
Partial-route inequalities for the multi-vehicle routing
problem with stochastic demands
Ola Jabali a,∗, Walter Rei b, Michel Gendreau c, Gilbert Laporte a

a CIRRELT and HEC Montréal 3000, chemin de la Côte-Sainte-Catherine, Montréal, Canada H3C 3J7
b CIRRELT and Department of Management and Technology, Université du Québec à Montréal, 315 rue Sainte-Catherine est, Montréal,
Canada H2X 3X2
c CIRRELT and Department of Mathematics and Industrial Engineering, École Polytechnique de Montréal, C.P. 6128, succursale
Centre-ville, Montréal, Canada H3C 3J7

Article history:
Received 29 November 2012
Received in revised form 20 February 2014
Accepted 22 May 2014
Available online 14 June 2014

1. Introduction

The aim of the vehicle routing problem (VRP) is to construct vehicle routes through a set of customers under side con-
straints. In the classical VRP, a travel cost matrix between customers is provided, several identical capacitated vehicles are
available, and customers have demands to be collected. The routes start and end at the depot, each customer is visited ex-
actly once by a single vehicle, and the demand collected on a route cannot exceed the vehicle capacity. The objective is to
minimize the total travel cost.

The VRP has been extensively studied (see, e.g., Laporte [17]). A number of variants of the VRP have been proposed (see,
e.g., Toth and Vigo [27] and Golden et al. [11]) to represent more realistic settings, and several efficient solution procedures
have been developed for the VRP and its variants. Most of this research deals with deterministic settings, thus implicitly
implying that all information concerning the instance parameters is known when the problem is solved. This assumption
applies to situations where the estimated variability in the problem parameters is relatively low. However, in practice, data

∗ Corresponding author. Tel.: +1 5143406154; fax: +1 5143406834.
E-mail addresses: ola.jabali@hec.ca, Ola.Jabali@cirrelt.ca (O. Jabali), Walter.Rei@cirrelt.ca (W. Rei), Michel.Gendreau@cirrelt.ca (M. Gendreau),

Gilbert.Laporte@cirrelt.ca (G. Laporte).

http://dx.doi.org/10.1016/j.dam.2014.05.040
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2014.05.040&domain=pdf
mailto:ola.jabali@hec.ca
mailto:Ola.Jabali@cirrelt.ca
mailto:Walter.Rei@cirrelt.ca
mailto:Michel.Gendreau@cirrelt.ca
mailto:Gilbert.Laporte@cirrelt.ca

are often stochastic. In such contexts, solving a deterministic problem in which stochastic parameters are replaced by their
expected values can yield poor solutions (Louveaux [21]). As a result, several stochastic versions of theVRPhave been studied
in recent years (Cordeau et al. [8]).

In this paper we solve the VRP with stochastic demands (VRPSD) in which demand is only revealed when the vehicle
reaches the customer’s location. Such problems occur in a number of applications, for example in the delivery and collection
ofmoney to and from banks (Bertsimas [4] and Lambert et al. [16]), in home oil delivery (Chepuri andHomemdeMello [23]),
beer distribution and garbage collection (Yang et al. [29]).

Because demand is not known beforehand, a vehicle may reach a customer location with insufficient residual capacity
to collect the observed demand. This causes a route failure, in which case a recourse action can be implemented. One of the
most common solution frameworks for this class of problems is a priori optimization, a concept initially put forward by Bert-
simas [5], Jaillet [14] and Bertsimas et al. [6]. It consists of modeling the problem in two stages. In the first stage, a planned,
or a priori solution is designed, before customer demands are known. It consists of the set of vehicle routes. In the second
stage, these routes are performed as demands are gradually revealed. Whenever a failure occurs, a predetermined recourse
policy is implemented, which entails an extra recourse cost. The objective of the problem is to minimize the cost of the
first-stage solution plus the expected cost of recourse.

Several recourse policies have been proposed for the VRPSD. A classical policy is to return to the depot upon failure,
offload, and resume collections by following the planned route starting at the point of failure (Christiansen and Lysgaard [7],
Gendreau et al. [9,10], Goodson et al. [12], Hjorring and Holt [13], Laporte et al. [19], Lei et al. [20] and Rei et al. [24]).
More involved recourse policies have also been considered, such as restocking rules (Yang et al. [29]), route reoptimization
(Secomandi and Margot [25]), pairing strategies (Ak and Erera [1]), and the use of safety stocks (Juan et al. [15]). Note that
the algorithms described in Ak and Erera [1], Hjorring and Holt [13], Rei et al. [24] and Secomandi andMargot [25] have been
implemented for the single-vehicle case only. An importantmanagerial advantage of the classical policy is that it yields stable
routes which require minimal alterations in the event of failure. Solving the VRPSD under the classical recourse policy also
provides a benchmark against which alternative policies can be assessed. Whereas most authors in the field of stochastic
vehicle routing cast the problem in the context of stochastic programming, one study by Sungur et al. [26] defines it in the
context of robust optimization which yields routes that minimize transportation costs while satisfying all the demands in a
given bounded uncertainty set.

