
Output-based incentive regulation in electricity distribution: Evidence
from Italy
Carlo Cambini a,b,d, Annalisa Croce c, Elena Fumagalli b,c,⁎
a Dep. of Management and Production Engineering, Politecnico di Torino, Turin, Italy
b Centre for Research on Energy and Environmental Economics and Policy (IEFE), Università Bocconi, Milan, Italy
c Department of Management, Economics and Industrial Engineering, Politecnico di Milano, Milan, Italy
d European University Institute (EUI), Florence School of Regulation, Florence, Italy
⁎ Corresponding author at: Politecnico di Milano, 
Economics and Industrial Engineering, P.za Leonardo d
Tel.: +39 02 2399 3968; fax: +39 02 2399 2710.

E-mail addresses: carlo.cambini@polito.it (C. Cambini)
(A. Croce), elena.fumagalli@polimi.it (E. Fumagalli).
Article history:
Received 29 September 2012
Received in revised form 3 July 2014
Accepted 5 July 2014
Available online 22 July 2014
1. Introduction

Current technical changes in electricity distribution networks
prompted a lively debate, in Europe and elsewhere, on how incentive
regulation should evolve. Since liberalization, regulatory incentives
have focused almost exclusively on the use of inputs (operational and
capital expenditures). Current concerns for network innovation and sus-
tainability are being addressed, instead, with incentives that focus on
output measures of companies' performance (network reliability, envi-
ronmental impact, ability to connect dispersed generation, etc.). The
best-knownexample in this regard is thenew regulatory scheme recent-
ly adopted by Ofgem, the Revenue, Innovation, Incentives and Output
(RIIO) model (Ofgem, 2010); the Italian regulatory authority and other
regulatory agencies, for instance the Australian energy regulator, are
moving in this direction as well (ACCC/AER, 2012; AEEG, 2011a).

On the one hand, given the regulator's asymmetry of information,
output-based regulation has an important advantage: leaving the
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decision on the use of the resources to the regulated firm, it minimizes
inefficiencies in the use of inputs. On the other hand, it forces the regu-
lated firm to increase expenditures, to meet the additional goals set by
the regulator (in contrast with the cost efficiency objective). Moreover,
it presents implementation complexities and requires adequate regula-
tory powers, budget and skills (Glachant et al., 2013).

In the case of Italy, together with incentives aimed at productive
efficiency, output-based incentives have been applied to indicators of
quality for over a decade. Under the current regulatory reform, this repre-
sents an interesting case to investigate how a regulated firm responds to
such an incentive scheme. The debate around this issue is, indeed, quite
recent (Coelli et al., 2013; Growitsch et al., 2010; Jamasb et al., 2012).

Moreover, when network operators are required tomeet potentially
conflicting objectives, also the assessment of their performance be-
comes more complex. Since the adoption of incentive regulation in in-
frastructure industries, benchmarking analysis has been extensively
used to measure firms' efficiency (Haney and Pollit, 2009; Jamasb and
Pollit, 2001; Joskow, 2008). Nevertheless, the question of including ad-
ditional output measures of performance (e.g., quality of supply) has
been scarcely explored by regulatory authorities and academics as well.

Finally, as for Italy in particular, anecdotic evidence indicates that
after a period of rapid increase in performance, the level of quality var-
ied at a much slower pace, while the rules for assigning output-based
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Table 1
Benchmarking with quality in electricity distribution.

Input variables Output variables Quality
variables

Database Benchmarking approach

Jamasb and Pollit (2003) OPEX; TOTEX;(network length) Energy supplied; num. customers;
(network length)

Energy losses Cross-section 1999
International

DEA, COLS and SFA

von Hirschhausen et al.
(2006)

Labor; network length; peak
load capacity

Energy supplied; num. customers;
inverse density index

Energy losses Cross-section 2001
National

SFA and DEA

Growitsch et al. (2009) TOTEX Energy supplied; num. customers CML Cross-section 2002
International

SFA

Giannakis et al. (2005) OPEX; TOTEX Energy supplied; num. customers;
network length

NINT and TINT Panel 1991/92–1998/99
National

DEA and Malmquist index

Coelli et al. (2007) Capital replacement value;
OPEX

Energy supplied; num. customers;
network length

NINT Panel 2003–2005
One company

SFA and DEA

Miguéis et al. (2012) SOTEX Energy supplied; num. customers,
others

Cost of ENS Panel 2004–2007
National

DEA and Malmquist index

Growitsch et al. (2010) TOTEX; SOTEX Energy supplied; num. customers Cost of ENS Panel 2001–2004
National

DEA

Coelli et al. (2013) Capital replacement value;
OPEX

Energy supplied; num. customers;
area size

NINT Panel 2003–2005
National

SFA, parametric linear
programming

Note: CML: customerminutes lost; NINT: number of interruptions; TINT: duration of interruptions; ENS: Energy Not Served; OPEX: operating expenditures; TOTEX: operating and capital
expenditures; SOTEX: TOTEX plus cost of ENS.
incentives have remained unchanged.1 Although from a technological
perspective such a trend is to be expected, it has also prompted the
question of how this regulatory scheme should evolve in the future.

In this paper we address all three issues mentioned above.
We investigate how the largest Italian electricity distribution com-

pany has responded to the input-based and output-based incentives
provided by the current regulatory framework. To our knowledge, this
is the first assessment of this incentive regime since its introduction in
the year 2000. To this end,we exploit on anoriginal dataset, constructed
with the support of the Italian regulatory authority (Autorità per
l'energia elettrica e il gas, AEEG), bymeans of a dedicated data collection.
It is a comprehensive and balanced panel for 115 distribution units
(Zones), tracked from 2004 to 2009, which includes the amounts annu-
ally received in rewards (paid in penalties) for exceeding (failing to
meet) quality-specific targets.

As for the analysis, we rely on a benchmarking approach and con-
tribute to the debate regarding the inclusion of additional measures of
performance. Specifically, we use two alternative measures of quality
that provide different and complementary information regarding the
efficiency of the observed distribution unit: in one case, efficiency is
estimated in terms of response to regulatory incentives; in the second,
in terms of social costs. While the latter was used in previous literature,
the former has never been studied. From a methodological perspective,
we apply a recent approach based on a two-stage, semi-parametric Data
Envelopment Analysis (DEA) and bootstrapping techniques, where
technical efficiency is estimated in the first stage and then regressed
on a set of external variables in the second stage (Simar and Wilson,
2007). We also study the evolution of performance over time by
means of Malmquist indices.

Our main finding is that the presence of quality regulation has
not significantly altered the distribution units' behavior: those that
responded well to cost efficiency incentives responded equally well to
quality-related incentives and vice versa. After all, favorable external
variables that have a significant and positive effect on cost efficiency
(area size, load composition and network design) also influence the
ability of a distribution unit to exceed the targets imposed by quality
regulation. Nevertheless, this response to regulatory incentives appears
in contrast with the long-term objective of quality regulation in Italy
(convergence in performance). Hence, on the basis of the evidence
1 In the first regulatory period (2000–2003) the national average duration of interrup-
tions per customer decreased by over 60 min; in the second period (2004–2007) the im-
provement amounted to less than 20 min and, in the third period (2008–2011), to about
10 min.
provided throughout the paper, we derive two policy suggestions for
the development of quality regulation in the medium and in the long
term.

The remainder of the paper is structured as follows: Section 2
reviews the relevant literature on benchmarking analysis in electricity
distribution; Section 3 outlines the Italian regulatory framework;
Section 4 presents the empirical methodology; Section 5 describes the
dataset and presents our choice of variables for the benchmarking anal-
ysis; Section 6 discusses results in the context of the existing literature
and derives policy implications; Section 7 concludes.
2. Selected literature review

A relatively small number of papers analyze efficiency in the electric-
ity distribution sector using a benchmarking model which includes an
indicator of service quality. While Table 1 summarizes all the main con-
tributions with these characteristics, we concentrate here on five stud-
ies based on panel data.2

The first strand of literature focuses on performance measurements
and explores one main question, namely, the potential trade-off
between cost savings and the level of service quality at the firm level
(i.e. the effects of incentive regulation on service quality). Additional
questions explored in this literature regard: (i) the use of an integrated
cost-and-quality benchmarking model vs. a cost-only approach, when
assessing the progress of an incentive regulation regime and (ii) the
analysis of productivity changes over time. The existing empirical stud-
ies do not provide clear cut evidence on any of these issues.

