;H;fðyk�1;HÞÞ ð21Þ

Where the symbolism of the Eq. (21) is the same of the Section 2. It
is however important to notice that the model w indicates the link
between two sub-sequent crack lengths differently from / in the Eq.
(1) which indicates a general FCG rate model. According to the
hypothesis of constant amplitude load, the crack length at the
general kth step (22) depends on the previous crack length plus a
linearisation of the damage growth defined by the term DN � dY/dN.

Yk ¼ yk�1 þ DN
dY
dN






k�1
¼ yk�1 þ DN/k�1ðH;H;fðyk�1;HÞÞ ð22Þ

Let assume to be able to evaluate the expected value and the vari-
ance of the model / with the analytical formulation shown in Sec-
tion 2 for different kind of models or other numerical methods.
Again, according to the theory of random variables, the estimation
of the crack length at the general kth step can be expressed in terms
of mean (23) and variance (24). In this way, the uncertainty on the
crack length after a relatively small number of loading cycle is
available.

lYk
¼ yk�1 þ DNldY=dN ð23Þ

r2
YK
¼ DN2r2

dY=dN ð24Þ

The uncertainties rise if the crack length at the k � 1th step is
known in statistical terms due to possible noise in the measurement
system. Thus, also the crack length becomes a random variable and
the evaluation of r2

YK
becomes more complicated (25).

r2
YK
¼ r2

Yk�1
þ DN2r2

dY=dN þ 2qYk�1 ;dY=dNrYk�1
rdY=dN ð25Þ

The evaluation of crack length distribution using the Eqs. (23)–(25)
allows the estimation of the probability of failure at a certain time.
Unfortunately, it requires the closed form solution of the variance of
the FCG rate that is difficult to evaluate in many cases, as empha-
sized in Section 2.

Finally, given the statistical definition of the FCG rate equation
with the uncertainty of empirical parameters and material proper-
ties, the numerical resolution of the general Stochastic Dynamic
State-Space (SDSS) model in (22) by means of the Metropolis–Has-
tings algorithm is proposed afterwards. Given the Stochastic defi-
nition of the DSS model, the aim is to produce a lifetime
prediction for the cracked structure overcoming the analytical dif-
ficulties. The presence of multiple uncertainties is faced by means
of the Monte Carlo Sampling methods and recursively updated by
Metropolis–Hastings algorithm with a particular adaptive pro-
posal, as described afterwards. The quantity yf is the crack length
associated to the failure of the structure and pH,H,Z(#, g, f(y, g)) is
the multidimensional Probability Density Function (PDF) of the
FCG parameters and the time-varying variables. Starting from the
initial crack length y0 the crack propagation can be simulated by
NS samples drawn from pH,H,Z. In particular, a simulation of the
FCG up to the critical crack size is associated with each sample.
On the other hand, if the starting crack is known in the PDF form
pY(y0) by the use of the MCS method, NS samples can be drawn
from the two PDFs: the distribution of the crack length and the
multidimensional distribution of the parameters. The simulation



of these cracks for subsequent discrete time steps up to the critical
crack length produces the density function of the time to failure,
and the consequent RUL. The multidimensional PDF pH,H,Z

(#, g, f(y, g)) depends on the previous crack length due to the pres-
ence of the variable vector f(y, g). Thus, a sequential sampling first
from pY(yk�1) and then from pH,H,Z|Y(#, g, f|y) has to be made. The
general formulation of the conditioned probability given the crack
yk, is expressed in (26).

pH;H;ZjY ð#;g; fjykÞ ¼
pH;H;Z;Y ð#;g; f; ykÞ

pYðykÞ
ð26Þ

Some simplifications occur if the empirical parameters, the material
properties and the model variables are considered independent. In
this case, the probabilities of the empirical parameters and material
properties are separated from the other quantities and the multidi-
mensional probability simplifies into Eq. (27).

pH;H;ZjY ð#;g; fjykÞ ¼ pHð#ÞpHðgÞpZjYðfjykÞ: ð27Þ
3.2. Sequential updating of the Dynamic State-Space model

Supposing that a measure of the crack length at the general kth
step is available, intuitively, starting from a given measure y0, this
knowledge of the crack length at the step kth narrows the possible
crack evolution down because the crack must ‘‘pass through’’ the
given measure (under the hypothesis of a perfect measuring sys-
tem). Therefore, if a numerical technique is able to filter the possi-
ble crack evolutions on the basis of the measures, it should
increase the prognostic resolution. Starting from the statistical def-
inition of the FCG equation, the filtering approach can be applied
on the model parameters and material properties by means of
the posterior distribution pH,H,Z|Y(#, g, f|yk). This is a crucial step
because the parameters will affect the following evolution of the
crack. If they are well-estimated from the previous measure, the
subsequent simulation of the crack dynamics (i.e. the integration
of the Stochastic Differential Equation in (3) or the dynamic simu-
lation of (22)) will get close to the most probable evolutions (given
the prior information on the crack growth). If a series of sequential
measures becomes available, a sequential updating of the parame-
ter PDFs can gradually enhance the prediction performance. Eq.
(28) shows the updating of the multidimensional PDF of parame-
ters and variables through the Bayes’ rule.

