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1. Introduction

Predicting the global (or macroscopic, or effective) mechanical
properties of heterogeneous media from those of the individual
components is a goal that many authors have tried to achieve.
The advantages of this approach are manifold. When dealing with
fiber reinforced composites, for instance, a material with pre-
scribed macroscopic properties can be designed by properly select-
ing nature, size and orientation of the fibers. In the case of
masonry, tests on full scale specimens are costly and require
cumbersome devices. Also, in the case of historic buildings, large
specimens are usually impossible to take. Thus, performing tests
on brick and mortar samples can be a simpler and feasible alterna-
tive, provided that reliable formulas to predict the macroscopic
properties of masonry are available.

In linear elasticity, several authors have derived expressions for
the effective properties of masonry, which is macroscopically
orthotropic if made up by regularly spaced units. This was done
e.g., by Pande et al. (1989), who exploited results previously
obtained by Salamon (1968) for stratified rock to obtain the five
macroscopic elastic constants of masonry, assumed to be repre-
sented by an equivalent transversely isotropic material. Later,
Pietruszczak and Niu (1992) used an approach typical of the
mechanics of composite materials, in which head joints are consid-
ered as uniformly dispersed weak inclusions and bed joints as con-
tinuous planes of weakness. Refined finite element models, such as
those proposed by Anthoine (1995) for periodic masonry, or by
Cluni and Gusella (2004) for quasi-periodic masonry, are supposed
to predict the macroscopic behavior more accurately. As pointed
out by Zucchini and Lourenço (2002), the analytical approaches
proposed by Pande et al. (1989) or Pietruszczak and Niu (1992)
give unreliable predictions if units and mortar have elastic moduli
differing by an order of magnitude or more. Accordingly, these
authors proposed approximated displacement (and stress) fields
for any Representative Volume Element (RVE), defined by a
reduced number of variables, and derived the macroscopic elastic
stress–strain law by prescribing approximate equilibrium and
compatibility conditions at the boundaries of the different parts
of the RVE. Their predictions were found to be sufficiently accurate
for any ratio of the elastic moduli of brick and mortar by compar-
isons with FE analyses. This approach allows closed-form expres-
sions for the macroscopic in- and out-of-plane shear moduli to
be obtained, whereas Young’s moduli and Poisson’s ratios are
numerically computed.

The macroscopic behavior of masonry beyond the elastic field
was mathematically described by Pietruszczak and Niu (1992),
taking into account the elastoplastic behavior of the constituents.
Their approach allows the macroscopic failure surface to be
determined. Alternatively, an approach based on limit analysis
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for periodic brickwork can be used to derive these surfaces without
any incremental analysis (Milani et al., 2006). Damage effects in
the constituents were taken into account e.g., by Luciano and
Sacco (1998), Zucchini and Lourenço (2007), and Shieh-Beygi and
Pietruszczak (2008), to describe the brittle post-peak behavior
experimentally observed in tests on masonry specimens. More
recently, Sacco (2009) derived the macroscopic behavior of 2D
brickwork in the nonlinear range by assuming damage and friction
effects to develop only in the mortar joints, and applying classical
homogenization techniques for periodic media to any RVE.

So far, little attention has been devoted to the mathematical
description of the long-term behavior of masonry under sustained
loads. Indeed, creep effects in masonry are quite significant, as
shown by the laboratory tests carried out by Shrive et al. (1997)
or by Sayed-Ahmed et al. (1998), and by the evolution of displace-
ments in full-scale buildings monitored by Hughes and Harvey
(1995). According to numerical analyses carried out on 3D finite
element models of header bond and Flemish bond masonry walls
subjected to sustained vertical load (Taliercio, 2013), the time evo-
lution of the vertical macroscopic creep strain turns out to be
nearly unaffected by the brick pattern. A simplified 2D layered
model is capable to predict the experimentally measured creep
strain (Brooks, 1990) with sufficient accuracy for practical pur-
poses. Under stress conditions other than vertical and uniaxial, a
layered model might not give reliable predictions.

Despite the importance of creep phenomena, few authors have
tried to formulate mathematical expressions for the macroscopic
creep coefficients of brick masonry. Brooks (1986), for instance,
extended formulas previously proposed in linear elasticity to
mathematically define the creep compliance of masonry under
sustained vertical stress, by simply replacing the elastic moduli
of the constituents by some effective moduli. Recently, Cecchi
and Tralli (2012) proposed an analytical model based on homoge-
nization procedures for periodic media; confining creep phenom-
ena into joints and reducing joints to interfaces, closed-form
expressions for the macroscopic creep coefficients can be obtained.
The reliability of these expressions has still to be assessed, e.g., by
comparisons with accurate finite element analyses.

This paper aims at deriving analytical expressions for the mac-
roscopic elastic and creep coefficients of in-plane loaded masonry
with regular brick pattern. The proposed approach has similarities
with both the so-called Method of Cells (MoC), originally proposed
by Aboudi (1991) to predict the macroscopic mechanical behavior
of periodic unidirectional fiber-reinforced composites (in the linear
elastic, linear viscoelastic and plastic range), and with the already
quoted approach employed by Zucchini and Lourenço (2002).

Whereas in other papers dealing with the same subject closed-
form expressions only for some of the macroscopic elastic con-
stants are proposed (see Section 3), here all the in-plane elastic
constants (Young’s moduli, Poisson’s ratio and shear modulus)
are given analytical expressions. Another novelty of the proposed
approach is that also the macroscopic in-plane creep coefficients
can be analytically evaluated.

The layout of the paper is as follows. First, in Section 2.1 the
fundamentals of homogenization theory for periodic media are
briefly recalled. In particular, in Section 2.2 the Reuss and Voigt
bounds for the macroscopic elastic stiffness of any heterogeneous
medium are specialized to periodic masonry: these bounds will
be used in the following sections to define the possible range of
variation of any theoretical estimate for the macroscopic elastic
constants. Then, in Section 3 a state-of-the-art is presented on
some of the closed-form expressions proposed so far for the mac-
roscopic elastic and creep coefficients of masonry. In Section 4 the
original approach proposed to derive the macroscopic properties of
masonry is illustrated, and applied to estimate the macroscopic
in-plane Young’s moduli and Poisson’s ratio in Section 4.1 and
the in-plane shear modulus in Section 4.2. It is shown how the
expressions obtained in the elastic field can be extended to
describe the macroscopic creep behavior of masonry. In Section 5
the accuracy of the analytical expressions derived in Section 4 is
assessed through comparisons with the results of refined finite ele-
ment analyses and with closed-form expressions available in the
literature, recalled in Section 3. Finally, in Section 6 the main
findings of the work are summarized and possible future
developments are outlined.

A detailed list of the symbols used in the text is provided in
Appendix B.
2. Homogenization theory for periodic media: a brief outline

In this section, some fundamental concepts of homogenization
theory for periodic media are briefly recalled. Readers are referred
e.g., to Nemat-Nasser and Hori (1993) for a detailed discussion on
this subject.

