
1. Introduction

Many operational decisions impact the energy footprints of discrete manufacturing firms. Since energy footprints are clo-
sely connected to energy costs and environmental consequences, these operational decisions can have long-lasting
effects. Hence, making informed decisions with the aid of energy evaluation tools is important to manufacturing firms.
Evaluating energy footprints in manufacturing is not, however, straightforward. A plant-level energy footprint requires
machine-level energy analysis, and machine-level energy use has to be investigated with product-level considerations.
Thus, we need to explore and improve approaches for analysing manufacturing energy use on different levels.

A broad review of manufacturing energy analysis and sustainable manufacturing is provided in Garetti and Taisch
(2012). This study establishes a comprehensive framework for green manufacturing and sustainability. In Gungor and
Gupta (1999), a number of environmentally conscious manufacturing studies are surveyed, and methods for connecting
product design and manufacturing processes are discussed, with a focus on sustainable manufacturing.

At the product level, life cycle assessment (LCA) has been a major component of energy evaluation (Rebitzer et al.
2004; Pennington et al. 2004; Finnveden et al. 2009). Since LCA takes account of a broad range of environmental
effects for each type of product or service, it can be used as a basis for product-level energy analysis. Detailed product-
level data may not, however, be available at early stages of planning a new product; so, LCA techniques may be less
useful to future manufacturing plants.

Various studies have been conducted on machine-level energy analysis. For instance, Gutowski et al. (2009) show
that manufacturing energy is related to the types of materials and processes, and propose that machine power is a func-
tion of a material processing rate. Diaz, Redelsheimer, and Dornfeld (2011) estimate the relationships between power
consumption and material removal rates (MRR) to be quadratic or linear in experiments with a milling machine. Since
conventional methods provide only approximated energy requirements for processing materials (Kalpakjian and Schmid
2001), considering machine power with MRR could help to build a more accurate machine power model.

At the component or subsystem level of a machine, Dietmair and Verl (2009) perform power measurement experi-
ments, in which machine states are defined with subcomponents. Frigerio et al. (2013) extend the machine states with
functional modules, and we can use some of the machine states for a specific case. Based on these micro-level energy
investigations in machines, other researchers build energy models at a higher level. Johansson et al. (2009) apply
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discrete event simulation for estimating the manufacturing energy of a production line, and Liu et al. (2012) look into
the standby mode of six different machines to save manufacturing energy. Devoldere et al. (2007) show the potential of
saving discrete manufacturing energy when machine idle time is considered.

Ideas in these models, combined with those of Dahmus and Gutowski (2004), provide theoretical grounds for the
factory energy simulation model presented by Prabhu, Jeon, and Taisch (2013). Prabhu, Jeon, and Taisch (2012) also
extend the simulation model to the analytical queueing energy model. Apart from aspects of plant- or machine-level
energy, Boyd, Dutrow, and Tunnessen (2008) apply stochastic frontier analysis (SFA) to evaluate the energy efficiency
of cross-sectional auto industry data. The SFA model could be extended to general manufacturing plants.

Based on these previous studies, the present paper proposes energy evaluation methods and models for manufactur-
ing plants. The proposed evaluation approach consists of modelling at four different levels, where models at one level
are closely connected to parameters in other adjacent levels. We begin by parameterising product-level elements. A pro-
cess plan with these elements is then used as input data for machine-level models, in which machine states, processing
power and processing times (PT) are modelled. Using simulation experiments based on machine-level models, the analy-
sis at the plant level identifies significant factors in energy footprints and provides the manufacturing energy equations
in terms of factors for managerial decisions. Industry-level evaluation assesses the simulated plant-level footprints and
provides energy efficiency percentile rankings of the simulated plant. A case study shows how the suggested approach
can be applied for evaluating the energy footprints of discrete manufacturing plants.

The rest of this paper is organised as follows. Section 2 presents general energy evaluation methods and models for
the analysis of the four levels. We show the case study with detailed proposed procedures for specific products in
Section 3, and Section 4 presents conclusions and outlines future work.