pH;H;Zð#;g; fjykÞ ¼
Lðykj#;g; fÞf ð#;g; fÞRRR

Lðykj#;g; fÞf ð#;g; fÞd#dgdf
ð28Þ

In which L(yk|#, g, f) is the likelihood of the measure yk given the
parameters #, g, f while f(#, g, f) is the prior distribution of the
parameters and the time-varying variable. The marginalized distri-
bution

RRR
Lðykj#;g; fÞf ð#;g; fÞd#dgdf is not calculable for the major-

ity of complex problems. Hence, numerical methods like the MCMC
are required to obtain the posterior distribution. Once the updated
PDF is available, the MCS procedure to simulate the crack dynamics
has to be repeated to produce a series of samples according to the
new PDF of the Stochastic DSS model. There are different methods
to merge the information of the measures inside the dynamic mod-
el; most of them are based on the MCS. Among these, the Metrop-
olis–Hastings algorithm [43,44] and the SIS/SIR algorithms [50–
52] are the most common techniques. In order to test the method-
ology, a particular Metropolis Hastings algorithm with an adaptive
proposal distribution is described in sub-Section 3.3 and is subse-
quently used in the lifetime prediction problem described in
Section 4.
3.3. Markov chain Monte Carlo method for parameter PDF updating

The statistical quantities employed in the FCG models has been
described above. A methodology to update the prior knowledge of
parameter PDFs and based on the MCMC theory is provided in this
sub-section. Actually, any statistical method based on the Bayes’
rule and able to evaluate the posterior probability of the parame-
ters expressed in (24) or the posterior distribution of the crack
length evolution can be used. In this work the Metropolis–Hastings
algorithm [43,44] is used, being widespread algorithm founded on
Monte Carlo Sampling [80]. The inputs of the algorithm are the ini-
tialized values of the parameters, the proposal distribution from
which samples are generated and the (sequential) measures on
the system (in this case, the crack lengths). Every time a new mea-
sure of the crack length becomes available, the MH algorithm is
activated, producing a posterior PDF of the empirical parameters
and material properties, given the prior knowledge on the param-
eters and the available measures up to the last step (the crack
lengths y1:k). One of the main benefits of the algorithm is its capa-
bility to estimate also the noise level affecting the measures. This
becomes fundamental in the case of automatic and real-time mea-
surement systems in which the uncertainty on the output quantity
(crack length) is non-negligible [81]. The noise affecting the mea-
sures enters into the definition of the likelihood of the measures gi-
ven a parameter vector.

The main drawback of this algorithm is the need for a proposal
distribution to generate samples. In fact, this proposal distribution
must have a properly tuned variance to avoid useless samples (i.e.
too refused values or too slow convergence properties). In this
work, a particular adaptive proposal developed by Haario et al.
[82] is used. The Adaptive Metropolis Hastings algorithm imple-
mented is able to automatically update the proposal distribution.
This updating method is based on the residuals of the chain, and
it depends on two parameters named memory and frequency
parameter H and U, respectively. This method introduces a slight
bias on the final distribution [82], however, it has been demon-
strated that the chain of the algorithm remains ergodic [83] and
the error has been declared as negligible in most cases. No mathe-
matical dissertation of the algorithm is provided since it is not the
purpose of the paper. The interested reader can refer to [43,44] for
further information about the algorithm and [45–47,82,83] for
adaptive proposal algorithms. In the context of real-time RUL esti-
mation, the Adaptive MH algorithm constitutes a novelty and it is
mandatory for the development of effective and robust lifetime
predictor. In fact, if the proposal distribution has a mistaken vari-
ance with respect to the data will be provided by the measurement
system during the crack evolution, the MH algorithm will not work
and the resulting lifetime prediction will be wrong. The proposal
distribution with self-adaptive variance is able to overcome the
possible uncertainties and variability run into real crack propaga-
tion monitoring. In this way, the proposed SDSS model becomes
able to correctly update the parameter distributions even if the ini-
tial variance of the proposal (usually empirically selected) is too
wide or too low with respect to the variability of the measures.