Compared with the classical VRP, the VRPSD is considerably more difficult to solve. For example, state-of-the-art algo-
rithms for the VRP can handle instances involving up to 200 customers and 17 vehicles (Baldacci et al. [2]). In contrast, the
best available algorithms for the VRPSD (with multiple vehicles) can only handle instances with 50 customers and three
vehicles under a normal demand distribution (Laporte et al. [19]).

As in Laporte et al. [19], we formulate the VRPSD as a two-stage stochastic programming model under the classical re-
course policy. We solve it optimally by means of the integer L-shaped method proposed by Laporte and Louveaux [18], an
extension of the L-shaped method of Van Slyke and Wets [28] for continuous stochastic programs, itself an application of
Benders decomposition [3] to stochastic programming. The integer L-shaped method follows a branch-and-cut framework
in which lower optimality cuts are generated to eliminate feasible solutions, and lower bounding functionals (LBFs) are
commonly used to improve the efficiency of the algorithm. Their role is to tighten the linear relaxation of the current sub-
problem, thus stemming the growth of the search tree. When applied to the VRPSD, LBFs are used to strengthen the lower
bounds on the recourse cost associated to partial routes encountered throughout the solution process. As was numerically
illustrated by Hjorring and Holt [13] and Laporte et al. [19], the use of LBFs is instrumental in optimally solving the VRPSD.

This paper makes three main scientific contributions. It first generalizes the concept of partial routes defined by Hjorring
and Holt [13] for the single vehicle case, and by Laporte et al. [19] for the multi-vehicle case. It then proposes strengthened
LBFs based on these generalized partial routes. Finally, it describes an exact separation algorithm for these LBFs. Extensive
computational experiments on benchmark instances demonstrate that the combination of these improvements yields
shorter computing times, thus enabling solving to optimality larger instances than what was previously possible. Moreover,
it yields smaller optimality gaps on the unsolved instances.

The remainder of this paper is organized as follows. In Section 2 we present our modeling and solution framework for
the VRPSD. Section 3 introduces the generalized definition of partial routes. These are used to generate stronger LBFs in
Section 4. The exact separation procedure for the LBFs is presented in Section 5. This is followed by computational results
in Section 6 and by conclusions in Section 7.

2. Model and algorithmic framework

We recall in Section 2.1 the two-stage stochastic programming formulation of VRPSD initially proposed by Laporte
et al. [19], which constitutes the backbone of our solution framework. We then describe in Section 2.2 the integer L-shaped
algorithm for which we introduce improvements in Sections 3–5.

2.1. The VRPSD model

The VRPSD is defined on a complete undirected graph G = (V , E), where V = {v1, . . . , vn} is the vertex set and E =

{(vi, vj) : vi, vj ∈ V , i < j} is the edge set. Vertex v1 is the depot at which m identical vehicles of capacity D are based,

whereas the remaining vertices represent customers. Each customer has a non-negative stochastic demand ξi to be col-
lected. We further assume that these demands are identically and independently distributed with expected values µi. A
travel cost cij is associated with each edge (vi, vj) ∈ E. The aim of the first-stage problem is to design m vehicle routes of
least expected cost (1) starting and ending at the depot, (2) such that each customer is visited exactly once by exactly one
vehicle, and (3) such that the expected demand of each route does not exceed the vehicle capacity. In this definition the
objective function is the sum of the planned routing cost and of the expected second-stage cost of recourse. The third con-
straint was originally imposed by Laporte et al. [19] in order to avoid the creation of routes that would systematically fail
while some vehicles would be underutilized.