2. Modelling and evaluating manufacturing energy

In this section, we show how product, machine, plant and industry levels are connected for energy footprint evaluation,
and Figure 1 illustrates the summarised approach. More details about the models and methods of this section are intro-
duced in Section 3 with a specific example.

2.1 Parameterisation at the product level

While LCA has served as grounds for product-level energy analysis, the required specific LCA data are not always
available at early stages of manufacturing. Furthermore, the cost of analysing new products with LCA techniques can

Figure 1. Approach for evaluating energy footprints.



be high, and an early analysis might not be updated to reflect subsequent managerial decisions. Thus, we consider a dif-
ferent approach to parameterise product-level energy factors based on CAD models of products. Using this approach,
manufacturers can extract key energy parameters from a product design, and a brief process plan can be prepared. The
parameters in the process plan are then connected to machine-level analysis. For instance, required manufacturing pro-
cesses and machine types are parameterised at the product level for machine-level energy analysis.

2.2 Models at the machine level

Since a machine in use is always in one of several states, each of which has a specific power and time period, machine-
level energy can be written as

Energy ¼ PN
i¼1

Poweri � Timei

where i ¼ index of machine states
(1)

Thus, machine-level energy can be modelled by identifying significant machine states at the machine level. After defin-
ing machine states, we assign adequate machine-level energy control policies to the defined states. For instance, an
energy control policy to turn off idle machines can be considered.

Processing power and time of each state in (1) are modelled by following the process plan written at the product
level. In general, processing power can be modelled as a function of a material processing rate, and the parameters of
the function are determined by raw material, required process and machine type, all of which are available in the pro-
cess plan. This general modelling of power and time is, however, able to include only two machine states, processing
and idling. In order to build a more accurate model of machine states, we need to extend the general processing power
and time model.

2.3 Analysis at the plant level

Using previously defined parameters, we run simulation experiments to see which factors have the significant impact on
plant-level energy footprints. Since the parameters of product and machine levels are closely connected to simulation
factors, we can check dynamics on energy footprints at product-, machine- and plant-level factors. In running the simu-
lation, we use the design of experiments (DOE) technique. For instance, if we have N different factors to check, we can
use 2N full factorial design with 2N treatment combinations. After ANOVA is performed, the manufacturing energy foot-
prints can be written in regression equations of managerial factors for decisions. In analysing plant-level energy con-
sumption, we assume that the manufacturing energy needs are mainly driven by production lines. The energy
consumption of production-supporting equipment such as HVAC is considered in the industry-level analysis.

2.4 Evaluation at the industry level

The simulated energy footprints in 2.3 can be analysed as the total energy consumption or energy consumption per
product (EPP) unit. This evaluation of a given plant may provide more insight, however, if it is considered from the per-
spective of a manufacturing industry. For this evaluation method, we propose two different energy efficiency criteria.

We introduce a criterion based on fitting probability distributions first. The approach is straightforward. We assume
that plants in the same industry segment are producing the same or similar products. Then, for all cross-sectional plant
data in which energy consumption and total number of products are available, EPP is calculated. EPP values are fitted
to a well-known probability distribution. After checking the goodness-of-fit, we write the fitted cumulative distribution
function (cdf) F by integrating the probability density function f as in (2).

F EPPð Þ ¼ REPP
0

f xð Þdx
where EPP� 0

(2)

Using (2), we define the energy efficiency criterion (EEC1) as

EEC1 EPPið Þ ¼ 1� F EPPið Þ ¼ P EPPi\EPP of peersð Þ
where EPPi ¼ EPP of plant i

(3)



When EPPi is plugged into (3), EEC1 returns the probability that other peer manufacturers would spend more energy in
producing the same product. Hence, we can use EEC1 EPPið Þ as the percentile rank of the energy efficiency of plant i.