Table 2 shows the pseudo-code of the Adaptive Metropolis algo-
rithm used to update the distributions within the SDSS model. As
proposed by Haario et al. [82] the standard MH algorithm is mod-
ified to update the covariance matrix of the proposal every U steps
based on the residual of the last H samples. cd is a heuristic scaling
factor set equal to 2:4=

ffiffiffi
d
p

as suggested in [47,82] for random
Gaussian target variables. The factor d must to be equal to the
number of parameters to estimate. The definitions of the quantities
in Table 2 are the followings: x is the vector of the objective quan-
tities containing the vector of the parameters [#, g] and the vari-
ance of the noise associated to the measures r2

n , XH is a matrix
which contains the last H samples of the chain, R(XH) is the matrix



Table 2
MH algorithm with an adaptive proposal distribution.

i. Initialize the parameter vector x0 ¼ ½#0;g0;r2
n;0 � according to the proposal PDF p(x)

ii. Initialize the likelihood of the measure y given the vector x0, taking into account the prior PDF
iii. Initialize the matrix of the chain X = [x0]
iv. Set the updating memory of the proposal H and the frequency parameter U
v. For i = 1–NS

– If the remainder of i/U = 0
Store the last H residuals of the chain: R(XH)

Generate the covariance matrix of the proposal: COVðXHÞ ¼
c2

d
H�1 RðXHÞRðXHÞ0

End
– Draw sample xi from p(x) where the mean of the proposal is the last accepted sample vector xi�1 and the variance of the proposal is the covariance matrix COV(XH)
– Calculate a fictitious crack length y(xi) according to the sample xi.
– Evaluate the likelihood of the measure L(z|xi) and the prior f(xi) given the sample

– Accept the sample xi with probability a ¼min 1; LðzjxiÞf ðxiÞ
Lðzjxi�1Þf ðxi�1Þ

� �
.

End
vi.Erase the burn-in period and select far-between samples to avoid the possibility of correlated samples from the chain

Fig. 4. Simulated plate with central crack.
of the residuals of XH, COV(XH) is the covariance matrix to assign
the proposal distribution p(x). At the end of the Adaptive Proposal
Metropolis–Hastings algorithm, NS samples drawn from the up-
dated parameter distributions are available. These samples are
used to simulate the new crack evolution starting from the last
measure yk.

4. Numerical resolution of the Stochastic Dynamic State-Space
model to crack growth problems

The implementation of the proposed lifetime predictor for dam-
age monitoring of structures is the aim of the section. Some simpli-
fications from the most general case are considered in this
example, given the complexity of the problem. First, the method
is tested on simulated data (Section 4.1) and then applied to real
crack propagations (Section 4.2) measured during FCG tests on
helicopter aluminium panels. Both cases are related to a con-
stant-amplitude fatigue load. As mentioned above, the FCG rate
model used is the NASGRO equation. According to the SDSS model
presented in (22), the crack length at the general kth step assumes
the form in (29). The constant value 2 is needed because the cracks
have two tips (both in the simulated and in the real cases) [62].

Yk ¼ yk�1 þ 2DNC
1� f
1� R

DK
� �M 1� DKth DKth;0ð Þ

DK

� �p

1� Kmax
KC KICð Þ

� �q ð29Þ

The empirical parameters and material properties of Al2024-T6 se-
lected for the proposal distribution of the MH algorithm are visible
in Table 1, where the fracture toughness KIC is a deterministic value.
The choice comes from the previous considerations of Section 2; the
process of FCG spends few cycles in the third region of the sigmoid
curve and the structure should be declared failed before reaching
the critical SIF. It is a conservative hypothesis; besides, the statistics
of the fracture toughness can be easily implemented in the
algorithm.

4.1. Performance on simulated data

Let us consider a fictitious Al2024-T6 infinite thin plate with a
600 mm2 resistant section and a through-thickness central crack.
This plate is loaded by a constant-amplitude sinusoidal load with
Pmax = 40 kN and R = 0.1. The simulation of the crack growth is
made starting from a 3 mm length and a critical crack length equal
to 120 mm. Fig. 4 shows the simulated plate with centre crack used
to test the algorithm. The measure of the crack length is provided
every 2000 load cycles with a simulated measurement system with
a normally distributed error characterised by zero mean and a
variance of 0.11 mm2. The shape function inside the SIF is set as
deterministic and equal to 1 according to the theory of fracture
mechanics. The simulation of the crack starts from y0 and it stops
when all the fictitious propagations reach the limit crack length
yf. The number of samples for the Monte Carlo simulation of the
crack propagation is 2000. The number of iteration for the MH
algorithm is equal to 10,800 while the updating and frequency
parameters are set equal to 1800 according to the advices in [83].

4.1.1. Performance with the triplet log(C), m and DKth0 as random
variables

The simulated FCG is built with values of log(C), m and DKth,0

slightly different from the average values found in the NASGRO
manual (30), in order to highlight the performance of the proposed
Stochastic DSS (26). They are randomly extracted by the multivar-
iate distribution of the triplet log(C), m and DKth,0 built with the
correlation matrix proposed by Beretta and Villa [22] for alumin-
ium alloys. Parameters p and q are taken equal to 0.25 and 1,
respectively. The starting values for prior and proposal distribu-
tions used during the algorithm operation are already shown in
Table 1. The couples (log(C),DKth,0) and (m,DKth,0) are considered
as uncorrelated inside the prior knowledge and the proposal distri-
bution. Even if they are actually correlated, the results in [67] show
good performances in RUL prediction also considering the
empirical parameters uncorrelated with respect to the material
properties.