2.1. Macroscopic elastic tensor

When dealing with heterogeneous media, it is customary to
replace the real medium by a ‘homogenized’ one and define its glo-
bal (or macroscopic) properties through the analysis of a Represen-
tative Volume Element (RVE). The RVE is the smallest part of the
real medium that contains all the information required to com-
pletely characterize its average mechanical behavior. If the med-
ium is periodic (as in the case of brickwork with a regular
pattern), a single ‘unit cell’ (V) can be used as RVE. Fig. 1(a) shows
a possible choice for the RVE of running bond or header bond brick-
work. The macroscopic constitutive law establishes a relationship
between macroscopic stresses (R) and strains (E), which are
defined as the volume averages, over the RVE, of the corresponding
microscopic variables:

R ¼ 1
jV j

Z
V
rðxÞdV ; E ¼ 1

jV j

Z
V
�ðxÞdV : ð1Þ

In particular, as the microscopic strain � must be periodic, neglect-
ing rigid body motions the microscopic displacement field u must
be of the form

u ¼ E � xþ ~u; ð2Þ

where ~u is periodic over V. Fig. 1(b) and (c) shows RVE’s deformed
according to Eq. (2) under macroscopic vertical compression and
shear, respectively.

In linear elasticity, the macroscopic constitutive law can be
alternatively written as R ¼ Dhom : E, or as E ¼ Chom : R. Dhom

denotes the macroscopic stiffness tensor, and Chom its inverse (also

called macroscopic flexibility tensor). In the 2D case, assuming
masonry to be macroscopically orthotropic, both tensors are
defined by four independent elastic constants. From here onwards,
x1 denotes an axis parallel to the bed joints and to the mid-plane of
the wall, x2 an axis parallel to the head joints and to the mid-plane
of the wall, and x3 an axis parallel to the wall thickness (see
Fig. 1(a)). Under in-plane stress, and assuming plane stress condi-
tions, the macroscopic elastic constitutive law can be written as

E11

E22

2E12

0
B@

1
CA ¼

1=E1 �m21=E2 0
�m12=E1 1=E2 0

0 0 1=G12

0
B@

1
CA

R11

R22

R12

0
B@

1
CA; ð3Þ

where E1 and E2 are macroscopic Young’s moduli, m12 and m21 are
macroscopic Poisson’s ratios (with m12=E1 ¼ m21=E2), and G12 is the
macroscopic in-plane shear modulus.



Fig. 1. (a) RVE of any periodic running bond or header bond-type brickwork. (b) Deformed RVE under macroscopic in-plane vertical compression. (c) Deformed RVE under
macroscopic in-plane shear.
In principle, Dhom (or Chom) can be obtained computing the total

potential energy of the RVE, Phom, under any macroscopic stress:

Phom ¼ min
u2Yper

P ¼ min
u2Yper

1
2jV j

Z
V
�ðuÞ : d : �ðuÞdV � R :

Z
V
�ðuÞdV

� �
;

ð4Þ

where Yper is the set of the strain-periodic microscopic displace-
ment fields and d is the microscopic elasticity tensor, assumed to

be piecewise constant in the two phases of the RVE. c ¼ d�1 will

denote the elastic flexibility tensor. As

Phom¼1
2

E : Dhom : E�R : E¼�1
2

E : Dhom : E¼�1
2
R : Chom : R ð5Þ

for a given macroscopic stress R any strain-periodic displacement
field gives an upper bound for the macroscopic elastic ‘stiffness’
Dhom (and, conversely, a lower bound for the macroscopic elastic

‘flexibility’ Chom ¼ ðDhomÞ�1
).

2.2. Reuss and Voigt bounds

Let gm and gb denote the volume fractions of mortar and bricks
in any RVE, respectively. Assuming in-plane stresses to be uniform
over the RVE, a lower bound (or Reuss-type approximation) for the
macroscopic Young’s moduli E1 and E2 is obtained:

EReuss ¼ Em

gm þ gbaE
; ð6Þ

with aE ¼ Em=Eb, whereas a lower bound for the macroscopic shear
modulus G12 is

GReuss
12 ¼ Gm

gm þ gbaG
ð7Þ

with aG ¼ Gm=Gb. Using a Reuss-type uniform stress field, one also
gets an approximated value for the macroscopic in-plane Poisson’s
ratio:

mReuss
12 ¼ gmmm þ gbaEmb

gm þ gbaE
: ð8Þ

Conversely, assuming in-plane strains to be uniform over the
RVE, an upper bound (or Voigt-type approximation) for the
macroscopic Young’s moduli E1 and E2 is obtained:
EV oigt ¼
gm

Em
1�mm
þ gb

Eb
1�mb

� �
gm

Em
1þmm
þ gb

Eb
1þmb

� �
gm

Em
1�m2

m
þ gb

Eb
1�m2

b

; ð9Þ

whereas an upper bound for the macroscopic shear modulus
G12 is

GV oigt
12 ¼ gmGm þ gbGb ¼ Gm gm þ

gb

aG

� �
: ð10Þ

Finally, the Voigt-type approximation for the macroscopic in-plane
Poisson’s ratio reads

mV oigt
12 ¼ gmaEmmð1� m2

bÞ þ gbmbð1� m2
mÞ

gmaEð1� m2
bÞ þ gbð1� m2

mÞ
: ð11Þ

When applied to the prediction of the global creep behavior of
two-phase materials, according to the Reuss approximation the
macroscopic creep strain is simply the volume average of the creep
strains of the two phases, which are constant over each phase.
Assuming the Poisson’s ratios of each phase to be constant in time
(Brooks, 1990), only the creep function under uniaxial stress
(JmðtÞ; JbðtÞ) has to be known to define the time evolution of all
the strain components under any sustained stress. A Reuss-type
approximation for the homogenized creep function is

JReussðtÞ ¼ gm JmðtÞ þ gb JbðtÞ: ð12Þ

Conversely, a rule-of-mixture-type approximation for the
homogenized relaxation function can be obtained using the Voigt
model:

RV oigtðtÞ ¼ gmRmðtÞ þ gbRbðtÞ: ð13Þ

The creep function of the homogenized material according to the
Voigt model can be obtained from Eq. (13), knowing that the creep
function is the inverse of the relaxation function in the sense of Car-
son transforms (Park and Schapery, 1999). In general, the analytical
expression (if any) of the Voigt-type approximated creep function is
quite awkward and of little use in practice. This is because the stress
in the two phases varies in time, although the macroscopic stress is
constant, and the strain in each phase is given by a convolution
integral (see e.g., Park and Schapery, 1999). Accordingly, some
authors circumvent this difficulty and adopt an ‘effective modulus’
to describe the time evolution of the strain in each phase (Bažant,
1972). This method is also used by many codes of practice. With
this approximation, the Voigt-type approximated creep function
can be obtained by Eq. (9) and reads



JV oigtðtÞ ¼ JmðtÞ
gm

1�m2
m
þ gb
ð1�m2

b
ÞaEðtÞ

gm
1�mm
þ gb
ð1�mbÞaEðtÞ

� �
gm

1þmm
þ gb
ð1þmbÞaEðtÞ

� � ð14Þ

with aEðtÞ ¼ JbðtÞ=JmðtÞ. The difference between the real evolution of
the stress in time and the predictions given by the effective
elastic modulus method is discussed e.g., by Reda Taha and Shrive
(2006).