The other energy efficiency criterion involves the energy inefficiency component ui of the SFA. In SFA, Ei (energy
consumption of plant i) is regarded as a function of various independent variables Xj ( j = 1, 2, …, m). These indepen-
dent variables include economic plant inputs such as annual production and the number of employees, as well as other
energy-related variables such as weather. Then, with Ei and Xj, we build a regression model using the maximum likeli-
hood estimation (MLE) as

Ei ¼
Xm
j¼1

bjXj þ �i; i ¼ 1; 2; . . .;N (4)

�i ¼ ui þ vi (5)

Thus, for plant i, we have a random error term �i, which would have been distributed as Nð0; r2�Þ in the ordinary least
square (OLS) regression. However, in SFA, we assume that �i is asymmetrically distributed and consists of two random
parts as in (5), where ui is an energy inefficiency component following a one-sided distribution ui � 0ð Þ, and vi is a ran-
dom noise component following N 0; r2v

� �
. In other words, when the MLE algorithm tries to maximise the log-likelihood

function of �i, the algorithm estimates βj and parameters of ui and vi in (4) and (5) all together. Then, using distribution
functions and estimated parameters, we can separate ui from �i for all plants i as in

ui ¼ Ei �
Xm
j¼1

bjXj � vi (6)

In (6), since Ei �
Pm

j¼1 bjXj

� �
is the distance between actual energy consumption Eið Þ and estimated energy consump-

tion in the plant
Pm

j¼1 bjXj

� �
, we can understand ui as the energy inefficiency combined with a random noise factor vi.

Thus, the other energy efficiency criterion EEC2 can be defined for plant i as in (7).

EEC2 uið Þ ¼ 1� F uið Þ
where F is cdf of ui

(7)

The insight of EEC2 is similar to EEC1 in that if ui is applied into (7), EEC2 uið Þ gives the probability that other peer
manufacturers would consume more energy, based on input variables Xj. Likewise, we can use EEC2 uið Þ as the percen-
tile rank of energy efficiency of plant i. Greene (1990) and Kumbhakar and Lovell (2003) provide more technical details
on SFA.

3. Simulation experiments

In order to demonstrate how proposed models in Section 2 are implemented for manufacturing energy analysis, we con-
duct a case study with IME Inc., a hypothetical manufacturing firm. In this case study, we estimate the firm’s energy
footprints first, and then compare its energy efficiency with those of peers in the same industry segment. For products
to manufacture, we use six machined chess pieces, designed by Penn State students as a part of their coursework
(Pennsylvania State University).

3.1 Energy footprints estimating

In this subsection, we show how energy footprints can be estimated using the approaches of Subsections 2.1–2.3. Thus,
in each of the product, machine and plant levels, parameters are extracted and models are built based on the parameters.

For parameterisation at the product level, we first prepare process plans of final products, using CAD models. For
example, we make the process plan of the rook pieces in Table 1 based on the CAD model in Figure 2.

In preparing process plans, we assign a lathe (L) to cut a cylindrical or torus shape and milling machine (M) to cut
other shapes. For instance, (L1) in Figure 2 requires the removal of a partial torus shape and therefore, we assign a
lathe. Then, as in Table 1, the volume to remove (VTR) for each process is computed based on the CAD model, and
we write MRRs of interest together. Computing (VTR/MRR), we estimate the PT of each cut in Table 1. Following the
same procedures, we create process plans for the other five pieces.



For power models at the machine level, we define three machine states and two machine-level energy control poli-
cies for the firm (Prabhu, Jeon, and Taisch 2013), as follows. The P state indicates the general processing state of a
machine; a machine making cuts on materials is in this state. The nominal power idling state (N) is used for a typical
idle period; after finishing one part, a machine stays in this state before working on new parts. The low power idling
state (L) is the other idle state. It consumes less energy than the N state, but it is defined only under the active energy
control policy EC1. If an idle period is longer than the time threshold τ, a machine is assumed to stay in the L state for
the idle period. An idle period shorter than τ is considered in the N state. The idle states L and N are roughly analogous
to the power saving and idle modes in mobile devices.

The first energy control policy EC0 does not consider any machine-level energy control. Since a machine is either
working or idling with this policy, only the P and N states are defined under EC0. The other energy control policy, EC1,
allows machines to enter the L state if idle periods are longer than τ. Thus, the P, N and L states are defined under EC1.
Figure 3 illustrates how the P, N and L states are defined under EC0 and EC1.