Fig. 5. Estimation of log(C) (left) and m (right) parameters as a function of the crack length.

Fig. 6. Estimation of DKth,0 (left) and Noise variance (right) associated to the measures.

Fig. 7. Failure cycle PDF (left) and CDF (right) using three random variables (C, m and DKth,0).
C ¼ 5:8162e� 013; m ¼ 3:4265;

DKth;0 ¼ 91:4159 MPa
ffiffiffiffiffiffiffiffiffi
mm
p

ð30Þ

During the simulated operation of the structure, the estimation of
the parameters, the noise associated to measures and the RUL of
the system are provided every time a measure becomes available.
The updating of the multivariate normal PDFs is made through
the Adaptive Proposal MH algorithm. Starting from the updated
PDFs, the prediction of the RUL can be performed according to the
MCS procedure. The successful updating of the log(C) and m param-
eters is visible in Fig. 5, while the DKth,0 and the noise estimation are
shown in Fig. 6. Unfortunately, the MH algorithm is not able to esti-
mate the correct value of the threshold SIF range because it affects
the variability of the crack propagation velocity dy/dN in the first
part of the sigmoid curve, when the uncertainty on the measure
are very high with respect to the absolute value of the crack length.
When the crack size increases, the uncertainty on the threshold af-
fects the propagation less because the crack is inside the Paris’ re-
gime (so it is out from the first region where the threshold SIF
range affects the crack velocity). Essentially, the prior knowledge
of the DKth,0 is slightly updated by the MCMC algorithm, however
the final value is overestimated and a wide variance remains at



Fig. 8. Estimation of the log(C) (left) and m parameters (right) with respect to the crack length.

Fig. 9. Noise variance associated to the measures.
the end of the simulation. The results remain the same even if a cor-
relation between the triplet (log(C), m, DKth,0) is put into the prior
knowledge of the parameters, according to [67]. The error in the
threshold SIF range falls back into a constant bias in the estimation
of the noise variance visible in Fig. 6 (right). As a matter of fact, the
inability of the algorithm to evaluate the correct value of DKth,0 pro-
duces higher noise estimation with respect to the target noise rep-
resented by the variance of the measures. Instead, the RUL
prediction in Fig. 7 (left) tends to the correct value. The grey straight
line is the target failure cycle, the blending lines are the normalised
probability density functions (in order to have a peak value equal to
1000 as visible in the coloured bar2) of the failure cycles during the
crack propagation and the dashed black line is the mode value of the
normalised PDFs. The first blending line represents the time to fail-
ure distribution with the starting crack length as single information.
Actually it is the lifetime distribution given the prior knowledge of C,
m and DKth,0. The different lifetime distributions clearly tend to the
correct value of the failure cycle during the operation of the algo-
rithm. In Fig. 7 (right) the Cumulative Distribution Functions (CDFs)
of the failure cycle at three different crack lengths is presented. The
distribution evidently approaches the correct failure cycle when the
crack length is just 10 mm.
4.1.2. Performance with log(C) and m as random variables
Since the algorithm seems unable to correctly estimate the

three parameters and the artificial noise inserted in the measures
of crack length, a simplified case is considered in this sub-section.
The threshold SIF range is considered deterministic and centred on
the correct value, while the two empirical parameters C and m re-
main identical to the previous case. The threshold SIF range for
R = 0 is fixed according to the NASGRO database ð103 MPa
ffiffiffiffiffiffiffiffiffi
mm
p

Þ
thus, the SDSS model is based on two random parameters (C and
m) only. The distributions of the empirical parameters are the same
of the previous case, while the threshold SIF range is deterministic
(like the fracture toughness) and equal to the average value (Ta-
ble 1). The deterministic parameters used to simulate the FCG
are the same as in the sub-Section 4.1.1 (30). The estimation of
the empirical parameters (log(C),m), the measure noise and the
RUL are shown in the Figs. 8–10. The algorithm is able to estimate
the target parameters when the crack length is around 20 mm. As
explained by the figures, the variances of the parameters tend to
zero; in fact, the simulated crack propagation is built with deter-
ministic log(C) and m values. The prior knowledge of the noise var-
iance is arbitrarily set equal to 0.9, but the algorithm quickly
reduces this value approaching the correct variance (Fig. 9). Since
the DKth,0 is not estimated, the algorithm is able to associate the
correct noise to the uncertainty of the measures. Fig. 10 shows
the performance in terms of the failure cycle distribution. Also in
this case the CDF of the failure cycle correctly approaches the tar-
get with a crack length of 10 mm. The simulations considering two
(C,m) and three (C,m,DKth,0) random variables show very similar
results in the RUL prediction, which constitutes the main purpose
of the degradation model. Several analyses on simulation data have
been carried out with similar results. The two empirical parame-
ters are correctly estimated together with the noise variance, if
the threshold SIF range is considered as deterministic. While if
the DKth,0 is put into the algorithm as a random variable, the esti-
mation of the noise is lightly altered, and the estimation of the
threshold SIF range does not converge to the correct value. It
means that an inability of the algorithm to correctly estimate (at
least) one constant parameter produces an error in the estimation
of the noise variance. Therefore, the algorithm is not able to asso-
ciate the correct uncertainty to the measures in those cases. On the
other hand, the lifetime predictions are similar if Figs. 7 and 10 are
compared.