Using a panel of 14 electricity distribution utilities in theUK (tracked
from 1991/92 to 1998/99) Giannakis et al. (2005) find that efficiency
scores of cost-only DEA models do not show a high correlation with
those of quality-based models (where quality is measured by the num-
ber and duration of service interruptions). In other words, cost-efficient
firms do not necessarily exhibit high service quality. Malmquist indices
indicate, however, that improvements in service quality have made a
significant contribution to the sector's total productivity change. The
authors conclude that itis “desirable to integrate quality of service […]
in benchmarking […] of electricity networks” (Giannakis et al., 2005,
2 Benchmarking studies in electricity distribution which include a measure of quality,
but rely on a cross-sectional sample, include the work by Jamasb and Pollit (2003) on
1999 international data, by von Hirschhausen et al. (2006) on 2001 German data (where
quality is measured by network losses), and by Growitsch et al. (2009) on 2002 interna-
tional data (where quality is measured by customer minutes lost).



4 For the second tariff period theWeightedAverage Capital Cost (WACC)was set at 6.8%
and the X factor at 3.5%. For the third period (2008–2011) theWACCwas increased to 7%
and the X factor was decreased to 1.9%. Details on the choice of theWACC and X factors in
the energy sector can be found in Cambini and Rondi (2010).

5 Further details on the evolution of the Italian regulatory framework can be found in Lo
Schiavo et al. (2013).

6 Continuity of supply is described by the number and duration of supply interruptions.
For a given distribution area and time period, the average duration of long interruptions
per consumer (or customerminutes lost) ismeasured by SAIDI (SystemAverage Interrup-
tion Duration Index), the average number of long interruptions per customer by SAIFI
page 2269). Coelli et al. (2007)measure the efficiency of 92 French elec-
tricity distribution units (tracked from 2003 to 2005), all belonging to
the same distribution company. By employing both a stochastic
frontier and a DEA approach, they show that the inclusion of the quality
variable (number of interruptions) has no significant effect on estimat-
ed efficiency scores. They deduce that including a quality aspect in an
efficiency benchmarking is “unlikely to have a substantial effect upon
price regulation outcomes” (Coelli et al., 2007, page 17). Productivity
changes are the main focus of the work by Miguéis et al. (2012).
Employing a sample of 127 Norwegian distribution companies (tracked
from 2004 to 2007) the authors estimate both efficiency scores and
Malmquist indices using a multiple-output, single input DEA model.
Several topological and geographical variables are included as outputs
and quality is included as an input which adds to the utilities' costs
(i.e. quality is measured by the value of the Energy Not Served —

ENS). Contrary to Giannakis et al. (2005), the authors find no evidence
of a significant technology change over time (but do not estimate
a cost-only model). Also, none of the factors considered in a second-
stage regression is found to have a significant effect on efficiency
scores.

More recent papers have taken a different perspective. The main
focus is no longer on the effect of incentive regulation on the level of
service quality, but on the impact of quality regulation on firm perfor-
mance, in terms of cost efficiency or in terms of quality provision.
Such a change is clearly motivated by a wider adoption of quality regu-
lation in European countries.

Growitsch et al. (2010) use a panel dataset for 131Norwegian distri-
bution network operators observed over the period 2001 (the year
quality regulation was introduced) to 2004. Comparing the efficiency
scores of a cost-only and a cost-and-quality DEA model they find no
systematic differences between the two (quality is measured by the
value of the ENS). Their results suggest that the introduction of quality
regulation in Norway did not have a strong impact on firms' perfor-
mance nor it conflicted with cost efficiency of electricity distributors.
Coelli et al. (2013) employ a parametric distance function approach
and a panel of 92 distribution units, all belonging to the main distribu-
tion company in France (tracked from 2003 to 2005). They conduct a
study of the production technology and propose a methodology to
estimate the operating cost of preventing one interruption. Their
suggestion is to calculate this cost using more recent data and to use it
to predict the efficacy of the quality-related incentives introduced in
France in 2009.

Our analysis of the Italian distribution sector is closer to the more
recent empirical studies, i.e. it concerns distribution units that have
been subject to price and quality incentive regulation and focuses on
assessing the progress of both regulatory regimes. Our paper contrib-
utes to the literature in several ways. First, this appears to be the first
study to examine the Italian distribution sector after the introduction
of incentive regulation in the year 2000.3 Second, we propose two dif-
ferent (monetary) valuations of service quality for inclusion in the
cost-and-quality benchmarking models. One measure has been used
in studies on Norwegian data (the value of the ENS). The other is
novel and it is the rewards and penalties actually paid by or received
from the regulatory authority for, respectively, exceeding or failing
to meet the quality targets set for each distribution unit. Third, we use
a recentmethodology to analyze the determinants of the heterogeneity
in performance in both the cost-only and the cost-and-quality model.
To this end, we consider several contextual variables that were either
identified in previous studies, or identified by usas potentially signifi-
cant on the basis of additional tests performed on our database. Finally,
we devote particular attention to policy implications.
3 Benchmarking analyses on Italian data are all prior to this date (e.g., Scarsi, 1999).
3. The regulatory framework

In Italy, in 2009, there were over 150 Distribution System Operators
(DSOs) that delivered a total volume of 279 TWh. The largest company,
Enel Distribuzione, was responsible for 86.2% of the distributed energy,
followed by A2A Reti Elettriche (4.1%), Acea Distribuzione (3.6%) and
Aem Torino Distribuzione (1.3%); the other operators held marginal
quotas (less than 1% in volumes). Enel was present over the entire
national territory and it was organized in four Macro Areas, eleven Ter-
ritorial Units and 115 Zones (each Territorial Unit has its local managers
and coordination is ensured at the level of Macro Areas).

DSOs are regulated byAEEG. Since the year 2000, an incentive-based
mechanism applies (with a four-year regulatory period), with the ob-
jective to stimulate productive efficiency, investments and service qual-
ity. As for productive efficiency and investments, operational
expenditures are required to decrease with an X efficiency factor
while, starting from the second regulatory period (2004), the cost of
capital is directly passed through to consumers.4 Note that the decision
to pass-through all capital expenses was taken by the government and
not by the regulator (Law n. 290/2003). Moreover, since 2008, several,
specific investments benefit from an increase inWeighted Average Cap-
ital Cost for a period of 8 to 12 years (a plus 2% over the ordinary re-
turn). These include investments in low-loss transformers and in
automation and control of active grids.5

As far as quality is concerned, in the year 2000 AEEG introduced a
reward and penalty scheme that linked the distribution tariff to an out-
put measure of continuity of supply: the average number of minutes
lost per customer for long (longer than 3 min), unplanned interrup-
tions.6 This indicator, SAIDI, is measured separately in more than 300
territorial districts, covering the entire national territory.7 Rewards
and penalties are calculated per district on an annual basis, as a function
of the difference between a target-SAIDI and the actual-SAIDI (targets
are defined separately for each territorial district and year). The distri-
bution tariff is unique across the entire national territory and it is adjust-
ed yearly on the basis of companies' performances: it increases when,
on average, quality has improved more than what is required (rewards
earned by all districts in the country are greater than total penalties
paid) and vice versa.

Because of the uniqueness of the distribution tariff, beginning with
the second regulatory period, target-SAIDIs are calculated using a
formula that assumes a convergence in performance of all districts
with equal population density to the same quality level (the national
standard) in the medium term (12 years) — there are three levels of
density and better continuity is expected in more densely populated
areas. This approach enables the regulator to set more ambitious
targets for districts that are initially under-performing with respect
to national standards and vice versa. Also, in line with the indications
of the literature, the results of a customer survey are used to define
penalties and rewards (Sappington, 2005). Two different valuations of
(SystemAverage Interruption Frequency Index), and the averagenumber of short (shorter
than 3 min and longer than 1 s) interruptions per customer by MAIFI (Momentary Aver-
age Interruption Frequency Index).

7 Each district includesmunicipalities that are homogeneous in population density, that
are located in the same administrative province and whose network is managed by the
same distribution company.