3. State-of-the art

The simplest model to estimate the macroscopic elastic proper-
ties of brick masonry according to those of its constituents is a lay-
ered model, where head joints are neglected and homogeneous
brick layers are alternated with horizontal mortar joints. This ele-
mentary model is occasionally quoted for comparison purposes
(see e.g., Anthoine, 1995), and was find to give satisfactory results
as far as the short- and the long-term behavior of vertically loaded
walls is concerned (Taliercio, 2013). Assuming stresses and strains
to be uniform over each layer, the macroscopic in-plane elastic
constants of masonry can be easily computed by hand through
equilibrium and compatibility conditions, and read

Elay
1 ¼Emðp1þp2=aEÞ; Elay

2 ¼Elay
1 p2

1þp2
2þp1p2 2mmmbþð1�m2

bÞaE
��

þð1�m2
mÞ=aE

���1
;mlay

12 ¼p1mmþp2mb; Glay
12 ¼Gm p1þp2aGð Þ�1

; ð15Þ

where p1 ¼ ah=ð1þ ahÞ and p2 ¼ 1=ð1þ ahÞ.
An alternative approach was followed by Salamon (1968) for

stratified rock masses formed by transversely isotropic layers,
defining stresses and strains in each layer as the sum of the macro-
scopic variable and an auxiliary component. When applied to iso-
tropic brick and mortar layers, Salamon’s model gives

ESalamon
1 ¼ð1��m2Þ

X2

i¼1

piEi

1�m2
i

; ESalamon
2 ¼

X2

i¼1

pi

Ei
1� 2m2

i

1�mi

� �
þ 2ðmSalamon

12 Þ2

ð1��mÞESalamon
1

!�1

;

mSalamon
12 ¼ð1��mÞ

X2

i¼1

pimi

1�mi
; GSalamon

12 ¼Glay
12 ; ð16Þ

where subscript i ¼ 1 refers to mortar, i ¼ 2 refers to brick and

�m ¼

P2
i¼1

pimiEi
1�m2

iP2
i¼1

piEi
1�m2

i

: ð17Þ

More refined models take the presence of head joints into
account, with different degrees of accuracy. A composite model
for elasticity, creep and shrinkage of masonry was developed by
Brooks (1986, 1990), representing masonry as an assemblage of a
brick/vertical (head) mortar joint and a horizontal (bed) mortar
joint. Strain is assumed to be constant over each element; bonding
between brick and mortar joints is neglected, and so are Poisson’s
effects. Accordingly, the ‘modulus of elasticity’ of any masonry wall
under vertical stresses can be estimated, and is found to depend on
the number of courses (C) and the number of bricks along the wall
width (B):

1

EBrooks
2

¼ Chb

H
W

bbBEby þ bmðB� 1ÞEm
þ hmðC þ 1Þ

HEm
; ð18Þ

being H and W the total wall height and width, respectively, and Eby

the vertical Young’s modulus of bricks. In particular, if both C and B
are large (which is consistent with the concept of RVE) and
neglecting brick anisotropy, the vertical modulus of elasticity is
approximately given by

EBrooks
2 ¼ Em

ð1þ ahÞð1þ aEabÞ
aE 1þ abð1þ ahÞð Þ þ ah

ð19Þ
(refer to Appendix B for the meaning of the symbols). Considering
Young’s moduli as effective moduli, Brooks employed Eq. (19) to
predict also masonry creep strains.

Pande et al. (1989) proposed a sort of two-step homogenization
model, where the equivalent properties of a layer consisting of
units and head joints are first derived using Eqs. (16); second,
the equivalent properties of a layered medium consisting of bed
joints and the previously homogenized brick–mortar system are
obtained using the same expressions. Here again, closed-form
expressions for the macroscopic constants of the homogenized
orthotropic medium can be obtained. The expressions of the four
constants obtained by Pande et al. (1989) for plane stress are
reported in Appendix A. Readers are referred to the original paper
for further details.

A similar approach was followed by Pietruszczak and Niu
(1992), who also perform a two-step homogenization. The first
step refers to brick courses, in which head joints are considered
as aligned, evenly spaced inclusions uniformly dispersed in a
matrix. The average properties of the courses are derived by
Mori–Tanaka’s mean-field theory, based on the concept of Eshelby’s
tensor (see e.g., Nemat-Nasser and Hori (1993)): the results
obtained by Zhao and Weng (1990) for composites reinforced by
aligned elliptical cylinders are employed in this step. In the second
step, macroscopic stresses and strains in the homogenized medium
equivalent to the layered one are defined by a rule of mixtures. The
approach covers both the linear elastic and the elasto-plastic range.

More recently, Zucchini and Lourenço (2002) subdivided a typ-
ical representative unit cell of masonry into sub-cells, correspond-
ing to bricks, bed joints, head joints and the intersections of these
joints (also referred to as ‘cross joints’). The expressions proposed
for the stress and strain fields within each of the sub-cells fulfill
the equilibrium and compatibility conditions almost everywhere.
They provided closed-form expressions for the three macroscopic
shear moduli of masonry: in particular, the macroscopic in-plane
shear modulus can be cast in the form

GZL
12 ¼Gm 1þ ð1�aGÞð1�abahÞð1þmmþ2aBÞ

ðahþaGÞðð1þabÞð1þmmÞþ2aBÞþ2abaBð1þahð2�aGÞÞ

� �
:

ð20Þ

No explicit analytical expression is provided for the macroscopic
Young’s moduli and Poisson’s ratios, as the authors claim that they
are of a form too complex to be used for practical purposes.

4. A Method-of-Cells-type approach for the determination of
the macroscopic and creep coefficients of masonry

The Method of Cells (MoC) was originally proposed by Aboudi
(1991) for unidirectional composites, reinforced by a regular pat-
tern of long, reinforcing fibers. The method allows the macroscopic
elastic and creep coefficients and the macroscopic strength proper-
ties of fiber reinforced composites (FRCs) to be computed in closed
form, according to the elastic and strength properties of fibers,
matrix and interface.

The method comprises the following points:

1. fibers have square cross-section, and are arranged in a dou-
bly periodic array in any plane perpendicular to their axis;

2. any RVE is subdivided into four sub-cells, and the displace-
ment within each sub-cell is supposed to be a linear func-
tion of the in-plane coordinates;

3. displacements averaged over any interface between adja-
cent sub-cells are continuous;

4. interface tractions computed according to the average stres-
ses in each sub-cell are continuous;



Fig. 3. Strain-periodic kinematically admissible microscopic strain field under
horizontal or vertical macroscopic stresses.
5. the composite constitutive equations are obtained express-
ing the stresses averaged over the RVE (i.e. the macroscopic
stresses) in terms of averaged (or macroscopic) strains.

Here, a somehow similar approach is proposed for brick
masonry, with the aim of obtaining the macroscopic elastic and
creep coefficients in closed form. The analysis is limited to the
2D case, which means that only the behavior under in-plane loads
is considered. Whereas in the original MoC any RVE is assumed to
be in a generalized plane strain state, for in-plane loaded masonry
plane stress conditions are considered: a discussion on the admis-
sibility of this assumption for different types of brickwork can be
found in Anthoine (1997).