The VRPSD can be formulated as a two-index stochastic program as follows. Let xij (i < j) be an integer decision variable
equal to the number of times edge (vi, vj) appears in the first-stage solution. In what follows xij must be interpreted as xji
whenever i > j. If i, j > 1, then xij can only take the values 0 or 1; if i = 1, then xij can also be equal to 2 whenever a
vehicle makes a return trip between the depot and customer vj. Furthermore, let Q(x) denote the expected cost of recourse
in solution x. The model is then

(VRPSD) Minimize

i<j

cijxij + Q(x) (1)

subject to

n
j=2

x1j = 2m, (2)


i<k

xik +


j>k

xkj = 2, (k = 2, . . . , n), (3)


vi,vj∈S

xij ≤ |S| −


vi∈S

µi/D


, (S ⊂ V \ {v1}, 2 ≤ |S| ≤ n − 2) (4)

0 ≤ xij ≤ 1 (2 ≤ i < j ≤ n), (5)

0 ≤ x1j ≤ 2 (j = 2, . . . , n), (6)

x = (xij) integer (1 ≤ i < j ≤ n). (7)

In this model constraints (2) and (3) specify the degree of each vertex, whereas constraints (4) eliminate subtours and
ensure that the expected demand of any route does not exceed the vehicle capacity.

Given a first-stage solution x, the computation of Q(x) is separable in the routes. It is well known that the expected cost
of route k depends on its orientation:

Q(x) =

m
k=1

min{Qk,1, Qk,2
}, (8)

whereQk,δ denotes the expected cost of the recourse of route k for orientation δ. Given an undirected first stage solution, the
expected cost of recourse is computed for each direction, and the cheapest orientation is selected. As in Laporte et al. [19],
the computation of Qk,1 for route k defined by (vi1 = v1, vi2 , . . . , vit+1 = v1) is given by

Qk,1
= 2

t
j=2

j−1
l=1

P


j−1
s=1

ξis ≤ lD <

j
s=1

ξis


c1ij . (9)

The first factor in the double summation is the probability of incurring the lth failure at customer vij . The value of Qk,2 is
computed likewise by reversing the orientation of route k.

2.2. The integer L-shaped algorithm

The integer L-shaped algorithm applies branch-and-cut to a relaxation of (VRPSD) in which the recourse term Q(x) is
boundedbelowby a variableΘ . In addition, the subtour elimination constraints and the integrality requirements are relaxed.
Initially Θ is set greater than or equal to a lower bound L on the expected cost of recourse, and its value Θν is computed for
the solution of the subproblem solved at iteration ν. We adopt the general lower bound L on Q(x) described in Proposition
1 of Laporte et al. [19]. This bound is based on the computation of the probability of failure on each route taken separately.
The recourse cost is bounded below by considering the m customers closest to the depot, and the total demand is then
partitioned among the m vehicles so as to minimize the total cost. As is standard in branch-and-cut, subtour elimination
constraints are generated dynamically as they are found to be violated, and integrality is gradually recovered by branching
on fractional variables. Optimality cuts are generated at feasible integer solutions. In most applications these cuts are local,

Fig. 1. Example of a general partial route.

and therefore relying solely on them may yield substantial enumeration in the search tree. This is why it often pays to also
impose lower bounds on the recourse function Q(x) in the form of linear functionals computed on the basis of infeasible
intermediate solutions. In the following summary of the algorithm, CP denotes the current problem.

Step 0 Compute L and set the iteration counter ν equal to 0. Define the CP as a relaxation of VRPSD in which constraints
(4) and (7) are removed, the Q(x) term of the objective function is replaced with Θ , and the constraint Θ ≥ L is
imposed. Set the value of the best known solution to z̄ := ∞. At this stage the only pendent node is the initial CP.

Step 1 Select a pendent node from the list. If none exists stop.
Step 2 Set ν := ν + 1 and solve CP. Let (xν, Θν) be its optimal solution.
Step 3 Check for any violated subtour elimination constraints and generate them accordingly. At this stage, valid inequal-

ities or LBFsmay also be generated. If a violated constraint is found, add it to the CP and return to Step 2. Otherwise,
if cxν

+ Θν
≥ z̄, fathom the current node and return to Step 1.

Step 4 If the solution is not integer, then branch on a fractional variable. Append the corresponding subproblems to the
list of pendent nodes and return to Step 1.

Step 5 Compute Q (xν) and set zν
:= cxν

+ Q (xν). If zν < z̄, then z̄ = zν .
Step 6 If Θν

≥ Q (xν), then fathom the current node and return to Step 1. Otherwise add an optimality cut defined as
1<i<j
xνij=1

xij ≤


1<i<j

xν
ij − 1 (10)

and go to Step 2.

3. General partial routes

The generation of LBFs is based on the identification of partial routes in a solution. Such partial routes yielding LBFs for
the single VRPSDwere first proposed by Hjorring and Holt [13] and extended to themulti-vehicle case by Laporte et al. [19].
In this section we introduce a generalized definition of partial routes. It is broader than the one proposed by Hjorring and
Holt [13] in that it better exploits the structural information provided by partial routes, thus enabling the construction of
stronger LBFs. It was indeed shown by Laporte et al. [19] that a rather large number of the Hjorring and Holt [13] LBFs have
to be added to the master problem in order to solve the VRPSD.