10 Note that the distribution operator can choose its internal organization, in particular
regarding the size of the distribution Zones: thismotivates our choice of a CRS assumption
quality are considered, to reflect the different willingness to pay
(WTP) for quality of residential and non-residential customers (see
Section 5.1).

4. Methodology

For the purpose of this studywe employ a two-stageDEA estimation,
based on the semi-parametric approach proposed by Simar andWilson
(2007). Accordingly, technical efficiency is estimated in a first stage and
regressed on a set of external (contextual) variables in a second stage.
This accounts for possible sources of inefficiency heterogeneity among
different units of observation. In this regard, recent literature has shown
that a two-stage DEA procedure is usefully employed only when con-
textual variables exhibit low levels of correlation with the input var-
iables used in the first stage (Banker and Natarajan, 2008; Johnson and
Kuosmanen, 2012).8 Indeed, correlations among relevant variables used
in this study fall within the admissible range. Moreover, bootstrapping
techniques are used in both stages to overcome other issues related to
the traditional procedure, i.e. the uncertainty associated with DEA effi-
ciency scores in the first stage and their serial correlation in the second
stage.

More specifically, assuming that all units of observation share the
same production technology, the first stage is devoted to the estimation
of the technology frontier and to the measurement of each unit's effi-
ciency, as their distance from the same frontier. Given a distribution
unit which uses a set of inputs (x) to produce a set of outputs (y) via a
known production technology, the unit's efficiency is measured as an
input distance function (Shephard, 1970).9 This is defined on the
input set L(y) as:

d x; yð Þ ¼ max ρ : x=ρð Þ∈L yð Þf g ð1Þ

where L(y) represents the set of all input vectors, x, which can produce
the output vector, y, and ρ is the input distance measure, i.e., for each
distribution unit 1/ρ represents the amount by which the observed in-
puts can be proportionally reduced, while still producing the same out-
put level. The distance functionwill take a valuewhich is greater than or
equal to one if the input vector x is an element of the feasible input set,
L(y), that is:

d x; yð Þ≥1if x∈L yð Þ: ð2Þ

The distance function will take a value of unity if the input vector is
located on the inner boundary of the input set (Coelli et al, 2005).

Normally, the production technology is unknown and its estimation
is required. This can be done using different approaches. The well-
known advantages of usingDEA include the absence of any assumptions
on the functional form of the production frontier and the possibility to
simultaneously use multiple inputs and outputs. Thus, in the first
stage, we employ DEA to construct the frontier surface using linear pro-
gramming methods and to compute technical efficiency scores (they
are obtained as a by-product of the frontier construction process). As-
suming that each unit of observation i uses K inputs to produceM out-
puts, we indicate with X the K × N matrix of inputs, whose columns
are the input vectors xi of all N units. Similarly, we indicate with Y the
M × N matrix of outputs that contains the N output vectors yi. The
8 If correlation levels are toohigh, a different procedurewill be needed. See, for instance,
Johnson and Kuosmanen (2012). We thank an anonymous reviewer for pointing this out.

9 In electricity distribution it is fair to assume that demand ismostly beyond the control
of the firm, hence the choice, in line with the literature, to use an input-oriented model.
input-oriented, constant returns to scale (CRS) frontier is estimated by
solving N linear programs of the following form:

max
ρ;λ

ρ

s:t:
−yi þ Yλ≥0
xi

ρ
−Xλ≥0

λ≥0

ð3Þ

where 1 ≤ ρ ≤ ∞ and λ is an N × 1 vector of constants.10

One of the well known limitations of DEA is its potentially biased
estimation due to the uncertainty associated with sampling variation.
We control for the uncertainty of DEA scores in the first stage by esti-
mating their bias and confidence intervals using a consistent bootstrap
approximation of the efficiency distribution (Simar and Wilson, 2000).

A second limitation of DEA is its deterministic nature (all the dis-
tances from the efficient frontier are assumed to be inefficiency). In
this regard, we note that while parametric methods allow for a random
unobserved heterogeneity among different units of observation, they
also require several assumptions, regarding the specific functional
form of the production function and the distribution form of the ineffi-
ciency and of the statistical noise. Estimated efficiency scores are, of
course, sensitive to these specifications (Coelli et al., 2005).11 Consider-
ing the purpose of our analysis and the characteristics of our dataset
(which includes data from a single distribution company) a non-
parametric approachwas the preferred choice for the presentwork. Nev-
ertheless, in the second stage, the efficiency of each unit of observation is
regressed on a set of contextual variables. In other words, the bias-
correct efficiency scores estimated in the first stage are used as depen-
dent variables in a second stage regression analysis.

To consistently estimate the regression parameters we verify
ex-ante that correlation levels between contextual variables and inputs
of the DEAmodel lie within the admissible range [−0.2–0.4], as indicat-
ed in Banker and Natarajan (2008) and in Johnson and Kuosmanen
(2012). Also, we apply a truncated regression and, following Simar
and Wilson (2007), we use a bootstrap approach for inference. The lat-
ter consistently accounts for the serial correlation structure of DEA effi-
ciency scores.

Finally, input distance functions are also used tomeasure productiv-
ity changes between two points in time. To this end, we resort to the
Malmquist index (M) proposed by Caves et al. (1982). For each unit of
observation, this can be expressed as:

M ¼
dt yt ;xt
� �

dt ytþ1;xtþ1
� � �

dtþ1 yt ;xt
� �

dtþ1 ytþ1;xtþ1
� �

2
4

3
5
1=2

ð4Þ

where dt(yt, xt) is the input distance function in time period t in relation
to the production technology at time t and dt(yt + 1, xt + 1) is the input
distance function in time period t in relation to the production technol-
ogy at time t + 1; dt + 1(yt, xt) and dt + 1(yt + 1, xt + 1) are similarly
defined.12

Malmquist indices can assume values that are smaller or greater
than unity. AMalmquist index greater than one indicates a productivity
growth from year t to year t + 1; conversely an index Mi smaller than
one indicates a productivity decline. Moreover, under the assumption
(moreover, our results show an average scale efficiency of always above 93%).
11 This method is employed in several benchmarking studies regarding the electricity
distribution sector, including Estache et al. (2004), Farsi and Filippini (2004), Farsi et al.
(2006) and Growitsch et al. (2009).
12 In practice, Malmquist indices require the estimation of two single period and two
mixed period distance functions. To this end, we employ, with the necessary modifica-
tions, CRSDEAmodels of the type described in Eq. (3). AlsoMalmquist indices are comput-
ed using a bootstrap procedure.



14 This model does not account for variables that are beyond the influence of the compa-
ny (observable heterogeneity). Typical external variables in the distribution sector include
geographic and climatic factors (altitude, coastal areas, snow, etc.). Previous studies have
shown that these are not relevant for Italy (Scarsi, 1999). In this workwewill explore only
of constant returns to scale, a Malmquist index can be decomposed in
two components, or possible sources of productivity change: an effi-
ciency change and a technical change (Färe et al., 1994). That is:

M ¼
dt yt ;xt
� �

dtþ1 ytþ1;xtþ1� � �
dtþ1 ytþ1

; xtþ1
� �

dt ytþ1; xtþ1� � �
dtþ1 yt ;xt

� �

dt yt ;xt
� �

2
4

3
5
1=2

: ð5Þ

The first component in (5) represents the efficiency change EC from
year t to year t+ 1 andmeasures the extent to which a unit has moved
closer to the frontier. The second component in (5) is the technical
change TC. For a given sample, a TC greater than unity indicates an
industry-level technological progress and vice versa.

5. Dataset and cost models

Our dataset was built with the support of the Italian regulatory au-
thority, by means of a dedicated data collection. It is a comprehensive
and balanced panel for 115 Zones that belongs to Enel Distribuzione,
tracked from 2004 to 2009. Given the volume of energy distributed by
Enel and the geographic extension of its distribution territory, it can be
considered a good representation of the entire country.

As for technical variables, the dataset includes, for each Zone, the
number of Low Voltage (LV) customers, the energy consumed by LV
residential and non-residential users and by Medium Voltage (MV)
consumers, the area served (in km2), transformers' capacity for primary
and secondary substations (inMVA) and network length (in km, forMV
and LV, cable and overhead lines). Accounting data are given in terms of
annual revenues, asset values (detailed for primary and secondary sub-
stations, MV and LV feeders and for points of connection) and operating
costs (which include labor, services, materials and other costs).