Note first of all that point No. 1 must be generalized because of
the rectangular shape of the brick section. Point No. 2 could be
acceptable only for stack-bond masonry, but must be modified to
take into account more common types of masonry with staggered
brick patterns. In the present work, header bond and running (or
stretcher) bond brickworks will be dealt with (see Fig. 1(a)). Unlike
the rhomboidal RVE used for FE analyses (see Fig. 1(b) and (c)),
here it is expedient to use a RVE of rectangular shape, which is sub-
divided into six sub-cells as shown in Fig. 2. Sub-cell No. 1 consists
of brick; sub-cell No. 2 is a head joint; sub-cells 3 and 4 pertain to a
bed joint; sub-cells 5 and 6 are intersections of bed and head joints
(or ‘cross joints’). More complex brick patterns (e.g., Flemish bond
or English bond) require a different choice for the RVE, because of
the coexistence of stretchers and headers in the wall.

Similarly to the MoC, a strain-periodic piecewise differentiable
displacement field is proposed over the RVE, which depends on a
limited number of parameters (or ‘degrees of freedom’, d.o.f.s).
The displacements within each sub-cell are linear (albeit not
affine) functions of the in-plane coordinates. Continuity of the
interface displacements is automatically fulfilled (see point No. 3).

It is worth noting that a similar approach was followed by
Luciano and Sacco (1998), who formulated a microscopic displace-
ment field defined by eight d.o.f.s in each sub-cell. Out-of-plane
displacements and damage effects in both components were also
taken into account. No analytical expression for the macroscopic
elastic and creep coefficients was provided by these authors, owing
to the complex kinematics of the RVE.

Two different approaches are proposed here to derive the mac-
roscopic constitutive law of masonry. In the first one, which is basi-
cally consistent with the original MoC, continuity of the interface
tractions is fulfilled almost everywhere, except for the boundaries
of the cross joints, provided that the d.o.f.s fulfill suitable relation-
ships (point No. 4). The equilibrium conditions within the sub-cells
are also fulfilled everywhere, except for the cross joints. As the
cross joints are usually small, the approximations made are
expected to be acceptable. Finally (point No. 5), stresses and strains
Fig. 2. Subdivision of any RVE into sub-cells.
computed according to the remaining d.o.f.s are averaged over the
RVE and the macroscopic constitutive law is obtained. In the sec-
ond approach, the values of the d.o.f.s are derived by minimizing
the macroscopic potential energy of the RVE, Eq. (4), considered
as a ‘structure’ subjected to any given ‘load’, corresponding to the
macroscopic stress R. The macroscopic strain tensor E correspond-
ing to R is obtained, and an approximation for the macroscopic

elasticity tensor Dhom is computed. Accordingly, upper bounds for

the real macroscopic elastic and shear moduli are obtained in lin-
ear elasticity. From the elastic coefficients obtained with the two
approaches, approximated creep coefficients are also obtained
using the concept of ‘effective moduli’ (see Section 2).
4.1. Instantaneous and delayed behavior under normal stresses

Consider the deformed RVE shown in Fig. 1(b), corresponding to
the FE solution obtained under in-plane macroscopic normal stres-
ses parallel either to the bed or to the head joints, R11 or R22. Let
the origin of the reference frame ðOx1x2Þ be placed at the center
of sub-cell No. 1 (brick). A piecewise differentiable strain-periodic
Fig. 4. Strain-periodic kinematically admissible microscopic strain field under
in-plane macroscopic shear.

Table 1
Values of the geometrical and mechanical parameters employed in Figs. 5 and 6 and
in Table 2.

Fig. hm

(mm)
hb (mm) bm

(mm)
bb (mm) Eb

(MPa)
Gb

(MPa)

5 10 55 10 120 Variable Variable
6 Variable 55 ¼ hm 120 17100 7434.8



displacement field, which approximates the FE solution reasonably
well, can be formulated as follows:

uð1Þ1 ¼2U1
x1

bb
; uð1Þ2 ¼�2W1

x2

hb
;

uð2Þ1 ¼U1þ
ðU2�U1Þðx1�bb=2Þ

bm
; uð2Þ2 ¼�2

x2

hb

2ðW1�W2Þ bmþbb
2 �x1

��� ���
bm

þW2

0
@

1
A;

uð3Þ1 ¼uð1Þ1 �
U1ð1þ2abÞ�U2ð Þðhb

2 �x2Þ
2hm

; uð3Þ2 ¼�W1þ
ðW1�W3Þðx2�hb=2Þ

hm
;

uð4Þ1 ¼uð1Þ1 þ
U1ð1þ2abÞ�U2ð Þðhb

2 �x2Þ
2hm

; uð4Þ2 ¼uð3Þ2 ; ð21Þ

uð5Þ1 ¼U1�
ðU1ð1þ2abÞ�U2Þ bbþbm

2 �x1

� �
x2� hb

2

� �
bmhm

�
ðU1�U2Þ x1� bb

2

� �
bm

;

uð5Þ2 ¼�W3
x2� hb

2

hm
�2

W2
bm
2 �ðW2�W1Þ bbþbm

2 �x1

��� ���� �
hb
2 þhm�x2

� �
bmhm

;

uð6Þ1 ¼2
x1

bb
U1�

U1þU1�U2
2ab

� �
x2� hb

2

� �
hm

0
@

1
A;

uð6Þ2 ¼�W1þ
W2�W3þ2ðW1�W2Þ jx1 j

bm

� �
x2� hb

2

� �
hm

: ð22Þ

This field is defined by five d.o.f.s (U1;U2;W1;W2;W3), shown in
Fig. 3. The macroscopic strains associated with the microscopic dis-
placement field (21) are simply
Fig. 5. Header bond brickwork: predicted values of the macroscopic in-plane elasti
E11 ¼
1
jV j

Z
V
�11dV ¼ U1 þ U2

bb þ bm
; E22 ¼

1
jV j

Z
V
�22dV ¼ �W1 þW3

hb þ hm
:

ð23Þ

Note that the ‘hidden’ d.o.f. W2 does not affect the macroscopic
strains (and the relevant macroscopic stresses). It might be used
to enrich the modeling of the local strain and stress field. For pres-
ent purposes, it can be taken equal to W1: this choice has the advan-
tage of fulfilling equilibrium conditions parallel to the interface
between brick and head joint. Additionally, setting W1 ¼W2 stres-
ses and strains are uniform over the sub-cells, except for the cross
joints (sub-cells 5 and 6). Within these sub-cells, equilibrium along
x2 for an infinitesimal element is not fulfilled.

Relationships between U2;W3 and between U1;W1 can be
found by prescribing that equilibrium along the normal to the
interfaces between brick and both joints is fulfilled:

rð1Þ11 ¼rð2Þ11 ) U2¼U1 1þ2abð1�m2
mÞ

aEð1�m2
bÞ

� �
þ2W1

ah

am
mm�

mbð1�m2
mÞ

aEð1�m2
bÞ

� �
;

rð1Þ22 ¼rð3Þ22 )W3¼2U1abam mm�
mbð1�m2

mÞ
aEð1�m2

bÞ

� �
þW1 1þ2ahð1�m2

mÞ
aEð1�m2

bÞ

� �
: ð24Þ

Equilibrium is not fulfilled at the interface between brick and bed
joint parallel to the interface and along the boundary of the cross
joints perpendicularly to the interfaces.

The remaining d.o.f.s can be related to the macroscopic in-plane
strains through Eqs. (23) and (24):
c constants vs. mortar-to-brick stiffness ratio. (a) E1, (b) E2, (c) m12, and (d) G12.