4.2. Analysis of simulated results

Paragraphs 4.1.1 and 4.1.2 show the application of the MH algo-
rithm with and without the updating of the threshold SIF range,
respectively. The effectiveness of the threshold SIF range updating
is addressed here. Fifty different crack propagations are simulated,
half of them with the updating of DKth,0 distribution and the
remaining simulations without the updating of DKth,0 (thus set as
deterministic parameter). The estimation of the failure cycle N̂f is
extracted at pre-determined number of cycles. The error on the
failure cycle estimation e follows the intuitive Eq. (31).

ei ¼ Nf ;i � N̂f ;i ð31Þ



Fig. 10. Normalised PDF of failure cycle (left) and CDF of failure cycle (right).

Fig. 11. Mean and variance of the error of the failure cycle estimation for different
crack lengths.

Table 3
Parameters relative to the crack propagation tests.

Item Description

Load shape Sinusoidal
Load frequency 12 Hz
Maximum amplitude load 35 kN
Load ratio (R) 0.1
Damage type Skin crack
Damage position Central on central bay
Damage initiation Artificial, 16 mm
Material of the panel Aluminum 2024 T6
where Nf represents the objective residual lifetime of the simula-
tion, N̂f is the estimated residual lifetime and the subscripts i
indicates the general ith simulation. 25 errors are available at pre-
determined number of cycles for each category (with and without
the threshold updating). Average and variance of the error are cal-
culated assuming normal distribution (Fig. 11).

There is no a clear evidence of the difference between the two
types of simulations made with and without the updating of the
Fig. 12. Test rig for the experimental tests (left)
DKth,0 distribution. Further investigations are mandatories to prove
the inefficiency of the DKth,0 updating in these types of crack prop-
agations, for instance using the statistical hypothesis testing [84].
As a first approximation, the performances in RUL prediction are
considered comparable, thus the tests on experimental data ne-
glect the updating of the threshold SIF range distribution.
4.3. Stochastic DSS model for experimental data

In this subsection the proposed SDSS model is tested on real
crack propagation data obtained from aluminium panels represen-
tative of a helicopter rear fuselage. The complete test-rig is pre-
sented hereafter. The experimental test has been repeated four
times with the same centre-crack. The number of samples of the
simulated crack evolutions is again 2000 like in the simulated case.
The number of iterations for the chain of the MH algorithm is
and the resulting crack propagations (right).



Fig. 13. Lifetime prediction for experimental data: failure cycle estimation (left) and corresponding CDF for the three different crack lengths (right).



14,400 and both the updating and frequency parameters are set
equal to 1800.

4.3.1. Experimental activity
The helicopter panel presented in the left side of Fig. 12 has

been rigidly grounded to its lower end and connected to the actu-
ator through its upper end; more details about the experimental
set-up are reported in [65,66,81]. Crack damage has been artifi-
cially initiated in the centre of the skin to guarantee the repeatabil-
ity of the test. The initial length of the notched hole is 16 mm. A
sinusoidal load with a constant amplitude and frequency has been
applied in the vertical direction (indicated by the vertical arrow) to
obtain damage propagation. The load reaches its maximum peak of
35 kN with a load ratio R = 0.1. The crack is manually measured
with callipers during the system operation. The relevant features
of the test are reported in Table 3. The experimental crack propa-
gations obtained during the tests are shown in Fig. 12 (right).

4.3.2. Performances on real data
The component under discussion cannot be approximated as a

simple aluminium plate because of the presence of the stringers.
The estimation of the SIF can be made through a complex analyti-
cal model for plates with riveted stringers [85] or by means of
numerical methods. In this case the estimation of DK is approxi-
mated by an Artificial Neural Network (ANN). In particular, the
ANN receives the crack length and the crack position as input,
and it provides the SIF range for that particular crack for a known
fatigue load configuration. Examples for algorithm training have
been provided by means of repeated FEM analyses with crack dam-
ages in different positions with different lengths.

Further dissertations about the ANN for the DK estimation and
its relative inaccuracy are omitted for brevity, as it is not the cen-
tral objective of the work. See [81] for additional information about
the method.

It is however important to underline that, if a methodology
(analytical or numerical) is available to estimate the DK with
deterministic or statistical approaches, it can be inserted in the
algorithm. According to this method, the SIF range becomes a func-
tion of the crack length and the crack position. However, all the
experimental tests are made with a central crack, so the crack po-
sition is constant in all of the simulations. In this case, the SIF range
value is deterministic if the crack length is given.