In addition, AEEG provided data on customer minutes lost for long
interruptions (SAIDI) aswell as on the frequency of long and short inter-
ruptions (SAIFI and MAIFI, respectively).13 A key novelty of our dataset
is thedetailed informationon the amounts annually received in rewards
(paid in penalties) for out-performing (under-performing)with respect
to the regulatory standards. Continuity of supply data (indicators aswell
as rewards and penalties) were given per territorial district, which are
geographically smaller than Zones. To ensure coherence with the
other variables in the dataset, continuity data had thus to be calculated
per Zone, aggregating district data. This means that, inevitably, the rela-
tion between population density and continuity of supply became less
precise.

The benchmarking analysis is conducted on 114 units (one Zonewas
dropped because of amajor asset divestiture), a sample size that is com-
parablewith those of themost recent studies (see Section 2). All units of
observation belong to the same distribution company as in Coelli et al.
(2007) and Coelli et al. (2013), but are observed over a longer period
(six vs. three years). In the followingwemotivate our choice of variables
for the benchmarking models. While our choice of monetary variables
as inputs (vs. physical units) is in line with the most recent literature,
we provide a rather strongmotivation for our preference. We also illus-
trate some descriptive statistics, derive hypotheses on estimation
results and identify candidate determinants of inefficiencies.

5.1. Selected inputs and outputs

The selection of input and output variables is crucial to the validity of
a DEA model. On the basis of previous work and our knowledge of the
distribution activity, we define a first model with energy consumption
(energyit) and number of LV consumers (LVconsit) as the outputs for
Zone i in year t. As known, the energy requested by final users is not
13 Actual SAIDI used for regulatory purposes does not include interruption events that
originated on the transmission network or that were caused by Force Majeure. The same
assumption holds in this paper.
under the control of a DSO. Similarly, all requests for connection must
be met by the distributor (within certain technical limits). Our choice
of inputs includes capital and non-capital variables (operating costs).
Following Coelli et al. (2005), capital (capitalit) is measured using
gross asset value (substations, feeders and points of connection) and
not capital expenditures. This is to avoid penalizing a Zone for making
recent investments. As for non-capital input, we included labor (the
main voice), services,materials and other operating costs— and exclud-
ed depreciation and taxes (opcostit).14

The use ofmonetary inputs is justifiedby the fact thatwe are observ-
ing a single company and therefore we can reasonably assume that the
price of goods, services and labor is the same for all Zones.Moreover, we
are studying performance with respect to regulatory incentives: since
one of the primary aims of the regulation was to create stimuli for pro-
ductive efficiency (in operating costs), the use of monetary variables as
inputs seems appropriate.

Nevertheless, given the amplitude of our dataset, we considered
building an alternative benchmarking model, where input variables
were expressed in terms of physical units. In analogy with the “mone-
tary” model, capital input was measured by transformer capacity (in
MVA) and network length (in km), while operating costs were approx-
imated by the number of employees. Nevertheless, this model was less
convincing for various reasons. Recall that a DEA model finds the units
of observation that are efficient with respect to a combination of input–
output ratios. As for the number of employees, it seems reasonable to
define a distribution unit efficient if it minimizes the number ofworkers
per consumer, or per energy delivered. Similarly, as for network length,
it sounds reasonable to label as more efficient a distribution unit with
less km of feeders per customer. On the contrary, it is more difficult to
argue that a distribution unit is more efficient than another because it
is characterized by less km of feeders perMWhdelivered. The interpre-
tation becomes even more difficult when dealing with transformer
capacities. While a Zone with an adequate installed transformation
capacity per MWh delivered is indeed efficient, there is no practical
meaning in labeling as efficient a unit thatminimizes its transformer ca-
pacity per customer (remember thatwe are including in themodel only
the number of LV customers). In sum, when using technical input vari-
ables it seemed inevitable to incur in input–output combinations that
had little practical significance (network length per MWh or trans-
former capacity per LV customer). Hence, we opted for the “mone-
tary” model specified above.15

As for the inclusion of quality, and in line with the choice of a “mon-
etary” model, we consider the two following options:

• to substitute opcostit with a new variable, opcost_RPit, sum of opcostit
plus penalties paid andminus rewards received (RP); as a consequence,
Zones that receive rewards (i.e. present higher levels of quality than re-
quested by the regulator) are expected to be relatively more efficient;

• to substitute opcostit with a new variable, opcost_ENSit, sum of opcostit
plus the cost of the ENS; in this way, Zones with lower levels of ENS
are expected to be relatively more efficient.

To derive the cost of ENS (C_ENSit) for Zone i and year twe employ:

• the actual value of SAIDIit per Zone i and year t;
• the WTP parameters indicated by the Italian regulatory authority: C1
for residential users and C2 for non-residential ones or, respectively,
18 and 36 c€/(min·kW) (AEEG, 2007);
the effect of load-related and network-related variables that are outside the control of the
distribution unit (see Section 5.3).
15 Efficiency scores estimated using a “non-monetary”model are available from the au-
thors upon request.



Table 2
Input and output variables in DEA models.

DEA model Input Output

Cost-only capital (€) energy (GWh)
opcost (€) LVcons

CostRP capital (€) energy (GWh)
opcost_RP (€) LVcons

CostENS capital (€) energy (GWh)
opcost_ENS (€) LVcons

Table 3
Descriptive statistics on input and output DEA variables.

Variable Mean Std. dev. Minimum Maximum Zones

energy (GWh) 1756 1162 307 5876 114
LVcons 264,456 140,351 60,275 693,154 114
capital (mln€) 263.89 121.58 78.54 705.47 114
opcost (mln€) 17.21 8.56 4.13 50.48 114
SAIDI (min) 56.55 31.58 10.42 194.28 114
RP (mln€) 0.89 1.16 −3.19 9.05 114
C_ENS (mln€) 3.17 2.34 0.14 15.30 114
opcost_RP (mln€) 16.33 8.36 3.66 48.77 114
opcost_ENS (mln€) 20.38 10.39 4.37 57.75 114
• the residential (res_consit) and non-residential (nonres_consit) con-
sumption per Zone and year (in MWh).

From these, the cost of ENS is calculated as:

C ENSit ¼ SAIDIit � C1
res consit

8:76
þ C2

nonres consit
8:76

� �
: ð6Þ

Note that also regulatory rewards and penalties are calculated,
per district, as in Eq. (6). To this end, however, SAIDIit is replaced
by the distance between the actual-SAIDI and the target-SAIDI for
the district and year.16

In sum, as summarized in Table 2, we estimate three DEA models.
With the Cost-only model we measure performance with respect to
the regulation of inputs (cost efficiency).17 With the CostRP model we
measure performance with respect to the overall regulatory framework
that includes price and quality incentive schemes (regulatory efficien-
cy). With the CostENS model, performance is measured with respect to
social costs, sum of the company's cost and the cost incurred by con-
sumers for the ENS (social cost efficiency).

5.2. Descriptive statistics

Table 3 shows the descriptive statistics of the input and output var-
iables used in the three models. Table 4 provides yearly average values
of the same variables, aswell as their annual, relative standard deviations
(in %).18 Statistics include also several quality indicators; note that RP is
the only variable that assumes both positive (rewards) and negative
(penalties) values.

In terms of outputs, average energy consumption has increased from
2004 to 2008 and decreased in 2009 because of the economic crisis. Also
the number of consumers has grown in the observed period (an internal
recalculation by Enel explainswhy this number is lower in 2008). As for
inputs, the total gross value of the assets has steadily increased, while
we observe a reduction in operating costs between 2004 and 2008
(and an increase in 2009), mainly due to a reduction in labor costs
over the same period (partially compensated by increasing costs for ser-
vices). Differences among Zones (relative standard deviations) remain
fairly stable over time.

While trends in opcost_RP and opcost_ENS are well explained by
changes in the operating cost variable, it is interesting to look more
closely at quality indicators.