General partial routes h can in principle be defined on any subgraph of G. However, as is common in most branch-and-cut
implementations, we identify them on a graph Ḡ induced by the positive variables of a non-integer and connected solution
of the CP solved in Step 2 of the integer L-shaped algorithm. It is convenient to represent such partial routes as in Fig. 1 by
duplicating the depot. When doing so it is necessary to ensure that each copy of the depot is connected to at least one ver-
tex. A solution can be decomposed into several components anchored at an articulation vertex, i.e., a vertex whose removal
disconnects the graph into connected components disjoint from each other. These are either unstructured components of Ḡ
(ellipses in the figures) whose vertex sets are called unstructured vertex sets (UVSs), or chains whose vertex sets are called
chain vertex sets (CVSs). The vertices of a chain are linked together by edges (vi, vj) for which xij = 1 in Ḡ.

Let b denote the number of chains, and let b−1 denote the number of unstructured components in a partial route h. This
partial route then consists of 2b − 1 components. Let Srh denote the rth ordered CVS, possibly consisting of a single vertex,
defined as Srh = {v1rh , . . . , vlrhrh

}, where vkrh is the kth vertex in Shr and lrh is the number of vertices in Srh . For simplicity, we

write (vi, vj) ∈ Srh if vi and vj are consecutive in Srh , and we write lrh instead of lrhrh . Thus,
(vi,vj)∈Srh

xij = |Srh| − 1.

Let U r
h denote the rth UVS in h. Then

vi,vj∈Ur
h

xij = |U r
h | − 1.

For each 1 ≤ r ≤ b − 1,
vj∈Ur

h

xlrh,j = 1.

(a) α-route.

(b) β-route.

(c) γ -route.

Fig. 2. Examples of general partial routes.

Similarly, for each 2 ≤ r ≤ b,
vj∈Ur−1

h

x1rh,j = 1.

Given that a chain is a structured special case of a UVS and a single vertex is a degenerate chain, a general solution such
as the one depicted in Fig. 1 can be viewed differently depending on how chains and vertices are interpreted. For example,
in Fig. 2(a) only the first and last chains are viewed as such, whereas the intermediate part of the solution is viewed as a
UVS. In Fig. 2(b), the original alternation of chains and UVSs is maintained. In Fig. 2(c), each chain is viewed as a UVS and the
articulation vertices are considered as degenerate chains. The partial routes corresponding to these three constructions are
called α-routes, β-routes and γ -routes, respectively. In Section 4 we will develop LBFs based on these structures.

4. Lower bounding functionals

We present in Section 4.1 a lower bound on the cost of recourse. This bound is applied in Section 4.2 to the derivation
of a lower bounding functional based on general partial routes. Three particular cases of the lower bounding functional
associated with α-, β- and γ -routes are then presented in Section 4.3.

4.1. Lower bound on the cost of recourse

A lower bound Ph on the cost of recourse associatedwith general partial route h is constructed by aggregating the demand
of each UVS, while the distance to the depot is bounded by the smallest distance between the depot and the vertices within
a UVS. For each UVS, r = 1, . . . , b − 1, we create an artificial customer vr with demand

ξr =


vi∈Ur

h

ξi and c1r = min
vj∈Ur

h

{c1j}. (11)

The partial route is then constructed as (v0 = v11h , . . . , vlrh , v
1, v12h , . . . , vl2h , v

2, . . . , vb−1, v1bh , . . . , vlbh) and the value of
Qk,δ for this route k is computed as in Eq. (9). Then

Ph = min{Qk,1, Qk,2
}. (12)

To compute a lower bound P on the total cost of recourse, first define

Rh = (∪b
r=1 S

r
h) ∪ (∪b−1

r=1 U
r
h).

Assuming f ≤ m partial routes, let Pr+1 be a lower bound on the cost of recourse for m − f routes involving the customer
set V \ ∪

f
h=1 Rh, with Pm+1 = 0. Then the lower bound is

P =

f+1
h=1

Ph. (13)

4.2. Computation of the lower bounding functional

In this section we construct a lower bounding functional that will act as a valid inequality in the integer L-shaped algo-
rithm to eliminate some infeasible solutions. Given a solution x we first construct a lower bounding functional Wh taking
the value Wh(x) for each partial route h in x. The sum of the functional values Wh(x) of all partial routes in x determines
when a cut is active in the solution space. The functional operates on all vertices included in partial route h. It uses variables
associated with the edges that are part of chains and with all possible edges between the vertices contained in each UVS.
Furthermore, the functional includes all variables associated with edges between each articulation vertex and all vertices of
its corresponding UVS.