U1 ¼
hmaE E11ð1þ abÞðahð1� m2

mÞ þ aEð1� m2
bÞÞ � E22abð1þ ahÞðmbð1� m2

mÞ � aEmmð1� m2
bÞÞ

� �
2abam aEðaEð1� m2

bÞ þ ahð1� m2
mÞÞ þ abðaEð1þ 2ahmbmmÞð1� m2

mÞ þ ahð1� m2
mÞ

2 � a2
Eahð1� m2

bÞm2
mÞ

� � ;
W1 ¼

hmaE E11ð1þ abÞahðmbð1� m2
mÞ � aEð1� m2

bÞmmÞ � E22ð1þ ahÞðabð1� m2
mÞ þ aEð1� m2

bÞÞ
� �

2ah aEðaEð1� m2
bÞ þ ahð1� m2

mÞÞ þ abðaEð1þ 2ahmbmmÞð1� m2
mÞ þ ahð1� m2

mÞ
2 � a2

Eahð1� m2
bÞm2

mÞ
� � : ð25Þ

Fig. 6. Header bond brickwork: predicted values of the macroscopic in-plane elastic constants vs. bed joint thickness-to-brick height ratio. (a) E1, (b) E2, (c) m12, and (d) G12.
Finally, computing the macroscopic in-plane stresses R11 and
R22, the macroscopic elasticity constants can be identified. Setting
R22 ¼ 0, one gets

EðMoCÞ
1 ¼ R11

E11
¼ Em 1þ d1 � abd2

d3 þ abd2

� �
; mðMoCÞ

12 ¼ � E22

E11

¼ ð1þ abÞd5

ð1þ abÞd4 þ abd2
; ð26Þ

whereas, setting R11 ¼ 0, one gets

EðMoCÞ
2 ¼ R22

E22
¼ Em 1þ d1 � ahd2

d3 þ ahd2

� �
; mðMoCÞ

21 ¼ � E11

E22

¼ ð1þ ahÞd5

ð1þ ahÞd4 þ ahd2
; ð27Þ
with

d1 ¼ ð1� aEÞð1þ ahÞð1þ ab � m2
mÞ � abðð1� aEÞð1þ aEahÞ

þ ðaEmb � mmÞ2ahÞm2
m;

d2 ¼ ð1� aEÞ2 � ðmm � aEmbÞ2
� �

ð1� m2
mÞ;

d3 ¼ d4ð1þ ab þ ahÞ þ ðd2 þ d4Þabah; ð28Þ
d4 ¼ aEð1þ ab þ ah þ 2abahmbmmÞð1� m2

mÞ

þ abah ð1� m2
mÞ

2 � a2
Eð1� m2

bÞm2
m

� �
;

d5 ¼ mmd4 þ aEðmb � mmÞð1� m2
mÞ:

It can be shown that m12E2 ¼ m21E1, conforming with the symmetry
of the macroscopic elasticity tensor.



Table 2
Macroscopic elastic constants computed according to different methods for header bond and running bond brickwork. In brackets: percent difference with respect to Abaqus
predictions.

E1 (MPa) E2 (MPa) m12 G12 (MPa)

Abaqus 14401.2 13877.6 0.1590 5796.1
Reuss 13409.5 (�6.9) 13409.5 (�3.4) 0.1696 (+6.7) 5732.4 (�1.1)
Voigt 14984.8 (+4.1) 14984.8 (+8.0) 0.1559 (�2.0) 6482.0 (+11.8)
Salamon 15656.7 (+8.7) 14565.3 (+5.0) 0.1589 (�0.1) 6181.9 (+6.7)
Brooks – 13912.7 (+0.3) – –

Header Pande et al. 14374.8 (�0.2) 14028.5 (+1.1) 0.1555 (�2.2) 5732.4 (�1.1)
bond Zucchini & – – – 5780.8 (-0.3)

Lourenço
MoC 14336.6 (�0.4) 13891.0 (+0.1) 0.1555 (�2.2) 6092.1⁄ (+5.1)
MSE 14498.6 (+0.7) 13970.9 (+0.7) 0.1562 (�1.8) 5876.4 (+1.4)

Abaqus 15021.0 14177.0 0.1580 5981.5
Reuss 13887.2 (�7.5) 13887.2 (�2.0) 0.1671 (+5.8) 5949.5 (�0.5)
Voigt 15322.1 (+2.0) 15322.1 (+8.1) 0.1548 (�1.9) 6633.8 (+10.9)
Salamon 15656.7 (+4.2) 14565.3 (+2.7) 0.1589 (+0.6) 6181.9 (+3.4)
Brooks – 14157.0 (�0.1) – –

Running Pande et al. 14988.1 (�0.2) 14282.6 (+0.7) 0.1565 (�0.9) 5949.5 (�0.5)
bond Zucchini & – – – 5999.2 (+0.3)

Lourenço
MoC 14966.8 (�0.4) 14178.5 (�) 0.1564 (�0.9) 6350.6⁄ (+6.2)
MSE 15099.5 (+0.5) 14219.9 (+0.3) 0.1571 (�0.5) 6046.5 (+1.1)

⁄ Improved MSE.

Table 3
Parameters defining the creep functions of bricks and mortar (Eq. (46)) employed in
the numerical simulations.

Brick Mortar

E [MPa] 17100 7700
G [MPa] 7435 3208

n ¼ 1
j1 0.5327 0.7602
s1 [days] 72.33 29.61

n ¼ 2
j1 0.20842 0.60601
s1 [days] 1.5051 0.94854
j2 0.31521 0.15914
s2 [days] 68.277 31.259
A priori, the elastic moduli given by the Method of Cells are nei-
ther an upper nor a lower bound for the real moduli. Alternatively,
the values of the d.o.f.s U1; U2; W1 and W3 can be obtained by
minimizing the total potential energy P of the RVE (see Eq. (4)).
The advantage of this approach is that the strain energy stored in
the RVE is underestimated, and the predicted elastic moduli are
upper bounds for the real homogenized moduli. Let P be written
in the form

P¼ 1
2D

U1

U2

W1

W3

0
BBBBBB@

1
CCCCCCA

T k11

�k22 þD12 k22 symm:

3a14k44 �D13 �a14k44 k44 þD33

�a14k44 �a14k44 �k44 k44

0
BBBBBB@

1
CCCCCCA

U1

U2

W1

W3

0
BBBBBB@

1
CCCCCCA

�R11
U1 þU2

bb þ bm
þR33

W1 þW3

hb þ hm
; ð29Þ

where
k11 ¼ 96E0ba
2
ba

2
m þ E0mð8aba2

mð3þ2ahð1þ 2abð2�abÞÞÞ

þ ahð3þ11ab þ4ð2�abÞa2
bÞð1� mmÞÞ;

k22 ¼ E0mð8aba2
mð3þ 2ahÞ þahð3�abÞð1� mmÞÞ;

k44 ¼ 24E0mahð1þabÞ; ð30Þ

D12 ¼ 2E0mabahð8aba2
m � ð3� abÞð1� mmÞÞ; D13 ¼ 96E0babahammb;