According to the presented methodology, NS samples of the FCG
parameters (C,m,DKth,0) are selected according to their PDFs defined
in Table 1. Given the inability of the algorithm to correctly fit the
threshold SIF range, the threshold in the experimental tests is con-
sidered as a random variable with a mean value and variance, with-
out participating to the algorithm updating operation. The RUL of the
structure is extracted as the difference between the time to failure
distribution and the current load cycle. The obtained results in terms
of C and m estimation are not shown in order to highlight the perfor-
mance of the algorithm in terms of the RUL estimation only. As a
matter of fact, the estimation of the parameters in these real cases
produces results not comparable with any known quantities.

The results of the algorithm in terms of failure cycle PDFs are
shown in Fig. 13 for the four tests. The failure distributions visible
on the left side of the figure approach the real failure cycle in a rel-
atively short time expressed as a crack measure on the abscissa.
These good results are highlighted by the fact that in these real
cases the number of available measures is much reduced than in
the case of simulated data. Moreover, the discrepancies among
the measures rise in the real cases, where the cracks do not follow
the theoretical trend but they are affected by a lot of unpredictable
environmental parameters. The Stochastic DSS presented is able to
predict the Failure distribution of different panels having the same
characteristics from a theoretical viewpoint but which can be af-
fected by relevant discrepancies on real environment. It can be
considered as a stable method to produce the lifetime prediction
also thanks to the prior distributions of the parameters. As a matter
of fact, the prior distributions work as inertia terms slowing down
the updating of the parameter features based on the measures.

This approach is highly advantageous with respect to the case
where the models of the phenomenon are not used such as data
driven methods. In fact, a wrong measure (very probable in the
case of automatic measurement systems) produces a completely
different time to failure if a pure data-driven approach is adopted.
This problem is attenuated with model-based approaches. During
the early stage of the algorithm (after two or three measures only)
the prior knowledge of the parameters prevails on the available
measures and the estimated parameter PDFs are not so different
with respect to the initial ones. After that, the measures start to
have a relevant effect on the updating of the SDSS model moves
the lifetime prediction towards the real failure cycle. In the pre-
sented results, the PDFs of the failure cycle tend to the correct va-
lue when the crack length is around 30 mm, when the number of
available measures varies between five and eight. The failure cycle
prediction becomes more precise around a crack length of 50–
60 mm as underlined by the CDF graphs on the right side of
Fig. 13. The CDFs are related to different crack lengths because
the measurements during the tests have been taken at pre-deter-
mined load cycles, thus the crack lengths are slightly different for
each test.
5. Conclusions

A Stochastic Dynamic State-Space model is proposed in this pa-
per to statistically describe fatigue structural degradation prob-
lems. The SDSS is used to propagate the uncertainties on the
model and material parameters into the estimation of the remain-
ing life of a structure subjected to fatigue loads. Many studies are
available on this subject, which is nowadays a very active research
topic as it would represent the final linkage between any Structural
Health Monitoring system and the Condition Based Maintenance
strategies for the optimisation of structure operation and safety.
It is the author intention to summarise in the following paragraphs
the main contributes of this study to the state of art of residual use-
ful life estimation.

Several FCG models have been statistically described, starting
from the well-known Paris’s equation up to the most advanced
NASGRO model, all of them relating a damage condition and
load/geometry configuration to crack propagation velocity. The
most common sources of uncertainty in FCG problems have been
categorised into model and material uncertainties (generally la-
belled as inter-specimen variability), while time-dependent vari-
ables are still deterministically treated. The influence of each
parameter uncertainty to the output of the considered models
has been analytically calculated, sometimes requiring the approx-
imation of the first order statistical moments via the application of
delta method; the advantages and drawbacks of these analytical
solutions have been discussed. Considering some data are available
to evaluate the statistical distributions of the different model and
material parameters, one could implement the above FCG model
equations into the DSS definition to obtain the probability of fail-
ure and the resulting RUL distribution. This statistical definition
of model parameters can enhance the common Damage Tolerance
strategies where the FCG rate is deterministically defined. Unfortu-
nately, the procedure cannot be solved analytically unless simple
equations and normal-distributed uncertainties are considered.
The implementation of a Stochastic DSS model for crack growth
becomes numerically viable. The stochastic implementation of
degradation algorithms based on MCMC techniques (taking advan-



tage from an adaptive proposal distribution) has been in-depth
presented in the paper. Results in the simulated environment are
used to verify the performances of the method. The MH algorithm
is both able to update the prior knowledge on some selected
parameters, thus estimating a posterior distribution conditional
on measures, and to provide an accurate lifetime prediction. The
results obtained in the simulated environment highlight as the
updating of empirical parameters (C and m) has a very large benefit
on the estimation of the target RUL distribution, while further
investigations are required to prove the effectiveness of the updat-
ing of DKth,0 distribution; in practice the latter has a reduced influ-
ence on the crack propagation if the growing phenomenon is in
zone II or III of the FCG NASGRO model.