The remainder of this section is organized as follows. In Section 4.2.1 we formally define Wh(x) and explain each of its
terms separately. In Section 4.2.2 we extend Wh onto the solution space. We then characterize solutions for which Wh(x)
is equal to 1 and those for which it is less than or equal to 0. Using this characterization we construct a valid inequality in
Section 4.2.3.

4.2.1. Description of Wh(x)
We first define the value taken by the functionalWh for a partial route h of solution x:

Wh(x) =

b
r=1


(vi,vj)∈Srh

vi ̸=v1

3xij +


(v1,vj)∈S1h

x1j +


(v1,vj)∈Sbh

x1j +
b−1
r=1


vi,vj∈Ur

h

3xij

+

b−1
r=1


vj∈Ur

h
vlrh ̸=v1

3xlrh,j +
b

r=2


vj∈Ur−1

h
v1rh ̸=v1

3x1rh,j +

vj∈U1

h
vl1h=v1

xl1h,j +


vj∈Ub−1
h

v1bh=v1
vlb−1,h ̸=v1

x1bh,j − (3|Rh| − 5). (14)

In Eq. (14), the coefficients of all edges containing the depot are equal to 1 while all other edges have a coefficient of 3.
The definition of Wh(x) ends by subtracting a constant which will be shown to be equal to the sum of all edge variables
multiplied by their coefficients, minus 1. In what follows we explain each component of Wh(x), and we show that contrary
to what was presented in Proposition 2 of Laporte et al. [19], our definition ofWh(x) is always valid.

The sum of all edge variables that are part of chains and not connected to the depot is expressed by
b

r=1


(vi,vj)∈Srh

vi ̸=v1

3xij,

which is equal to 0 if |Srh| = 1. If |S1h | ≥ 2 then the edge connected to the depot will have a coefficient of 1, this is expressed
by


(v1,vj)∈S1h
x1j. Similarly, if |Sbh | ≥ 2 the term


(v1,vj)∈Sbh

x1j attributes a coefficient of 1 to the edge connected to the depot

in Sbh . As expressed by
b−1
r=1


vi,vj∈Ur

h

3xij,

a coefficient of 3 is attributed to all possible edges variables between the vertices of a UVS. Because not all vertices of the
UVS are necessarily connected in h, the above summation implies thatWh(x)may contain variables associated to edges that
do not appear in the partial route h.

The functional contains a coefficient of 3 for edge variable between articulation vertices which are not the depot, and
each vertex in its corresponding UVS. This is expressed by

b−1
r=1


vj∈Ur

h
vlrh ̸=v1

3xlrh,j +
b

r=2


vj∈Ur−1

h
v1rh ̸=v1

3x1rh,j.

Again the above summation implies that Wh(x) may contain variables associated to edges that do not appear in the partial
route h.

If the articulation vertex of the first chain is the depot, i.e., vl1h = v1, then all edges between the depot and each vertex
in the first UVS have a coefficient of 1. This is represented by the term

vj∈U1
h

vl1h=v1

xl1h,j.

If the partial route consists of a single UVS and two single vertex chains, i.e., v1bh = v1 and vlb−1,h = v1, then to avoid
double counting, all edges between the depot and each vertex in the last UVS will have a coefficient of 0. Otherwise, i.e., if

|S1h | + |Sbh | > 2 or b > 2, all edges between the depot and each vertex in the last UVS will have a coefficient of 1. This is
expressed by

vj∈Ub−1
h

v1bh=v1
vlb−1,h ̸=v1

x1bh,j.

In order for Wh(x) to equal 1 for a given h, we subtract the sum of variables associated to edges included in h multiplied
by their corresponding coefficients inWh(x) and add 1. All variables that appear in h and are associated to edges connected
to the depot have a coefficient of 1 in Wh(x), while all others have a coefficient of 3. Therefore, we subtract the constant
3(|Rh| − 2) accounting for each edge not connected to the depot and subtract 2 to account for the edges connected to the
depot. Therefore, the sum of the edge variables is expressed as

3(|Rh| − 2) + 2 = 3|Rh| − 4.
This may also be expressed as

3(|Rh \ {v1}| − 1) + 2.
Thus, considering h, the value ofWh(x) equals 1 when 3|Rh| − 5 is subtracted from the sum of variables associated to edges
included in h, multiplied by their corresponding coefficients inWh(x).