D33 ¼ 96a2
hðE

0
b þabE0mÞ; a14 ¼

abammm

1þab
; D¼ 24h2

mð1þ abÞð1þahÞ

and

E0m ¼
Em

1� m2
m
; E0b ¼

Eb

1� m2
b

: ð31Þ

Minimizing P with respect to the d.o.f.s and replacing the com-
puted values in Eq. (23), new estimates for the macroscopic elastic
constants can be obtained (labeled with MSE hereafter) and read:

EðMSEÞ
1 ¼ 1þ ab

24ðabamÞ2ð1þ ahÞ
a

b� c
;

EðMSEÞ
2 ¼ 1þ ah

24a2
hð1þ abÞ

ak44

dð4k44 þ D33Þ � ck22
;

mðMSEÞ
12 ¼ 1þ ab

aBð1þ ahÞ
e

b� c
; ð32Þ

with

a ¼ ðk11 � k22Þ k22D33 � k44a2
14ð4k44 þ D33Þ

� �
þ k44a2

14 � D12=2
� �

ðc þ 2D33D12Þ þ D12D
2
13=2� k22 2D33ð2k44a2

14 � D12Þ þ D2
13

� �
;

b ¼ ðk11 þ 3k22 � 2D12ÞD33; c ¼ 4k44a14 � D13ð Þ2;
d ¼ k11k22 � ðk22 � D12Þ2;
e ¼ 4ðk11 � k22 þ 2a14D13 � 4k44a2

14Þk44a14

þ ð4k22 � 2D12 � a14D13ÞD13 þ a14b:

ð33Þ



Eqs. (26), (27) or (32) can be employed to approximately predict
the time evolution of the macroscopic strains under sustained
macroscopic stresses. Using the concept of age-adjusted moduli
(Bažant, 1972), it is sufficient to assume that Em and Eb (or their
ratio aE) are time-dependent functions, corresponding to the
inverse of the creep function of each phase. In Section 5 it will be
assessed to what extent this approximations affects the prediction
of the macroscopic creep behavior of masonry under normal
stresses.

4.2. Instantaneous and delayed behavior under in-plane shear

A similar approach can be proposed under in-plane shear.
According to the finite element solution shown in Fig. 1(c), a
strain-periodic displacement field can be formulated over the dif-
ferent sub-cells, which is completely defined by three d.o.f.s
U1; U2 and W2 (refer to Fig. 4 for the meaning of the symbols):

uð1Þ1 ¼ 2U1
x2

hb
; uð1Þ2 ¼ 0; uð2Þ1 ¼ uð1Þ1 ; uð2Þ2 ¼W1

x1 � bb
2

bm
;

uð3Þ1 ¼ U1 þ
U2 � U1

hm
x3 �

hb

2

� �
; uð3Þ2 ¼ �W2

x2 � hb=2
hm

;

uð4Þ1 ¼ uð3Þ1 ; uð4Þ2 ¼ �uð3Þ2 ;

uð5Þ1 ¼ uð3Þ1 ; uð5Þ2 ¼ �W1

x1 � bbþbm
2

� �
x2 � hb

2

� �
� hm x1 � bb

2

� �
bmhm

;

uð6Þ1 ¼ uð3Þ1 ; uð6Þ2 ¼W1
x1ðx2 � hb=2Þ

bmhm
ð34Þ
Fig. 7. Creep curves under sustained macroscopic horizontal stress R11: comparison bet
joints, (b) standard joints, and (c) thick joints.
with W1 ¼ 2W2. Stresses and strains are uniform over the sub-cells,
except for the cross joints (sub-cells 5 and 6), similarly to the solu-
tion proposed under normal macroscopic stresses. Within these
sub-cells, the equilibrium equation along x1 for an infinitesimal ele-
ment is not fulfilled.

The macroscopic shear strain associated with the microscopic
displacement field (34) is

2E12 ¼
2
jV j

Z
V
�12dV ¼ U1 þ U2

hb þ hm
þ W1

bb þ bm
: ð35Þ

A relationship between U1 and W2 can be found by prescribing
that equilibrium at the interface between bricks and head joints is
fulfilled:

rð1Þ12 ¼ rð2Þ12 ) W2 ¼ U1
bm

hb

1
aG
� 1

� �
: ð36Þ

Similarly, fulfillment of equilibrium at the interface between sub-
cells 1 and 3 (or 1 and 4) yields a relationship between U1 and U2:

rð1Þ12 ¼ rð3Þ12 ) U2 ¼ U1 1þ 2
ah

aG

� �
: ð37Þ

In this way, equilibrium between adjacent sub-cells is not fulfilled
only parallel to the boundary of the cross joints, and normally to
the interface between brick and bed joint.

The remaining d.o.f., U1, can be related to the macroscopic shear
strain through Eq. (35):

2E12 ¼
2

1þ ab
1� abah þ

ab þ ah þ 2abah

aG

� �
U1

hb þ hm
: ð38Þ
ween numerical and analytical predictions using Prony series of one term: (a) thin



Finally, computing the macroscopic shear stress R12 ¼ 1
jV j
R

V r12dV , a
MoC-type approximated value for the macroscopic in-plane shear
modulus G12 can be obtained:

GðMoCÞ
12 ¼ R12

2E12
¼ Gm 1þ 1� aG

ab þ ah þ 2abah þ aGð1� abahÞ

� �
: ð39Þ

This value is found to be smaller than Reuss lower bound to the in-
plane shear modulus, Eq. (7). Thus, the approximation provided by
the approach followed hitherto, based on the original version of the
Method of Cells, is less severe than that given by a simple uniform
statically admissible solution. Indeed, the transverse shear modulus
obtained by Aboudi (1991) for polymers reinforced by a square dou-
bly periodic array of long fibers coincides with Reuss lower bound.

To improve the approximation, here it is proposed to determine
U1 minimizing the macroscopic strain energy over the RVE, accord-
ing to Eq. (4):
min
U1

P ) U1 ¼
3hmaGðab þ ah þ abahð2� aGÞ þ aGÞð1� mmÞR12

Gmah
ð3�abÞð1�aGÞ2ah

a2
m

þ 2ð3ðaG þ ahÞ þ abð3þ ð11� 2ð5� aGÞaGÞahÞÞð1� mmÞ
� � : ð40Þ
Computing the macroscopic shear strain E12 ¼ 1
jV j
R

V �12dV , an

improved MoC-type approximated value for the in-plane shear
modulus of the homogenized material is given by:

GðiMoCÞ
12 ¼ Gm

ð1þ abÞð1þ ahÞ
c3c4

c4 þ ð1� aGÞah ð3� abÞð1� aGÞðð

� 2aba2
mð1� mmÞð2aG � 5Þ

��
; ð41Þ
Fig. 8. Creep curves under sustained macroscopic vertical stress R22: comparison betwee
(b) standard joints, and (c) thick joints.
where

c3 ¼ ab þ ah þ aG þ abahð2� aGÞ; c4 ¼ 6c3a2
mð1� mmÞ: ð42Þ

Eq. (41) gives an upper bound for the macroscopic shear modulus of
masonry.