Applying the introduced machine states and energy control policies, however, requires machine-specific consider-
ations. In this case study, our fictional IME Inc. is assumed to use Haas VF3 for milling machines and Haas SL30 for
lathes, both of which have the auto power saving mode, which turns off idle machines after the predefined time duration
of inactivity. Thus, we redefine the N state as in being idle and the L state as in being turned off, assuming that the
mode is on in all machines.

While we can save energy by turning idle machines off, turned-off machines require time to start-up. Thus, τ for
EC1 can be determined as the starting-up time of VF3 and SL30, since production delay is assumed by EC1 to not be
allowed. In order to investigate the starting-up time and other power parameters of the two CNC machines, we conduct
power measurement experiments with VF3 and SL30 cutting low carbon steel parts. In these experiments, machine
power is assumed to be a function of MRR, and the pairwise data of MRR and average power are collected. Based on

Table 1. Process plan for rook.

Process name Process description Machine type VTR (mm3)

PT (seconds)

MRR = 44,245 mm3=minð Þ MRR = 27,858 mm3=minð Þ

Raw material = low carbon steel cylinder of radius 16.00 mm
L1 Partial torus Lathe 942.19 1.28 2.03
L2 Outer cylinder of obelisk Lathe 17032.84 23.10 36.68
M1 Part of obelisk (hexahedron) Milling 6869.54 9.32 14.80
M2 Top of obelisk (pyramid) Milling 748.92 1.02 1.61

Figure 2. CAD model of rook.



the collected experimental data, linear regression models are built as in (8) and (9) with R2 98.2% (VF3) and 93.7%
(SL30). We plot the data and estimated equations in Figure 4.

WmillingðVF3Þ ¼ 2005þ 4:76� 10�2 �MRR (8)

WlatheðSL30Þ ¼ 2603þ 3:06� 10�2 �MRR (9)

We then specify WP, WN and WL (power levels of the defined machine states) as follows. Given MRR during the P
state, WP is computed from (8) and (9). For WN, 625 W (VF3) and 808 W (SL30) are measured, and 0 W is assumed
for WL. VF3 and SL30 take 0.5 min to start-up, and average power during start-up is measured to be less than WN in
both machines (262 W for VF3 and 526 W for SL30). This suggests that the proposed energy control policies are eco-
nomically well grounded and, therefore, τ is set as 0.5 min.

For plant-level simulation, we use the hybrid simulator for production, energy and emission dynamics (HySPEED)
(Prabhu, Jeon, and Taisch 2013). Since HySPEED can simulate the energy consumption of a discrete manufacturing
system with various production parameters, this is a suitable choice for this analysis. Important factors that can vary in
HySPEED are as follows: number of machines in a production line, mean interarrival time (IAT) of raw materials to a
system, mean machine PT, machine utilisation (PT/IAT), power consumption levels of machine states, energy control
policies, τ, start-up energy and probability distribution for random IAT and PT.

Figure 3. Machine states and energy control policies.
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In the plant-level analysis, we use the DOE method in the 25 full factorial design in order to identify the significant
factors on energy consumption. For five factors to vary, we consider material route, market demand, product quality,
size and energy control policy (EC). For six chess pieces, we assume independent production lines. Then, the material
route is considered to be milling machines only (−1) or milling and lathe machines together (+1), as in the planned pro-
cess. Market demand (machine utilisation) controls IATs of each production line. Thus, we control the utilisation of the
busiest machine in each line with this factor, since PTs are already determined in process plans. We also consider
product quality (MRR) as a factor, since a high MRR has a negative impact on product quality, while it increases the
number of products. This factor also governs WP based on (8) and (9). Product volume (size) is a factor that changes
the product size. (−1) is used for the same size as CAD models, and (+1) for 120% of CAD models. EC decides
between EC0 and EC1 policies. The raw material is assumed to be a low carbon steel cylinder with the necessary height
for each piece. IAT and PT are assumed to be normally distributed. We consider two responses: Y1 = the total energy
spent (kJ) and Y2 = energy spent per product (kJ/piece). Level of significance α is 0.05 in DOE analysis. DOE factors
with levels are summarised in Table 2.