SAIDI values steadily improved over the observed period.19 More
specifically, the first three years of data reveal a significant decline in
16 In the regulatory practice, other information enters this calculation. For instance, an-
nual rewards and penalties are capped and a two-year average value is used as the
actual-SAIDI. All the details can be found in the Regulatory Orders n. 4/04 and 333/07
(AEEG, 2004, 2007).
17 In practice, the revenues of a distribution unit aremodified by quality-related rewards
and penalties. Hence, the costmodel leaves out costs (and benefits) that derive from qual-
ity regulation.
18 The relative standard deviation is obtained by multiplying the standard deviation by
100 and dividing this product by the average value of the variable.
19 SAIDI data presented an outlier with an extremely high value (698 min) in 2004. To
avoid bias in the analysis the variable was winsorized in the upper tail (Dixon, 1960).
customer minutes lost, from a zonal (arithmetic) mean of 73.56 min in
2004 to 51.06 min in 2006. In the following years we do not observe a
comparable trend: SAIDI in 2009was equal to 47.73min and an increase
was registered in 2008.

As for RP, Table 4 shows that, on average, net rewards have constantly
increased in the second tariff period (2004–2007). An initial large
reduction in customer minutes lost, even if followed by relative sta-
bility, explains why incentives have continued to grow: a large initial
improvement normally ensures that a district meets the quality tar-
gets for the rest of the tariff period. On the contrary, in the years 2008
and 2009, RP values were significantly lower because of two effects:
first, the recalculation of the starting point that, at the beginning of each
tariff period, fixes the initial target-SAIDI at the same level of the actual-
SAIDI for all districts and, second, the absence of a significant decline in
customer minutes lost. Average RP values show also particularly large
relative standard deviations.

The cost of ENS (C_ENS) follows the trend in customer minutes lost:
significant reductions in 2005 and in 2006, relatively smaller decreases
in 2007 and in 2009 as well as an increase in 2008. Zonal differences
(relative standard deviations) are similar at the beginning and at the
end of the sample period (they present a minimum in 2005 and a
peak in 2007).

5.3. Hypotheses on benchmarking results and determinants of inefficiencies

Considering first the Cost-only model, the relative standard devia-
tions in Table 4 suggest that cost-efficiency might not be particularly
high, nor significantly converge over time. Nevertheless, we need to
consider the possibility that differences across Zones are related to var-
iables outside the control of the DSOs.

For instance, the surface covered in squared kilometers (area) is a
measure of network dispersion: operating costs (manly maintenance
activities) aswell as capital costs (length of LV lines) are normally linked
to the size of the area served (Coelli et al., 2007). Hence, we expect
lower efficiency in larger areas.

Moreover, standard deviations of the ratios of capital and non-capital
inputs over a number of LV consumers are higher than the correspond-
ing ratios over energy consumption.20 Assuming a rational conduct from
the DSO, we make the hypothesis that distribution costs are strongly
driven by the number of customers served. Consequently, we expect
that Zones where the single customer consumes relatively more energy
will make a “better” use of their inputs and, therefore, will be more effi-
cient. This effect can be captured by the ratio of non-residential con-
sumption over total consumption (nonres_cons, in %). A similar effect
was found by Scarsi (1999) and Filippini andWild (2001).

Finally, we consider also the percentage of underground cable at the
MV level (under_MV), calculated as the ratio of cable length (in km, for
20 On average, the capital ratio on energy consumption has a relative standard deviation
equal to 29.60%while the relative standard deviation of the capital ratio on the number of
customers is 43.63%. The corresponding values for the operating costs are, respectively,
14.82% and 37.23%.



Table 5
Correlations between contextual and input variables.

capital opcost opcost_RP opcost_ENS area nonres_cons under_MV

capital 1
opcost 0.892 1
opcost_RP 0.886 0.991 1
opcost_ENS 0.892 0.988 0.982 1
area 0.432 0.200 0.203 0.199 1
nonres_cons −0.152 −0.157 −0.217 −0.130 −0.083 1
under_MV 0.120 0.342 0.316 0.338 −0.470 0.173 1

22 Correlation coefficients reported in Table 5 are on the boundaries of the admissible
range in two instances. The variable nonres_cons presents a correlation of −0.217 with
the non-capital input (opcost_PR) in one of the three DEA models (CostRPmodel). As for
the other two models (Cost-only and CostENS), correlation levels with the input variables

Table 4
Descriptive statistics on input and output DEA variables: mean and relative standard deviation (%) per year.

2004 2005 2006 2007 2008 2009

energy (GWh) 1685 1719 1782 1787 1826 1736
67.08% 66.48% 66.43% 66.59% 66.58% 64.96%

LVcons 257,460 260,344 264,054 269,183 266,781 268,912
53.26% 53.24% 53.26% 53.29% 53.18% 53.17%

capital (mln€) 246.54 253.16 259.92 265.94 275.35 282.45
45.94% 45.95% 45.80% 45.98% 46.00% 46.02%

opcost (mln€) 19.17 17.11 17.50 15.83 15.59 18.08
48.85% 47.96% 48.29% 49.86% 50.11% 50.50%

SAIDI (min) 73.56 66.83 51.06 48.59 51.54 47.73
50.65% 55.03% 51.57% 58.35% 47.07% 51.63%

RP (mln€) 0.55 1.02 1.38 1.58 0.47 0.33
105.57% 104.45% 105.83% 98.42% 121.65% 193.56%

C_ENS (mln€) 4.03 3.54 2.95 2.79 3.03 2.69
74.02% 64.78% 72.77% 78.14% 68.23% 74.51%

opcost_RP (mln€) 18.62 16.1 16.12 14.25 15.12 17.76
49.39% 48.52% 50.00% 53.57% 50.24% 51.15%

opcost_ENS (mln€) 23.19 20.65 20.45 18.61 18.62 20.77
49.34% 48.18% 49.95% 52.15% 51.39% 52.24%
MV lines) over network length (in km, for MV lines). Although the var-
iable is ultimately defined by investment choices, the share of under-
ground cable is driven by the type of the distribution territory (urban
or suburban vs. rural) and it can be modified only in the long term. Its
impact on efficiency is ambiguous: grounding of MV feeders is a stan-
dard choice in areas with higher population density but a higher share
of underground cable constitutes an additional burden in terms of cap-
ital assets (Kuosmanen, 2012). The same variable is also closely related
to continuity of supply: underground cables are normally associated
with a lower probability of fault; moreover, shorter feeders ensure
that less consumers are affected by the same fault (under_MV presents
a high correlation with the average length of feeders per substation:
−0.6079).21

As for the CostRP model, three observations are in order. First,
RPvaluespresent the largest relative standard deviations in Table 4. Sec-
ond, as argued above, a higher percentage of underground cable at the
MV level is normally associated with higher continuity of supply.
Third, in addition to changes in SAIDI, regulatory incentives depend on
the composition of the load (see Eq. (6)). Altogether, we expect average
efficiency scores in theCostRPmodel to differ from those in the Cost-only
model and, specifically, to present lower values.We also expect that the
determinants of inefficiencywill include load composition and network
design.
21 Appendix shows that a good explanatory variable for SAIDI at the MV level is, indeed,
the average length of feeder per substation (f_length), calculated as the ratio of network
length (in km, for MV lines) over transformer capacity for primary substations (in MVA)
— dividing by the number of transformers per Zone would have been more appropriate,
but our database does not include this information.
The CostENS model is similar to the one studied by Growitsch et al.
(2010), which employs the same outputs, but a single input, sumof cap-
ital and operational expenses, plus the costs of ENS. While Growitsch
et al. (2010) find no significant differences in average efficiency be-
tween their cost-only and cost-and-quality models, descriptive statis-
tics in Table 4 do not immediately indicate an expected outcome for
our database. Nevertheless, the fact that C_ENS is calculated as in
Eq. (6) suggests that differences across Zones might be, again, related
to network design and to the composition of the load.

Before presenting our resultswe recall here that a two-stage DEA pro-
cedure is usefully employed only when the contextual variables exhibit
low levels of correlation with the input variables, within the range−0.2
to 0.4 (Banker and Natarajan, 2008; Johnson and Kuosmanen, 2012).
Table 5 shows that this condition is satisfied for all three variables (area,
nonres_cons and under_MV).22
are within the recommended range. Differently, the variable area presents a correlation of
0.432 with the capital input (capital), which enters all three DEA models. As a robustness
check, estimations presented in Section 6 were replicated using three modified DEA
models which included the “more worrisome” variable area as an additional output in
the first-stage (together with energy and LVcons), and the same inputs as in Table 2. Effi-
ciency scores for these threemodifiedmodelswere then regressed using only two contex-
tual variables in the second-stage (nonres_cons and under_MV). Results for these
estimations confirm our conclusions and policy indications, and are available upon
request.