Alternatively, the values of all the parameters U1;U2 and
W2 that define the displacement field over the RVE can be
obtained by minimizing the macroscopic potential energy over
the RVE:

U1 ¼
hmð1þ abÞðc1 þ c2ÞaG

2Gmahðð1þ abaGÞc1 þ ð1þ abÞc2Þ
R12;

U2 ¼
hm 2ahð1þ abaGÞ þ aGð1þ abÞð Þðc1 þ c2Þ

2Gmahðð1þ abaGÞc1 þ ð1þ abÞc2Þ
R12;

W2 ¼
3hmð1þ abÞð1� aGÞabamð1� mmÞ

Gmðð1þ abaGÞc1 þ ð1þ abÞc2Þ
R12;

ð43Þ
with

c1 ¼ ahð3þ abð2� abÞð1þ 2a2
mð1� mmÞÞÞ;

c2 ¼ 6aba2
mð1� mmÞ: ð44Þ

Again, computing the macroscopic shear strain as average of the
microscopic strains, a stricter upper bound to the real macroscopic
shear modulus can be obtained:
n numerical and analytical predictions using Prony series of one term: (a) thin joints,



Fig. 9. Creep curves under sustained macroscopic simple shear R12: comparison between numerical and analytical predictions using Prony series of one term: (a) thin joints,
(b) standard joints, and (c) thick joints.
GðMSEÞ
12 ¼ Gm 1þ 1� aG

ah þ abð1þ ahÞ 1� ð1�aGÞc1
c1þc2

� �
þ aG

0
@

1
A: ð45Þ

A disadvantage of the latter approach is that equilibrium at the
interfaces is not fulfilled a priori, contrary to the approach that led
to Eq. (41). Although Eq. (41) is less accurate than Eq. (45), the stress
field on which Eq. (41) is based could be employed in future exten-
sions of this research, e.g., to derive macroscopic strength criteria
according to a static limit analysis approach.

Again, using the concept of age-adjusted (or effective) shear
moduli, Eqs. (39), (41), and (45) can be extended to predict the
time evolution of the macroscopic shear strains under sustained
shear stress by simply replacing the constant ratio aG by a time-
dependent ratio aGðtÞ ¼ JbðtÞð1þ mbÞ=ðJmðtÞð1þ mmÞÞ. The reliability
of this approximation will be assessed in Section 5.
5. Numerical applications

Several parametric investigations were carried out to assess the
accuracy of the closed-form expressions for the macroscopic elastic
an creep coefficients derived in Section 4 through comparisons
with refined FE solutions. All the numerical analyses (both elastic
and viscoelastic) were carried out using the commercial FE code
Abaqus. The macroscopic coefficients derived hitherto are also
compared with the Voigt and Reuss bounds (Section 2.2) and with
other expressions available in the literature (see Section 3 and
Appendix A).
5.1. Macroscopic elastic properties

The values of the geometrical and elastic parameters employed
in the applications shown in this Section are summarized in Table 1.
In the first column, the number of the figure in which the different
sets of parameters were used is reported. The geometric parameters
correspond to header bond brickwork. In all the applications, the
elastic parameters of mortar are Em ¼ 7700 MPa, mm ¼ 0:2 (and
Gm ¼ 3208:3 MPa). The Poisson’s ratio of the brick is mb ¼ 0:15.

In Fig. 5 the influence of the material heterogeneity (quantified
by the ratio of the mortar Young’s modulus or shear modulus to the
corresponding brick modulus, aE or aG) on the predicted values of
the macroscopic in-plane elastic moduli, Poisson’s ratio and shear
modulus is investigated for header bond brickwork with standard
(10 mm thick) joints. Under normal stress (Fig. 5(a)–(c)), both the
original MoC (Eqs. (26) and (27)) and Pande’s theory (Eq. (47))
match the FE results with the same degree of accuracy; the expres-
sions obtained minimizing the potential energy of the RVE, Eq.
(32), fit the numerical results with higher accuracy. It must be
acknowledged, however, that the vertical elastic modulus is pre-
dicted fairly well by most of the expressions available in the liter-
ature (Fig. 5(b)), including a simple layered model. Eq. (32) gives
also the best agreement in terms of numerically computed
Poisson’s ratio (Fig. 5(c)). Under in-plane shear, the most accurate
predictions are given by the minimization of potential energy (Eq.
(45)); Zucchini and Lourenço’s formula, Eq. (20), gives the best
agreement with the numerical results if the shear moduli of brick
and mortar are not too different (aG > 0:4).



Fig. 10. Creep curves under sustained macroscopic horizontal stress R11: comparison between numerical and analytical predictions using Prony series of two terms: (a) thin
joints, (b) standard joints, and (c) thick joints.
In Fig. 6 the influence of the joint thickness-to-brick height ratio
on the macroscopic in-plane elastic parameters of header bond
brickwork is investigated. As this ratio increases, the original
MoC gives the better predictions in terms of vertical elastic modu-
lus (Fig. 6(b)), whereas the minimization of the potential energy
better fits the numerically computed horizontal elastic modulus
and shear modulus (Fig. 6(a) and (d)). Additionally, note that for
thick joints the predictions by Zucchini and Lourenço are less accu-
rate than those derived here or those proposed by Pande et al. For
thick joints, the numerically computed Poisson’s ratio is not cor-
rectly predicted by any of the available expressions (Fig. 6(c)).

Finally, in Table 2 the influence of the brick aspect ratio
aB ¼ hb=bb on the approximated macroscopic moduli is investi-
gated. Header bond brickwork (aB ¼ 55=120 ¼ 0:4583) and run-
ning bond brickwork (aB ¼ 55=250 ¼ 0:22) with standard (10 mm
thick) joints were considered. The predictions obtained with the
layered model are not reported, as they are very close to, or even
coincide with, Salamon’s predictions. Minimization of the potential
energy with respect to all the d.o.f.s gives very good estimates for
the numerically computed macroscopic moduli. Note, however,
that for the selected values of the geometric and elastic parame-
ters, the FE results are well matched also by most of the existing
proposals.

5.2. Macroscopic creep behavior

The possibility of predicting the delayed macroscopic strains of
a masonry element under sustained macroscopic stresses is now
assessed by simply replacing the inverse of the elastic moduli of
units and mortar by the creep functions of the two components,
JbðtÞ and JmðtÞ, according to the concept of effective age-adjusted
modulus (Bažant, 1972). The so-called generalized Maxwell’s rhe-
ological model, which basically consists of n Maxwell elements in
parallel with an elastic spring (see e.g., Kaliske and Rothert, 1997),
is employed to describe the time evolution of creep strains in units
and mortar. Accordingly, both JbðtÞ and JmðtÞ can be cast in the
form:

JðtÞ ¼ 1
E1

1�
Xn

i¼1

ji expð�t=siÞ
!
; ð46Þ

where E1 is the delayed modulus of the material, which is related to
the instantaneous (elastic) modulus E by E1 ¼ Eð1�

P
jiÞ), ji are

non-dimensional creep moduli and si are called creep times. The
r.h.s. in Eq. (46) is usually referred to as a Prony series expansion.
In the applications shown hereafter, the coefficients ji and si were
given values obtained by best fitting the data of creep tests on mor-
tar samples and calcium silicate bricks carried out by Brooks
(1990)): these values are listed in Table 3 (see also Taliercio,
2013). The Poisson’s ratios mb and mm are supposed to be constant
in time: readers are referred e.g., to Loo and Base (1990) for a dis-
cussion on the reliability of this assumption. Again, the accuracy
of the theoretical predictions is assessed assuming the macroscopic
creep curves obtained using a refined FE model of any RVE as a
benchmark. The FE code Abaqus employed in the numerical



analyses integrates the constitutive law over time, explicitly taking
the stress redistribution over the two components into account.