After all 32 runs are simulated, we apply the natural log transformation to Y1 and Y2 in order to cope with the vio-
lation of the normality assumption of the residuals. Then, we have two half-normal plots of effects for lnY1 and lnY2

in Figure 5. Among five main factors and higher order interactions, we build regression models only with terms that
have the absolute effect > 0.05, since other terms contribute less to the responses. The resulting regression models are
provided in Table 3.

From Table 3, we can identify significant factors, and this result can be interpreted as follows. When VF3 and SL30
are used together (route = +1), both Y1 and Y2 increase, since the starting-up power and WN of SL30 are greater than
those of VF3. With higher market demand (+1), Y1 is increased (more products), but Y2 is decreased (less wasted
energy during the N state). For higher quality (+1), Y1 is decreased, since the number of products is decreased (low
MRR), while Y2 is increased, since more energy is consumed for each product. To make a larger size of products
(size = +1), more energy is consumed for each product, but Y1 is not closely related to the product size. Obviously

Table 2. DOE factors with levels.

Factors and Levels (−1) (+1)

Material route Only milling (VF3) Milling and lathe (VF3 and SL30)
Market demand Machine utilisation = 0.3 Machine utilisation = 0.7
Quality (MRR) 44; 245mm3=min (low quality) 27; 858mm3=min (high quality)
Size (product volume) Regular (100%) Large (120%)
Energy control policy EC0 EC1

Figure 5. Half normal plots of effects for lnY1 (left) and lnY2 (right).



when EC1 is applied, we could save energy with both responses. The second-order interaction between demand and EC
is found to be significant, and this suggests that more energy can be saved when demand and EC are considered
together. For example, when market demand is low (−1), Y1 would decrease further with EC (+1) since the signs of
demand and (demand × EC) effects are positive, while the sign of EC effect is negative. For energy-saving opportuni-
ties, we can check EC, which is a significant factor in both responses. This implies that IME Inc. can save a non-negli-
gible amount of energy by implementing EC1. More specifically, when the other four factors are the same, average
difference in Y1 between EC0 and EC1 is 249 MJ per day (19.7% saving), or approximately $1717 for a year ($18.92/
GJ). In both models, R2 is greater than 96%, and the residual normality assumption is met, suggesting that the regres-
sion equations are reliable.

3.2 Energy efficiency benchmarking

In this subsection, we describe how the probabilistic approaches of 2.4 can be used for industry-level analysis. Thus,
the distribution fitting method and SFA are applied here.

For evaluating the simulation data at the industry level, the Industrial Assessment Centers (IAC) data-set is used.
The IAC is a government-sponsored programme to evaluate the energy efficiency of US industrial plants, and its assess-
ment results provide useful data, including annual energy consumption and production levels of more than 16,000
plants. The full data-set is downloadable from the IAC database (IAC).

Before using the data, we filter and modify it as follows. All types of energy consumption are aggregated as annual
energy consumption (MJ). In order to consider HVAC effects, we add the cooling/heating degree days (CDD/HDD) of
plants with respect to each state and fiscal year. CDD and HDD are collected from the US National Climatic Data
Center (NCDC). For clustered plants, all plants are categorised by their Standard Industrial Classification codes between
2000 and 3899, which represent all manufacturing industries. Since each SIC segment consists of 100 codes, all plant
data are classified into 19 different segments, starting from 2000. We analyse only the plants of which a final product
unit is ‘piece’, so that we can assume that plants in each SIC segment produce the same or similar products. We also
consider only the plants of annual production level > 100,000 pieces, in order to have plant data with mass production.

Using the IAC data for EEC1, we calculate EPP values of all plants as described in 2.4. EPPs of each segment are then
fitted to the Weibull distribution (W). If the Weibull fit is not good, EPPs are fitted to the Burr Type XII distribution (BT),
since the Weibull has a smaller number of parameters than the BT. As Kolmogorov–Smirnov (KS) and Anderson–Darling
(AD) tests show good fits for all 19 segments, we can write EEC1 in terms of the Weibull (FW) and BT (FBT) cdfs as in (10)
and (11). Details about the distributional parameters of each SIC segment are shown in Table 4. One thing to note is that
although this result is handy to implement, careful use is required for segments with small sample sizes (including tobacco,
petroleum and leather segments), since significant bias can be included in fitted models.