Table 6
Efficiency scores in the Cost-only model.

Year Mean Std. dev. Min Max

2004 0.736 0.085 0.500 0.889
2005 0.715 0.079 0.514 0.883
2006 0.751 0.076 0.541 0.901
2007 0.767 0.072 0.539 0.918
2008 0.760 0.072 0.502 0.922
2009 0.771 0.073 0.581 0.937
Mean 0.750 0.079 0.500 0.937

Efficiency scores are bias corrected via bootstrap (2000 replications).

Table 7
Second stage regression (Cost-only model).

Efficiency scores

area 0.025⁎⁎⁎

(0.007)
nonres_cons −0.444⁎⁎⁎

(0.075)
under_MV −0.179⁎⁎⁎

(0.042)
2004 0.068⁎⁎⁎

(0.020)
2005 0.112⁎⁎⁎

(0.019)
2006 0.041⁎⁎

(0.018)
2007 0.011

(0.017)
2008 0.025

(0.017)
Const. 1.625⁎⁎⁎

(0.062)
n.obs 684
n. Zones 114

⁎⁎⁎ Significant at the 1% confidence level.
⁎⁎ Significant at the 5% confidence level.
⁎ Significant at the 10% confidence level.

Table 8
Malmquist indices (Cost-only model).

Year Malmquist EC TC

2004–05 0.893 1.023 0.873
2005–06 1.005 0.957 1.050
6. Results

In this sectionwe focus,first, on theCost-onlymodel and analyze dis-
tribution units' performance in terms of cost efficiency (i.e. we study the
effect of input-based incentives). To this end, we investigate also the
role of contextual variables and estimate productivity changes over
time. Secondly, we analyze the combined effect of input-based and
output-based (quality-specific) regulation, using the two cost-and-
quality models. Also in this case we consider possible determinants of
inefficiency (and estimate productivity changes over time). For each
model we discuss our results in light of previous studies and we inter-
pret our findings in terms of their policy implications.

Efficiency scores derive from the estimation of input-oriented, CRS
DEAmodels, and are bias corrected via bootstrap replications. Specifically,
they are calculated with respect to a different frontier for each of the six
years of the observed period, using the FEAR Software Package (Wilson,
2008). The latter computes efficiency scores according to Shephard
(1970), i.e. as input distance functions. All numerical elaborations pre-
sented in the paper are based on these values. Differently, in presenting
our results we report input efficiency measures according to Farrell
(1957), i.e., as the reciprocal of the Shephard efficiency score. This repre-
sentation is chosen to facilitate comparison with previous studies.

6.1. Cost-only model

A concise representation of the results for the Cost-only model is
given in Table 6 where we report the arithmetic average of bias-
corrected efficiency scores, by year.

The average unbiased efficiency over the period is 0.750 (0.736 in
2004 and 0.771 in 2009), indicating that, given their input, Enel's
Zones could increase their output by 25%. These results are partially
consistent with the findings of the literature. They are below the aver-
age scores obtained by Giannakis et al. (2005) and Coelli et al. (2007),
on data from, respectively, the UK and France (around 82%). However,
they are above the scores obtained by Growitsch et al. (2010) on Nor-
wegian data (between 56% and 63%, depending on the year). Of course,
comparison with previous studies should be taken carefully because of
the different choices made in terms of input and output variables:
Giannakis et al. (2005) and Coelli et al. (2007) include an additional out-
put (area size/network length), while Giannakis et al. (2005) and
Growitsch et al. (2010) use total expenditures (TOTEX) as an input.23

As all Zones belong to the same company and are subject to the same
regulatory incentiveswe are interested in exploring the determinants of
the observed inefficiencies. Moreover, given that inefficiencies can be
the result of bad managerial practices as well as of external conditions,
it is important, from a regulatory perspective, to separate the two
effects. To this end, we resort to a second-stage regression analysis,
using bias-corrected efficiency scores (BC_dit) as the dependent vari-
able. The model includes three independent variables – area size
23 Using TOTEX as a the only input (TOTEX model) we obtain an average unbiased effi-
ciency of 0.672 (between 0.651 and 0.683, depending on the year of observation). The cor-
relation among efficiency scores in the Cost-onlymodel and in the TOTEXmodel is equal to
0.843.
(area), load composition (nonres_cons), and average length of feeders
(f_length) – and takes the following form:

BC dit ¼ α0 þα1areait þα2nonres consit þα3under MVit þ λt þ εit ð7Þ

where λt are year fixed effects and εit is the error term. Results are
obtained using a truncated regression with bootstrap replications for
the bias correction and for the confidence intervals.

The results reported in Table 7 support the hypothesis that the
heterogeneity associated with the contextual variables has a significant
effect on efficiency scores (a positive coefficient suggests a larger dis-
tance from the efficient frontier and vice versa). As expected, the dimen-
sion of the area served negatively affects a distribution unit's
performance. Instead, the percentage of non-residential consumption
and the share of underground cable have a positive effect on a unit's
performance. In other words, higher efficiency is found in relatively
small, mostly urban or suburban distribution areas (i.e., with relatively
shorter and mostly underground feeders), with a large share of non-
residential consumption.

Before analyzing performance over time, note that the residuals of
Eq. (7) represent the portion of efficiency that remains unexplained
after the correction for the external factors, used as independent vari-
ables. It is possible to use these residuals to level the external variables
and derive an adjusted efficiency that is not influenced by the external
conditions in which each Zone operates. Employing, with the necessary
modifications, the procedure proposed byDeWitte andMoesen (2010),
we obtain an average adjusted efficiency over the observed period equal
to 0.835 (0.814 in 2004 and 0.865 in 2009). In other words, after ac-
counting for several determinants of heterogeneity, our results appear
fully consistentwith previous studies that use data froma single compa-
ny. In terms of policy, this is a positive result: although inefficiencies are
2006–07 0.887 1.981 0.904
2007–08 0.990 1.008 0.982
2008–09 1.154 0.992 1.164
Mean 0.986 0.992 0.995

Indices are bias corrected via bootstrap (2000 replications).



Table 9
Efficiency scores in CostRP and CostENS models.

Year CostRP model CostENS model

Mean Std. dev. Min Max Mean Std. dev. Min Max

2004 0.703 0.089 0.457 0.878 0.689 0.106 0.382 0.897
2005 0.664 0.094 0.447 0.877 0.706 0.107 0.423 0.918
2006 0.676 0.102 0.417 0.915 0.749 0.089 0.503 0.938
2007 0.675 0.101 0.414 0.905 0.752 0.089 0.470 0.926
2008 0.733 0.080 0.468 0.922 0.778 0.091 0.502 0.953
2009 0.748 0.079 0.543 0.927 0.786 0.082 0.545 0.975
Mean 0.700 0.096 0.414 0.927 0.743 0.100 0.382 0.975

Efficiency scores are bias corrected via bootstrap (2000 replications).

Table 11
Changes in ranking order.

Cost only

Very
efficient

Efficient Inefficient Very
inefficient

CostRP Very efficient 25 86% 4 14% 0 0% 0 0%
Efficient 4 14% 19 68% 5 17% 0 0%
Inefficient 0 0% 5 18% 19 66% 5 18%
Very inefficient 0 0% 0 0% 5 17% 23 82%
Tot. 29 100% 28 100% 29 100% 28 100%

CostENS Very efficient 23 79% 6 21% 0 0% 0 0%
Efficient 5 17% 15 54% 7 24% 1 4%
Inefficient 1 3% 5 18% 15 52% 8 29%
Very inefficient 0 0% 2 7% 7 24% 19 68%
Tot. 29 100% 28 100% 29 100% 28 100%

Percentage values are rounded.
still present, managerial performance appears quite homogeneous
across all Enel's Zones.

The question, however, remains on the effect of the regulation of in-
puts over time, or on the company's response to regulatory incentives
aimed at productive efficiency. To properly discuss this matter and on
the basis of the original Cost-only model, we examine productivity
changes over time. Average Malmquist indices and their components
(efficiency change and technical change) are reported in Table 8.