Figs. 7–9 show the macroscopic creep coefficients for header
bond brickwork with thin (2 mm), standard (10 mm) and thick
(40 mm) mortar joints, under sustained horizontal stress
(Figs. 7(a), 8(a) and 9(a)), vertical stress (Figs. 7(b), 8(b) and
9(b)), and in-plane shear (Figs. 7(c), 8(c) and 9(c)). These coeffi-
cients were computed both according to the expressions derived
in Section 4 and adapting expressions for the macroscopic elastic
properties of masonry available in the literature to the prediction
of the macroscopic creep coefficients using age-adjusted moduli.
Figs. 7–9 refer to the case n ¼ 1: the corresponding rheological
model is also called Zener model. Remarks similar to those made
in Section 5.1 apply. For thin joints, all the expressions taking head
joints into account (MoC, MSE, Pande et al., Brooks, Zucchini &
Lourenço) basically fit the numerical predictions with the same
accuracy. The macroscopic vertical creep estimated according to
the original MoC are quite accurate, both for standard and for thick
mortar joints. The macroscopic horizontal and shear creep strains
are better matched by the estimates based on the minimization
of the potential energy. The macroscopic shear creep strains com-
puted according to Zucchini & Lourenço’s model are accurate for
standard joint, but not for thick joints.

To assess whether the same conclusions can be drawn using
more complex creep functions, the same numerical simulations
referred to in Figs. 7–9 were carried out using Prony series of
two terms. Incidentally, note that with n ¼ 2 experimental creep
tests on calcium silicate bricks and mortar samples can be
Fig. 11. Creep curves under sustained macroscopic vertical stress R22: comparison betw
joints, (b) standard joints, and (c) thick joints.
reproduced with fair accuracy (Taliercio, 2013). The results
obtained are shown in Figs. 10–12. Again, the minimization of
the potential energy gives the best agreement with the numerical
results under horizontal stress or shear, whereas the original MoC
is more accurate as far as the evolution of the creep strains
under vertical stress is concerned. If joints are thin, the various
expressions derived taking head joints into account are equally
accurate.
6. Concluding remarks

Using a kinematic approach inspired by the Method of Cells
(MoC) for fiber reinforced composites, having affinities with the
approach proposed by Zucchini and Lourenço (2002), closed form
expressions for all the macroscopic in-plane elastic constants of
regular pattern masonry were derived, with different degrees of
accuracy (Section 4). Note that most models available in the liter-
ature (Section 3) give analytical expressions only for some of the
constants. According to the numerical applications (Section 5.1),
the expressions obtained for the macroscopic elastic moduli using
the original Method of Cells, Eqs. (26) and (27), or the minimization
of the potential energy of any RVE, Eq. (32), are basically found to
be equally accurate for header bond brickwork, for any joint thick-
ness and stiffness of the units. As the expressions for the moduli
computed according to the original MoC are much simpler, for
practical purposes it is advisable to use Eqs. (26) and (27) rather
than Eq. (32). The minimization of the potential energy gives
een numerical and analytical predictions using Prony series of two terms: (a) thin



Fig. 12. Creep curves under sustained macroscopic simple shear R12: comparison between numerical and analytical predictions using Prony series of two terms: (a) thin
joints, (b) standard joints, and (c) thick joints.
somewhat more accurate results in terms of horizontal Young’s
modulus. Conversely, minimizing the potential energy of any RVE
the most accurate predictions for the elastic shear modulus are
obtained (Eq. (45)).

The proposed expressions for the macroscopic elastic constants
can also be used to derive the in-plane macroscopic creep coeffi-
cients of masonry, using the concept of effective modulus: these
coefficients were numerically shown to match the finite element
simulation of creep tests on a RVE accurately, both under normal
stresses and shear (Section 5.2), for any joint thickness. Again,
the expressions obtained using the MoC in its original form are
appropriate as far as the vertical creep behavior is concerned.
Under sustained shear stress, the expression of the creep coeffi-
cient based on the minimization of the potential energy are more
accurate.

Comparisons with theoretical expressions available in literature
have shown that in most instances the expressions derived in the
present work are globally more accurate over the entire range of
material elastic moduli and joint thicknesses explored in the
numerical applications.

In the continuation of this research, the proposed approach
will be extended to different types of brick patterns (English
bond, Flemish bond, etc.), which require a different choice for
the geometry of the RVE. Unlike the case considered here
(header or running bond brickwork), according to previous
studies (Anthoine, 1997; Taliercio, 2013) the state of stress
within the RVE cannot be assumed to be plane if stretchers
and headers coexist in the wall. The microscopic displacement
field employed in Section 4.1 could also be improved to obtain
better predictions for the macroscopic Poisson’s ratio if joints
are thick. Finally, the approach proposed hitherto could be
extended to the prediction of the out-of-plane stiffness of brick
walls, which is of particular importance under horizontal (e.g.,
seismic) loads. Macroscopic strength criteria for in-plane loaded
walls could also be formulated using a micromechanical
approach based on the expressions of the microscopic stress
fields employed in this work to derive the macroscopic elastic
and creep coefficients.
Appendix A. Equivalent elastic properties for brick masonry in
plane stress according to Pande et al. (1989)

Let the macroscopic 2D constitutive law for the orthotropic
medium equivalent to linear elastic brickwork be written as in
Eq. (3). According to Pande et al. (1989), the macroscopic elastic
constants are given by:
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with

p1 ¼
ah

1þ ah
; p2 ¼

1
1þ ah

; E011 ¼ E021 ¼ Em;

E012 ¼ Em pmð1� 2m2
mÞ þ pbaEð1� 2m2

bÞ þ 2
ðpmmm þ pbmbÞ2

pm þ pb=aE

!�1

;

E022 ¼ Emðpm þ pb=aEÞ;

m01 ¼ mm; m02 ¼ ðpmmm þ pbmbÞ
E012

E022

; G01 ¼ Gm;

G02 ¼ Gm pm þ pbaGð Þ�1 ð48Þ

having set pm ¼ ab=ð1þ abÞ and pb ¼ 1=ð1þ abÞ.

Appendix B. Symbology

� hb = brick height,
� bb = brick width,
� hb = bed joint thickness,
� bm = head joint thickness,
� Eb = brick Young’s modulus,
� Em = mortar Young’s modulus,
� mb = brick Poisson’s ratio,
� mm = mortar Poisson’s ratio,
� Gb ¼ Eb=ð2ð1þ mbÞÞ = brick shear modulus,
� Gm ¼ Em=ð2ð1þ mmÞÞ = mortar shear modulus,
� ah ¼ hm=hb,
� ab ¼ bm=bb,
� aB ¼ hb=bb = brick aspect ratio (=amab=ah),
� am ¼ hm=bm,
� aE ¼ Em=Eb,
� aG ¼ Gm=Gb,

� gb ¼ 1
1þabþahþabah

= brick volume fraction,

� gm ¼
abþahþabah

1þabþahþabah
¼ 1� gb = mortar volume fraction.
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