4.2.2. Extension of Wh(x) onto the solution space
In what follows we show thatWh(x) takes a value of 1 not only on partial route h, but on a broader set of routes. We also

show that for a solution x′ in which the vertices of h appear in more than one route,Wh(x′) is at most 0. For this purpose we
will introduce the notion of ordered vertices.

In (14), Wh(x) may contain variables associated to edges that do not appear in the partial h. Therefore, for i < j we
define the vector x̂ij = {ζ12, . . . , ζ1n, ζ23, . . . , ζ2n, . . . , ζn−1,n}, where ζij = 1 and all other components are equal to 0. Let
Gh(xij) = Wh(x̂ij) + 3|Rh| − 5.

Definition 4.1. Let x̄ be a solution satisfying constraints (2), (3), (5) and (6) and let x′ be a feasible solution to the VRPSD.
Let h be a partial route of x̄ and J = {vk1 , . . . , vkq} such that for all 1 ≤ i < q the following relations hold: (1) v1 ∉ J , (2)
Gh(x̄ki,ki+1) > 0, and (3) x′

ki,ki+1
> 0. Then J is said to be ordered in the feasible solution x′ as in h.

Definition 4.1 implies that if vki and vki+1 are part of a chain in h, then x′

i,i+1 > 0. If vki is an articulation vertex, then
x′

i,i+1 > 0 where vki+1 is one of the vertices associated with the corresponding UVS. If vki+1 is an articulation vertex, then
x′

i,i+1 > 0where vki is one of the vertices associatedwith the correspondingUVS. Otherwise vki and vki+1 belong to a UVS of h.

Definition 4.2. Consider a solution x̄ satisfying constraints (2), (3), (5) and (6) containing a partial route h, and another
feasible solution x′ containing route h′. Partial route h is said to be compatible with h′ if Rh = Rh′ and all customer vertices
are ordered in h′ as in h. Furthermore, x̄ is said to be compatible with x′ if for each partial route in x̄ there exists a compatible
route in x′.

Next we show that Wh(x) = 1 when route compatibility is attained and that Wh(x) ≤ 0 otherwise. Finally we construct
the valid inequality showing that x̄ is compatible with x′.

Consider a solution x̄ satisfying constraints (2), (3), (5) and (6) containing a partial route h, and another feasible solution
x′ containing route h′. We start by showing that if Rh′ = {Rh \ J}, where |J| ≥ 1, then Wh(x′) ≤ 0. Given Wh(x) defined by
partial route h, we define

Wh(J|x) =

b
r=1


(vi,vj)∈Srh∩J

vi ̸=v1

3xij +


(v1,vj)∈S1h∩J∪{v1}

x1j +


(v1,vj)∈Sbh∩J∪{v1}

x1j +
b−1
r=1


vi,vj∈Ur

h∩J

3xij

+

b−1
r=1


vj∈Ur

h∩J
vlrh ̸=v1

3xlrh,j +
b

r=2


vj∈Ur−1

h ∩J
v1rh ̸=v1

3x1rh,j +


vj∈U1
h∩J

vl1h=v1

xl1h,j +


vj∈Ub−1
h ∩J

v1bh=v1
vlb−1,h ̸=v1

x1bh,j.

The value of Wh(J|x′) is maximized when the vertices included in J are ordered in h′ as in h. In Lemma 4.3, we introduce an
upper bound on Wh(J|x′). This result is then used in Proposition 4.4 to show that Wh(x′) ≤ 0 when Rh′ = {Rh \ J}, where
J = {vk1 , . . . , vkq}, 1 ≤ q ≤ |Rh| − 2, and vki ≠ v1 for all 1 ≤ i < q. Subsequently, in Proposition 4.5 we show that if h is
compatible with h′, thenWh(x′) = 1.

Lemma 4.3. Let x̄ be a solution satisfying constraints (2), (3), (5) and (6) and let x′ be a feasible solution to the VRPSD. Let h be
a partial route of x̄ and let J = {vk1 , . . . , vkq}, where 1 ≤ q ≤ |Rh| − 2, and vk1 ≠ v1 for all 1 ≤ i < q. Then Wh(J|x′) ≤

3(|J| − 1) + 2.