During the observed period, there is evidence of a decrease in pro-
ductivity and both the efficiency and the technical component are, on
average, lower than one. In other terms, from the perspective of produc-
tive efficiency, our analysis shows no significant improvements over
time (there are no cost reductions that can be passed on to consumers).
This is consistentwith results obtained byMiguéis et al. (2012) and also
with the Italian regulatory framework. The tariff scheme provides in-
centives for the DSOs to achieve higher efficiency in operating costs
but allows a pass-through of capital expenses and depreciation. In prac-
tice, it appears that savings in operating costs have beenmasked by ren-
ovation or expansion of distribution assets, a strategy that is expected to
bring benefits to consumers only in the longer term.
6.2. Cost-and-quality models

To study the effects of price and quality regulation we employ two
different measures of quality: regulatory rewards and penalties (CostRP
model) and the cost of the ENS (CostENSmodel). The arithmetic average
of the bias-corrected efficiency, for each model and year is reported in
Table 9. Before discussing each model in detail, a few general remarks
are in order.

Average efficiency scores observed over the entire period are lower
in the CostRPmodel than in the Cost-onlymodel (0.700 vs. 0.750); con-
versely, differences between average efficiency valuesin the Cost-only
and the CostENS model are minimal (0.743 vs. 0.750).

Table 10 presents the score and ranking (in parentheses) correlation
coefficients across the three models. Score correlations between the
Cost-only and the CostRP model are equal to 86.9% and those between
the Cost-only and the CostENS model, to 82.8%. Notably, the lowest
score correlation (77.2%) is between the two cost-and-quality models.
The same holds also for ranking correlations.
Table 10
Score and ranking (in parenthesis) correlations among DEA models.

Cost-only CostRP CostENS

Cost-only 1
CostRP 0.869⁎⁎⁎

(0.859)
1

CostENS 0.828⁎⁎⁎

(0.842)
0.772⁎⁎⁎

(0.803)
1

⁎⁎⁎ Significant at the 1% confidence level.
⁎⁎ Significant at the 5% confidence level.
⁎ Significant at the 10% confidence level.
Table 11 illustrates changes in ranking of single Zones between the
Cost-only and the two cost-and-quality models. Calculations are made
using average scores, per Zone, over the observed period and then divid-
ing the observations in four quartiles. The CostRPmodel does notmodify
the ranking found in the Cost-only model, particularly at the extremes.
Rankings are modified for 4% of ‘very cost-efficient’ Zones, 21% of ‘very
cost-inefficient’ Zones and 34% or less of ‘cost-inefficient’ and ‘cost-
efficient’ Zones. Altogether, out of 114 Zones, only 14 score better
and 14 worse. Similarly, including the cost of ENS in the benchmarking
model does not significantly modify the ranking of ‘very cost-inefficient’
(21%) and ‘very cost-efficient’ Zones (32%). Zones in the intermediate
ranges appear, instead, to be impacted relatively more (48% of
‘cost-inefficient’ and 46% ‘cost-efficient’ Zones). On average, out of
114 Zones, 22 score better and 20 worse.

6.2.1. CostRP model
Efficiency scores for the CostRP model are consistent with the hy-

pothesis of a larger dispersion in input data. Together with the relative
stability in the ranking order this indicates that, on average, Zones that
are more cost efficient are also good performers in terms of exceeding
regulatory targets for quality (i.e. they have been rewarded by the regula-
tory mechanism). Also the converse is true: lower cost efficiency appears
to be associatedwith lower cost-and-quality efficiency. Changes observed
over time (2008 and 2009 present higher average values than previous
years) are consistent with the fact that rewards and penalties decrease
at the beginning of each regulatory period (a convergence in performance
was to be expected).24

With respect to the literature, our results are in linewith those found
by Coelli et al. (2007): the Cost-only model has, at least partially, cap-
tured the quality aspect of the distribution units. In terms of policy,
we infer that in the period under observation the presence of quality
regulation has not significantly altered the behavior of the distribution
units: those that respondedwell to cost efficiency incentives responded
equally well to quality-related incentives and vice versa. Another inter-
pretation is that the company has responded strategically to the regula-
tory regime, extracting larger gains from both price and quality
regulations in some distribution Zones and smaller ones (or none) in
others.25

The absence of a different response to cost and quality regulatory in-
centives (or the adoption of a strategic behavior on the part of the distri-
bution company)might bemotivated by the fact that the same external
conditions that favor cost efficiency also influence the ability of a distri-
bution unit to attract larger rewards. To test this hypothesis we perform
a second stage analysis of the bias-corrected efficiency scores obtained
in the CostRP model, using the same independent variables employed
24 Malmquist indices estimated for the CostRP model exclude, however, any perfor-
mance change over time (the mean over the period is equal to 1.001).
25 We thank an anonymous reviewer for this insight.



Table 12
Second stage analysis (CostRP and CostENS models).

CostRP model CostENS model

area 0.035⁎⁎⁎ 0.040⁎⁎⁎

(0.009) (0.008)
nonres_cons −0.807⁎⁎⁎ −0.415⁎⁎⁎

(0.094) (0.103)
under_MV −0.377⁎⁎⁎ −0.145⁎⁎

(0.062) (0.060)
2004 0.098⁎⁎⁎ 0.243⁎⁎⁎

(0.024) (0.034)
2005 0.202⁎⁎⁎ 0.204⁎⁎⁎

(0.024) (0.031)
2006 0.186⁎⁎⁎ 0.094⁎⁎⁎

(0.026) (0.026)
2007 0.193⁎⁎⁎ 0.088⁎⁎⁎

(0.026) (0.025)
2008 0.042⁎⁎ 0.029

(0.022) (0.026)
Const. 1.963⁎⁎⁎ 1.488⁎⁎⁎

(0.082) (0.087)
n.obs 684 684
n. Zones 114 114

⁎⁎⁎ Significant at the 1% confidence level.
⁎⁎ Significant at the 5% confidence level.
⁎ Significant at the 10% confidence level.

26 Using SOTEXas the only input (SOTEXmodel)we obtain an averageunbiased efficien-
cy of 0.669 (between 0.642 and 0.698, depending on the year of observation). The corre-
lation among efficiency scores in the CostENS model and in the SOTEX model is equal to
0.870.
27 Changes observed over time even suggest a converged performance (see Table 8).
Malmquist indices estimated for the CostENS model exclude, however, any performance
change over time (the mean over the period is equal to 0.977).
in Eq. (7). Results, obtainedwith a truncated regression (with bootstrap
replications for the bias correction and for the confidence intervals), are
reported in the first column of Table 12. They reveal that a smaller area
size, a higher percentage of non-residential consumption and a higher
share of underground cable at the MV level are associated with smaller
distances from the efficient frontier. In sum, external factors that favor
cost efficiency also ensure that the distribution unit collects regulatory
rewards (i.e., maintains SAIDI below the regulatory target).

Nevertheless, the fact that a distribution unit responds in the same
manner to input-based and to output-based incentives leads an alloca-
tion of quality-related incentives that appears in contrast with the
long-term objective of quality regulation (i.e. convergence of SAIDI).
To support these statements we compute the average annual SAIDI
reduction and the average annual rewards and penalties assigned to
each Zone. Table 13 illustrates these data by different quintiles of the
2004 SAIDI index, i.e. ordered by the initial level of quality. Additional
information includes the number of times when no rewards nor penal-
ties were assigned, contextual variables and the average length of
feeders (as a determinant of SAIDI).

We observe that Zones in the first quintile attained relatively small
quality improvements (0.64 min/year) and yet, collected almost as
many rewards as Zoneswhose annual SAIDI improvements were signif-
icantly larger (above 3 min/year) — clearly rewards were magnified by
the share of non-residential load in the same areas. In any case, it ap-
pears that significant resources were allocated to reward cost-efficient
distribution units (see contextual variables in Table 13) for providing
nearly the same level of quality that they delivered in 2004.