The lifetime prediction capability of the defined Stochastic DSS
model is verified on real structures in laboratory environment, sub-
jected to crack propagation under fatigue load. The robustness of
the methodology is demonstrated through repeated fatigue tests
on the same structure. The uncertainty on FCG when real structure
are addressed has been emphasized. Despite the FCG modelling
with the statistical definition of model parameters is a problem al-
ready handled by many authors, the verification of the method on
several real portions of aeronautical structures instead of simple
specimens has been rarely addressed and it represents an impor-
tant step forward in the panorama of prognostic system.

The application of adaptive proposal distribution (already devel-
oped in [82,83]) to MH algorithm in FCG problems constitutes the
most important innovation inside this study. In fact, the adaptation
of the variance associated to the prior parameter distribution is a cru-
cial matter in such kind of mathematical tools. There is a very high
probability that the MH algorithm alone will not be able to correctly
predict the evolution of cracks, as the sequential updating of the
parameter distributions could provide biased estimations, with a
consequent drop in performance. Despite of the possibilities to
implement different statistical techniques to monitor the crack,
one of the most important statement inside the paper is the need
for self-adaptive algorithms. In fact, there is a very high variability in-
side the crack propagation phenomenon, as it is highlighted in many
papers (see for instance [25–28]) and in Fig. 1 of this work. Numerical
methods taking into account the whole parameter variability at the
beginning of the procedure and selecting the most probable param-
eters according to the measured crack evolution are mandatory.
Standard MCMC algorithms without a self-adaptation of their fea-
tures (like the variance of the adaptive proposal presented in this
work) in most cases will not be enough to produce a robust lifetime
prediction, especially when real structures are addressed.

As an alternative to the full MCMC method herein presented, a
Sequential Importance Sampling/Resampling algorithm can be also
implemented with a Stochastic Dynamic model to filter the most
probable crack evolution. The authors recommend the last case for
on-line applications, as proposed in [77]. As a matter of fact, the main
drawback of the MH algorithm implemented in this work is the com-
putational effort required to produce a real-time prognosis. Addi-
tionally, the computational time has a linear proportionality to the
number of measures. Nevertheless, it can be drastically reduced if
particular real-time algorithms (such as Particle Filter) are used.
However, any MCS method can receive benefit if (i) a rigorous sto-
chastic definition of degradation model parameters and (ii) a self-
adaptation of the Dynamic State-Space model are implemented.

However, some simplifications with respect to reality are con-
sidered in these tests. (i) The function that relates crack length
and geometry to the SIF is set as deterministic in both the simu-
lated and the experimental case. (ii) The fatigue load has a constant
amplitude (and load ratio). This condition is unrealistic if com-
pared with real aerospace and civil structures; nevertheless, it is
reasonable in mechanical rotating machineries. (iii) The estimation
of the FCG parameters with the proposed methodology can be
affected by constant bias due to factors not considered in the mod-
el. As an example, any error in the evaluation of the structure
geometry can produce a slightly different crack propagation (given
by a different geometric function). This is considered by the algo-
rithm as different values of C and/or m. However, the purpose of
the methodology is not the fitting of the actual parameter for the
material, but is the proper fitting of the current data to produce
better lifetime predictions. As a consequence, the obtained values
of the empirical parameters are futile outside the context of RUL
evaluations of the operating structure.

The necessity to have some prior knowledge of the statistical
FCG model parameters, such as the material properties or the
uncertainty of the measurement system, is an additional drawback
of the method. In fact, if no prior information is available, more
experimental measures are required to make inference about the
unknown parameter distributions. This will result in a further
increase of the computational costs, though the mathematical
convergence is still guaranteed.

Appendix A. Analytical formulation of statistical FCG models

A.1. Paris’ law

Let consider the Paris’ law (A.1) and its logarithmic conversion
(A.2); the mean and variance of the dependent variable dY/dN
can be calculated according to the theory of random variables
(Eqs. (A.3) and (A.4)) where the expected values and variances
are indicated with the common notation l, r2 respectively

dy
dN
¼ CDKm ðA:1Þ

log
dy
dN
¼ log C þm log DK ðA:2Þ

llog dY=dN ¼ llog C þ lM log DK ðA:3Þ

r2
log dY=dN ¼ r2

log C þ log DKrMðlog DKrM þ 2qlog C;Mrlog CÞ ðA:4Þ
A.2. Forman’s law

The logarithmic form of Forman’s model is expressed in (A.5).
The additional terms with respect to Paris’ law are the maximum
SIF acting on the crack tip Kmax and the critical SIF KC. The latter
depends on the fracture toughness in plane strain condition KIC

and the thickness of the structure under discussion.

log
dy
dN
¼ log C þm log DK þ log Kmax � logðKC � KmaxÞ ðA:5Þ

Suppose the critical SIF is statistically defined. The average and var-
iance of the propagation velocity are expressed in (A.6) and (A.7).