Proof. We observe that
b

r=1


(vi,vj)∈Srh∩J

vi ̸=v1

3x′
ij

b−1
r=1


vi,vj∈Ur

h∩J

3x′
ij +

b−1
r=1


vj∈Ur

h∩J
vlrh ̸=v1

3x′

lrh,j +

b
r=2


vj∈Ur−1

h ∩J
v1rh ≠v1

3x′

1rh,j ≤ 3(|J| − 1),

where the equality holds if J is ordered in h′

1 as in h. Furthermore,
(v1,vj)∈S1h∩J∪{v1}

x′
1j +


(v1,vj)∈Sbh∩J∪{v1}

x′
1j +


vj∈U1

h∩J
vl1h=v1

x′

l1h,j +


vj∈Ub−1
h ∩J

v1bh=v1
vlb−1,h ≠v1

x′

1bh,j ≤ 2,

where the equality holds if Gh(x̄1,k11) > 0 and Gh(x̄1,k1q) > 0. Therefore,

Wh(J|x′) ≤ 3(|J| − 1) + 2. �

We note that for any partition J = {J1, J2, . . .} we haveWh(J|x′) ≥


i Wh(Ji|x′). Therefore, Lemma 4.3 implies thatWh(J|x′)
is maximized when the vertices of J appear in a single route and are ordered as in h.

Proposition 4.4. Let x̄ be a solution satisfying constraints (2), (3), (5) and (6) and let x′ be a feasible solution to the VRPSD. Let
h be a partial route of x̄ and let h′ be a route of x′. Let Rh′ = {Rh \ J}, where J = {vk1 , . . . , vkq}, 1 ≤ q ≤ |Rh| − 2, and v1 ≠ vki
for all 1 ≤ i < q. Then Wh(x′) ≤ 0.
Proof. Let {R′

h \ v1} = {vk′1
, . . . , vk′l

}. We recall that Wh(Rh|x̄) = 3(|Rh| − 2) + 2. As in Lemma 4.3, the value Wh(Rh′ |x′) is
maximized if all vertices in Rh′ \ {v1} are ordered in h′ as in h. Therefore,

Wh(Rh′ |x′) ≤ 3(|Rh′ | − 2) + 2,

where the equality holds if R′

h \ {v1} is ordered in x′ ordered as in h, Gh(x̄1,k11) > 0 and Gh(x̄1,k1q) > 0. Since in x′ there is no
edge connecting a customer vertex of Rh′ to J , then

Wh(Rh′ ∪ J|x′) = Wh(Rh′ |x′) + Wh(J|x′).

In Lemma 4.3 we have shown thatWh(J|x′) ≤ 3(|J| − 1) + 2. Therefore,

Wh(Rh′ |x′) + Wh(J|x′) ≤ 3(|Rh′ | − 2) + 2 + 3(|J| − 1) + 2
≤ 3(|Rh| − 3) + 4
≤ 3(|Rh| − 2) + 1.

Since,Wh(Rh|x̄) − Wh(Rh′ ∪ J|x′) ≥ 1, we conclude thatWh(x′) ≤ 0. �

We now proceed to show thatWh(x′) = 1 if h′ contains exactly the same vertices as h, and these are ordered in h′ as h.

Proposition 4.5. Let x̄ be a solution satisfying constraints (2), (3), (5) and (6) and let x′ be a feasible solution to the VRPSD. Let
h be a partial route of x̄ and let h′ be a route of x′. Then Wh(x′) = 1 if Rh′ = Rh and the vertices in h′ are ordered as in h.
Proof. Proposition 4.4 states thatWh(x′) ≤ 0 for Rh′ = {Rh \ J} where 1 ≤ |J| ≤ |Rh| − 2. Next we show thatWh(x′) ≤ 0 for
Rh′ = {Rh ∪ J}. Let J = {vk1}. We distinguish between the following two cases:
(1) x′

1,k1
= 1, then

b
r=1


(vi,vj)∈Srh∩Rh′

vi ̸=v1

3x′
ij +

b−1
r=1


vi,vj∈Ur

h∩Rh′

3x′
ij +

b−1
r=1


vj∈Ur

h∩Rh′
vlrh ̸=v1

3x′

lrh,j +

b
r=2


vj∈Ur−1

h ∩Rh′
v1rh ̸=v1

3x′

1rh,j ≤ 3(|Rh| − 2),

where the equality holds if all vertices in Rh are ordered in x′ as in h. Furthermore,
(v1,vj)∈S1h∩Rh′

x′
1j +


(v1,vj)∈Sbh∩Rh′

x′
1j +


vj∈U1

h∩Rh′
vl1h=v1

x′

l1h,j +


vj∈Ub−1
h ∩Rh′

v1bh=v1
vlb−1,h ̸=v1

x′

1bh,j ≤ 1.

This inequality stems from the fact that x′

1,ik
= 1.