EEC1ðWÞðEPPÞ ¼ 1� FW ðEPPÞ ¼ exp � EPP
p1

� �p2� �

where EPP� 0 and p1; p2 [ 0
(10)

EEC1 BTð Þ EPPð Þ ¼ 1� FBT EPPð Þ ¼ 1þ EPP
p1

� �p2� ��p3

where EPP� 0 and p1; p2; p3 [ 0
(11)

Table 3. Linear regression models of energy footprints for IME Inc.

Variables
Y = ln Y1 Y = ln Y2

Coefficient P Value Coefficient P Value

Regression equation: Y ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ b4x4 þ b5x5 þ b6x2x5
Constant (b0) 14.0 0.000 5.146 0.000
Route (x1) 0.179 0.000 0.070 0.000
Demand (x2) 0.324 0.000 −0.098 0.000
Quality (x3) −0.085 0.000 0.145 0.000
Size (x4) – – 0.086 0.000
EC (x5) −0.117 0.000 −0.117 0.000
Demand × EC (x2 × x5) 0.081 0.000 0.081 0.000
R2 98.7% 96.8%



Among the SIC segments in Table 4, we use the distribution of the ‘fabricated metal’ segment, since this is the segment
the IME would belong to. Thus, we apply p1 and p2 of the segment in Table 4 to (10) for IME Inc. For EPP of IME
Inc., a pair of simulated data from 3.1 is used, with all treatments the same except for EC. However, since the EPP is
too small compared with the IAC data, we assume that the number of machines in IME Inc. has been extended 100
times, and we give the firm a new name, IME100 Inc. Then, plugging EPPs of 34.59 MJ (EC0) and 20.24 MJ (EC1)
into (10), we have EEC1 Wð Þ 34:59ð Þ = 26th and EEC1 Wð Þ 20:24ð Þ = 34th, suggesting that EC1 can improve the energy
efficiency of IME100 as compared with its peers.

In order to perform EEC2 analysis for IME Inc., we also use the same segment in the IAC data. For the distribution
of ui, we assume the Gamma distribution, since it has a more flexible fit. After careful examination of alternative
models, we determine the final regression model and its estimated parameters in Table 5 and (12).

ffiffiffiffi
Yi

p ¼ b0 þ b1X1 þ b2X2 þ b3
ffiffiffiffiffi
X3

p þ b4X4 þ b5 ln X5ð Þ þ ui þ vi

where vi �N 0; r2v
� �

and ui �FG xð Þ ¼ Rx
0

hP exp �hsð ÞsP�1

C Pð Þ ds; x� 0;P; h[ 0 (12)

As shown in Table 5, all estimates are statistically significant at the significance level α = 0.05, except for σv. In the
likelihood ratio test against the OLS model, the chi-squared statistic (df = 1) is found to be 194.1. This implies that the

SIC segment Typical Products
Sample
Size Distribution p1 p2 p3

KS & AD
tests
a ¼ :05ð Þ Constraints

2000–2099 Food 239 Burr 5.037 0.795 1.225 Passed Annual Production >
100,000 & Production
Unit = ‘piece’

2100–2199 Tobacco 4 Weibull 1.605 0.268 Passed
2200–2299 Textile 45 Weibull 10.190 0.771 Passed
2300–2399 Apparel 111 Weibull 9.774 0.640 Passed
2400–2499 Lumber 94 Weibull 39.419 0.600 Passed
2500–2599 Furniture 104 Weibull 91.171 0.752 Passed
2600–2699 Paper 136 Burr 0.013 1.454 0.235 Passed
2700–2799 Printing 219 Burr 0.378 0.920 0.886 Passed
2800–2899 Chemicals 96 Burr 0.368 1.198 0.442 Passed
2900–2999 Petroleum 11 Weibull 30.969 1.108 Passed
3000–3099 Rubber 397 Burr 1.373 0.728 0.957 Passed
3100–3199 Leather 40 Weibull 25.276 0.795 Passed
3200–3299 Glass 103 Weibull 35.651 0.396 Passed
3300–3399 Primary metal 83 Weibull 30.628 0.531 Passed
3400–3499 Fabricated metal 491 Weibull 17.423 0.428 Passed
3500–3599 Machinery 240 Weibull 42.086 0.531 Passed
3600–3699 Electronic 302 Weibull 27.473 0.485 Passed
3700–3799 Transportation equipment 217 Weibull 41.620 0.557 Passed
3800–3899 Photo/medical/optical 107 Weibull 15.835 0.514 Passed

Table 5. Estimated SFA parameters of fabricated metal segment (N = 491).