At the same time, Zones in the last two quintiles attained the largest
improvements in SAIDI (6.09 min/year and 12.52 min/year, respective-
ly) but were able to attract less than average rewards. Although annual
SAIDI targets are more demanding for poor performing areas, it appears
that rewards were also limited by a lower share of non-residential load.
Moreover, these Zones more frequently met, instead of exceeding, the
regulatory targets, i.e. they received no rewards (or penalties). In sum,
lower resources were allocated to Zones that presented higher values
of SAIDI in 2004 as well as the external characteristics of less efficient
areas (see contextual variables in Table 13).

Altogether, this raises somedoubts on the efficacy of the current reg-
ulatorymechanism to reach convergence in SAIDI in the long term. Reg-
ulatory incentives for quality were never meant as a compensation for
quality-related expenditures. Nevertheless, our analysis provides strong
motivations for the modification of this principle and in favor of an in-
centive scheme where rewards are preferably assigned to areas with
less favorable external conditions. The role of network structure (see
variable f_length in Table 13) in defining the level of quality also sug-
gests that those incentives should bemainly directed at supporting cap-
ital expenditures.

In line with these findings, a change in prospective has been intro-
duced in quality regulation for the fourth tariff period. Since January
2012 rewards to high performing territorial districts (SAIDI close to
the national standard) have been significantly reduced, while those to
underperforming ones can largely increase if substantial improvements
in SAIDI are achieved (AEEG, 2011b).

Note that what appears as a radical change in perspective implies
also a strong commitment to meet one of the regulatory objectives set
in 2004. As this commitment approaches its natural end (in 2015), re-
sults from the CostENSmodel suggest taking a different course of action.

6.2.2. CostENS model
Also for the CostENS model, average efficiency scores (0.743) are in

line with previous studies. Using SOTEX (TOTEX plus the cost of ENS)
as the only input Growitsch et al. (2010) find average scores that are be-
tween 57% and 62%, depending on the year26; Miguéis et al. (2012) re-
port, instead, average scores above 84% (but their model includes
additional outputs).

Consistent with previous work (Growitsch et al., 2010) is also the
fact that average performance in terms of cost efficiency and average
performance in terms of social cost efficiency do not significantly differ
in our database. Although this does not imply that they cannot be im-
proved, at least, it excludes a conflict between them.27

Nevertheless, a relatively low score correlation with the CostRP
model (Table 10) and the observed changes in ranking correlations
with respect to the Cost-onlymodel (Table 11) suggest that the CostENS
model provides a different perspective on cost-and-quality efficiency.
To illustrate this point, we conduct a second-stage analysis on bias-
corrected efficiency scores from the CostENS model, using the same in-
dependent variables as in Eq. (7). Results, obtained with a truncated re-
gression (with bootstrap replications for the bias correction and for the
confidence intervals) are reported in the second column of Table 12.

We find that favorable geographical conditions (smaller area) and a
higher share of non-residential load continue to have a significant and
positive effect on distribution units' performance. Differently, a favor-
able network design continues to have a positive effect on performance
but becomes less significant: given the same cost efficiency level, two
Zones can be equally social-cost efficient if one presents a relatively
high value of SAIDI and a relatively low share of non-residential load
and the other, instead, a lower SAIDI but a higher share of non-
residential load.

From a research perspective, we infer that while the CostRPmodel is
best suited to study how distribution units have responded to the regu-
latory regime, the CostENS model appears as a more equitable choice
when assessing their performance in terms of (social) cost efficiency
and the cost of ENS should be included in benchmarking of distribution
networks.

From a policy perspective, we observe that current quality targets in
Italy are not differentiated on the basis of the cost of ENS in a given area.
In turn, this is used to calculate rewards and penalties. Therefore, cus-
tomer valuations of different levels of quality (their WTP) enter the
distributor's choice in setting the level of SAIDI, i.e. will induce a



Table 13
Average annual SAIDI reduction and RP by SAIDI 2004 quintiles.

Quintiles SAIDI 2004 Annual SAIDI reduction Annual rewards Annual penalties Zero RP area nonres_cons under_MV f_length

[min] [min] [mln€] [mln€] [N. obs.] [km2] [%] [%] [km/MVA]

Q1 18.70–40.56 0.64 1.08 0.15 0 1789 0.77 0.45 3.33
Q2 40.56–59.83 3.08 1.15 0.45 1 2825 0.74 0.36 3.59
Q3 59.83–77.39 3.81 1.34 0.41 8 2468 0.72 0.41 4.02
Q4 77.39–98.18 6.09 0.88 0.48 11 2541 0.68 0.33 4.57
Q5 98.18–194.28 12.52 0.89 0.40 24 2826 0.68 0.36 5.18
Mean – 5.17 1.08 0.42 – 2487 0.72 0.38 4.13
distribution unit to set different levels of SAIDI in areas with a different
composition of the load. We infer that a regulatory objective which re-
quires convergence in SAIDI performance is inherently at riskwhenever
the benefit of meeting it does not outweigh its cost from a company's
perspective.

Consequently, our policy suggestion for the longer term is to rede-
fine the convergence objective in terms of the costs of ENS. Thiswill pro-
vide a better understanding (also in the public opinion) of the progress
of quality regulation and, at the same time, remove the incentive to
provide the same level of SAIDI in areas where the composition of
the load does not justify the cost. While this would mean accepting
a higher SAIDI where the load is mostly residential, in the end it
would benefit consumers, by ensuring that the level of expenditures
in electricity distribution does not increase beyond what is socially
efficient.
7. Conclusions

Regulation of electricity networks is changing, moving from a
productivity-oriented instrument to one that includes additional, longer
term objectives, generally pursued with the introduction of output-
based incentives. This has prompted interest for the assessment
of firms' response to output-based incentives, mostly because of their
potential conflict with more traditional concerns for productive
efficiency.

In this paper we study the effect of input-based and output-based
regulatory incentives on the performance of the largest Italian electric-
ity distribution company. Specifically, our focus is on assessing progress
in terms of cost efficiency and in the provision of quality. To this end, we
rely on a recent statistical approach, based on DEA and bootstrapping
techniques, which enable the estimation of technical efficiency in the
first stage and the study of possible sources of efficiency heterogeneity
in the second stage. We also employ Malmquist indices to study chang-
es in performance over time.

As for performance in terms of cost efficiency, as implied in the reg-
ulation of inputs, we find that, once we account for the external charac-
teristics of each distribution unit (area served, load composition and
network structure), similar efforts were exercised across all Enel's
Zones. They were restrained, however, by the need to renovate and to
expand the distribution system.

As for performancewith respect to the overall regulatory framework
we find that the presence of (output-based) quality regulation has not
significantly modified the behavior of the distribution units: those that
responded well to cost efficiency incentives responded equally well to
quality-related incentives and vice versa. Indeed, the sameexternal con-
ditions that favor cost efficiency also influence the ability of a distribu-
tion unit to exceed the targets imposed by quality regulation. This
behavior, however, appears in contrast with the long-term objective
of convergence in SAIDI performance.

Finally, in line with previous literature, we find that average perfor-
mances in terms of cost efficiency and in terms of social cost efficiency
do not significantly differ. Nevertheless, a comparison with the results
obtained with different specifications of the benchmarking model
indicates that it is preferable to include the cost of ENS when assessing 
a single unit's performance.

Altogether, the evidence presented in this paper calls for a new 
course of action in quality regulation. Specifically, in order to reach con-
vergence in the desired output (SAIDI), the Italian incentive scheme 
needs to allocate more resources where quality improvements are diffi-
cult to achieve rather than on rewarding good quality performance. As 
the composition of the load or the extent of the area served can hardly 
be modified, incentives should be directed at improving the network 
design. While the national regulator has already taken a step in this di-
rection, our analysis suggests also a different conduct. A convergence 
objective redefined in terms of the cost of ENS (rather than SAIDI) 
would account for differences in load composition and might reduce 
the need to modify the network in areas where consumers' valuation 
of quality does not justify the cost.

In this perspective, further work should concentrate on studying the 
relationship between quality-related incentives and expenditure deci-
sions in the electricity distribution sector. Also, an estimation of the 
company's cost for quality improvements would be useful to assess 
the efficacy of the policy suggestions proposed in this paper. Finally, 
the available dataset could be used to explore the comparative advan-
tage of adopting the semi-nonparametric one-stage estimator proposed 
by Johnson and Kuosmanen (2012), for benchmarking with contextual 
variables.
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