llog dY=dN ¼ llog C þ lM log DK þ log Kmax � llogðKC�KmaxÞ ðA:6Þ

r2
log dY=dN ¼ r2

log C þ log DK2r2
M þ r2

logðKC�KmaxÞ þ 2qlog C;M

� log DKrlog CrM

� 2qlog C;logðKC�KmaxÞrlog CrþlogðKC�KmaxÞ

� 2qM;logðKC�KmaxÞ log DKrMrlogðKC�KmaxÞ

¼ r2
log C þ log DKrM½log DKrM þ 2ðqlog C;Mrlog C

� qM;logðKC�KmaxÞrlogðKC�KmaxÞÞ�
þ rlogðKC�KmaxÞðrlogðKC�KmaxÞ

� 2qlog C;logðKC�KmaxÞrlog CÞ ðA:7Þ



The evaluation of (A.6) is the simple evaluation of the model with
the mean values of the variables. However, the calculation of (A.7)
becomes difficult for the presence of the variable log(KC � Kmax),
as explained in Section 2. Then, an approximation of the exact solu-
tion is provided using the delta method. It consists in the first order
Taylor expansion of the model, which can be used to approximate
the first two moments of the dependent variable (that is the mean
and the variance of the crack growth rate). Let assume to include all
the random vectors of parameters and material properties defined
in the Eq. (2) into a random vector X = [H, H]. According to delta
method, Eqs. (A.8) and (A.9) shows the implicit approximation of
the crack velocity (the hypothesis of constant-amplitude load
changes the crack growth increment from dY/dt to dY/dN).

ldY=dN � /ðlXÞ ðA:8Þ

r2
dY=dt �

X
i

X
j

@/ðXÞ
@Xi






lX

@/ðXÞ
@Xj






lX

COVðXi;XjÞ ðA:9Þ

The term lX is the mean of vector X, i is the index that goes from 1
to the length of X, and @/ðXÞ=@XijlX

is the derivative of the model /
with respect to the ith random variable of X evaluated at lX.
COV(Xi, Xj) is the covariance between the ith and jth random vari-
ables inside X, reminding that COVðXi;XiÞ ¼ r2

Xi
.

Obviously, the complexity of / drives the complexity of (A.8)
and (A.9). The application of the delta method to the Forman’s
model produces the subsequent formulation for mean (A.10) and
variance (A.11), respectively.

ldY=dN �
lCDKlM Kmax

lKC
� lKmax

ðA:10Þ
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A.3. McEvily/s model

The statistical formulation of the McEvily’s model presented in
(12) is not trivial because of the ratio between two statistical mate-
rial properties (Elastic modulus and threshold SIF range). More-
over, the two properties are raised to the power of two. The
application of the delta method to the McEvily’s model produce
the following closed form solution (A.14) and (A.15).

ldY=dN �
8

pl2
E

DK2 � l2
DKth;0

� �
ðA:14Þ
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A.4. NASGRO equation

The logarithmic form of the model presented in (10) cannot be
represented by the exact mean and variance formulas because of
the high nonlinearity of the model. Then, if several random vari-
ables are considered in the equation, an approximation is needed.

The application of delta method to general NASGRO law pro-
duces an average value of log dY/dN that is the simple NASGRO
equation evaluated with the average values of its random vari-
ables, defined in X. The implicit equation of the variance is ex-
pressed in (A.16).
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The characterisation of all the material properties and parameters
requires the analysis of large amount of FCG data and the practical
application of Eq. (A.16) is unfeasible looking at the complexity of
the derivatives of the model with respect to the employed parame-
ters. For the best author’s knowledge, there are no statistical
descriptions of the parameters p and q of NASGRO law in literature.
Moreover, the variability of threshold SIF range and fracture tough-
ness affect the first and third regions of the FCG rate largely more
than the uncertainty of p and q. According to the above consider-
ations, the statistical model considers deterministic values of p
and q. The new formulation of NASGRO variance is expressed in
(A.17).
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The different terms of the equation are reported hereafter (A.18),
(A.19), (A.20), (A.21). The complete formulation of the variance
according to the last hypothesis is shown in (A.22).
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where x0 ¼
ffiffiffiffiffiffiffiffi

y
yþa0

q
, x1 ¼ f�1

A0�1

� �cþ
th

Rþ1
, a0 ¼ BK

a1
þ 1

� �
,

a1 ¼ exp 0:16A2
K S4

yst2

l4
KIC

� �
, a2 ¼ 0:64A2

K BK KmaxS4
yst

2. The term x1 is made

explicit under the hypothesis of positive load ratio R P 0 according
to NASGRO manual [61]. However, the same consideration can be
made for R < 0. Sys is the yielding stress of material, t is the thickness
of the structure at issue, A0;AK ; BK ; cþth are NASGRO constants, a0 is
the El-haddad parameter and f is the crack closure function. Please
refer to [61] for additional information about the NASGRO
formulation.
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