Variable Description Estimated coefficient P value (Wald test) Unit

Y Annual energy consumption MJ
β0 Constant −7.524 × 103 0.0073
X1 Number of employees 5.886 0.0000
X2 Plant area 7.290 × 10−3 0.0000 m2

X3 Annual production level 4.227 × 10−2 0.0000 pieces
X4 Annual production hours 3.286 × 10−1 0.0002 hours
X5 HDD 6.418 × 102 0.0327
θ Parameter 1 of ui 5.800 × 10−4 0.0000
P Parameter 2 of ui 2.891 0.0000
σv Standard deviation of vi 1.744 × 10−2 1.0000

Table 4. Fitted distribution parameters for 19 SIC segments.



SFA model in (12) is better than the usual OLS regression model, since the SFA model increases the log-likelihood
function value statistically more than the OLS model does at α = 0.05. Since estimated vij j\0:01 and
ui ¼ 194; 35350½ �, these ranges and insignificant σv together suggest that residuals in (12) mostly come from the energy
inefficiency component ui, and the random noise vi does not statistically contribute to (12). Then, we can write EEC2 in
terms of the Gamma distribution cdf FG uið Þ as

EEC2 uið Þ ¼ 1� FG uið Þ ¼ 1� Rui
0

hP exp �hsð ÞsP�1

C Pð Þ ds; ui � 0 (13)

where P and θ are found in Table 5
Applying EEC2 to IME Inc., we use the same pair of simulated data as we use with EEC1. Also for the same rea-

son, we assume that the number of machines in IME Inc. has been extended 20 times, and we call the new firm IME20
Inc. Since independent variable data in (12) are not available for IME20, we assume that the firm has the average level
of input data of the segment, except for the annual energy consumption and production level. From Table 5, (12) and
(13), we have ui EC0ð Þ ¼ 2166 and ui EC1ð Þ ¼ 1448 as well as EEC2 2166ð Þ = 85th and EEC2 1448ð Þ = 94th. This result
shows again that EC1 can improve the energy efficiency of IME20. We summarise the results of the energy efficiency
evaluation in Table 6.

Although we can benchmark the energy efficiency of plants with two methods introduced here, any result based on
the methods is dependent on the assumption that all the manufacturers produce the same or very similar products. The
benchmarking method must be performed very carefully if this assumption is significantly violated.

4. Conclusion

This paper aims to provide holistic but pragmatic approaches for estimating and evaluating manufacturing energy foot-
prints by integrating and improving energy research and studies. The proposed methods start by extracting parameters at
the product level, and link the parameters to machine-level power and plant-level energy footprints, thereby enabling
comparison of manufacturing energy footprints at the industry level. A case study shows in detail how parameterised
information at each level is systemically used as input data for the next level. Simulating the energy consumption of a
hypothetical plant with five managerial factors, the case study presents the total energy consumption and the energy con-
sumption per unit product in closed-form equations. By using the equations, the manufacturing energy can be estimated
with the factors at different levels, and ways to reduce manufacturing energy consumption can be analysed in consider-
ation of a higher order interaction.

Our case study focuses on offering practical, useful tools in the early stages of planning new products or plants to
estimate and evaluate energy consumption. Thus, machine power equations are estimated based on experimental data
from real CNC machines. Furthermore, theoretical energy control policies and machine states are refined for use in the
existing power saving mode of the CNC machines, suggesting that the proposed approach can be implemented in actual
manufacturing plants. The results from the proposed methods are used for comparing the energy efficiency of plants
with peers in the US manufacturing sector.

This paper presents useful tools for assessing manufacturing energy use, but the proposed methods would benefit
from more thorough analytical analysis and are currently time consuming in implementation. We expect to address these
points in future work.
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