(2) x′

i,k1
= 1, where vi ∈ {Rh \ v1}. This entails that the vertices in Rh are not ordered in h′ as in h and therefore,

b
r=1


(vi,vj)∈Srh∩Rh′

vi ̸=v1

3x′
ij +

b−1
r=1


vi,vj∈Ur

h∩Rh′

3x′
ij +

b−1
r=1


vj∈Ur

h∩Rh′
vlrh ̸=v1

3x′

lrh,j +

b
r=2


vj∈Ur−1

h ∩Rh′
v1rh ̸=v1

3x′

1rh,j ≤ 3(|Rh| − 3)

and 
(v1,vj)∈S1h∩Rh′

x′
1j +


(v1,vj)∈Sbh∩Rh′

x′
1j +


vj∈U1

h∩Rh′
vl1h=v1

x′

l1h,j +


vj∈Ub−1
h ∩Rh′

v1bh=v1
vlb−1,h ̸=v1

x′

1bh,j ≤ 2.

We conclude that for J = {vk1},

Wh(Rh′ |x′) ≤ 3(|Rh′ | − 2) + 1.

When J = {vk1 , . . . , vkq} and q ≥ 2,Wh(Rh′ |x′) is also bounded above by 3(|Rh|−2)+1. This bound is reachedwhen x′

1,kq = 1,
x′

ki,ki+1
= 1 for all 1 ≤ i < q, and all vertices in Rh are ordered in h′ as in h. Thus, we infer thatWh(Rh′ |x′) ≤ 3(|Rh| − 2) + 1.

Since, Wh(Rh|x̄) − Wh(Rh′ |x′) ≥ 1, we conclude that Wh(x′) ≤ 0 for Rh = {Rh′ \ J} and q ≥ 1. Any case for which |J1| ≥ 1,
|J2| ≥ 1 and Rh′ = {Rh \ J1} ∪ J2, where J1 ⊂ Rh and {J2 ∩ Rh} = ∅, will be a combination of the cases presented above and
of the ones presented in Proposition 4.4, yielding Wh(x′) ≤ 0. Finally it is straightforward to show that Wh(x′) = 1 when
Rh′ = Rh and all customer vertices are ordered in h′ as in h. �

4.2.3. Valid inequality
We recall that Θ is a lower bound on the cost of recourse, L is the lower bound on Θ defined in Step 0 of the integer

L-shaped algorithm, and P is defined by Eq. (13).

Proposition 4.6. Let x̄ be a solution satisfying constraints (2), (3), (5) and (6). The constraint

Θ ≥ L + (P − L)


r

h=1

Wh(x̄) − r + 1


(15)

is a valid inequality for the (VRPSD).

Proof. Let x′ be a feasible solution to the VRPSD. It follows from Proposition 4.5 thatWh(x′) = 1 if partial route h is compat-
ible with a route h′ in x′, otherwise Wh(x) ≤ 0. Therefore,

r
h=1 Wh(x′) = r if x̄ is compatible with x′. If x̄ is not compatible

with x′, then
r

h=1 Wh(x) ≤ r−1.We conclude that
f

h=1 Wh(x′)−r+1 = 1 if x̄ is compatiblewith x′, and
f

h=1 Wh(x′)−r+
1 ≤ 0 otherwise. Therefore, inequality (15) reduces toΘ ≥ P for

f
h=1 Wh(x′)−r+1 = 1, and is redundant otherwise. �

4.3. Three special cases of the lower bounding functional

Various LBFs can be obtained by applying different aggregation strategies on the connected components along the partial
route. In this paperwe are interested in the three particular structures illustrated in Fig. 2. In the following three special cases,
we define different structures yet the lower bound P and the lower bounding functional defined earlier remain unchanged.

4.3.1. α-routes
The partial routes originally proposed by Hjorring and Holt [13] correspond to our α-routes. A standard partial route

is made up of three components: two chains (b = 2) connected by one unstructured component, which may or may not
include chains (Fig. 2(a)). The two CVSs are denoted by S1h and S2h ; in addition the UVS is equal to U1

h . In this case Wh(x) is
defined by (14).

4.3.2. β-routes
The β-route depicted in Fig. 2(b) is an alternation of b chains and b − 1 UVSs, where b ≥ 2. The functional Wβ

h applied
in this case is identical toWh. Defining Pβ

h and Pα
h as Ph adapted to α-routes and β-routes, respectively, the relationship be-

tween the proposed partial routes is Pβ

h ≥ Pα
h . This stems from the fact thatwhen compared to Pα

h , the lower bound Pβ

h better
exploits the specificity of h because it is computed by making use of all sequences present in that partial route. However,
the LBF computed withWβ

h will be active on a smaller solution space, when compared toWα
h .

4.3.3. γ -routes
In order to define γ -routes, we first consider the same structure as for β-routes, i.e., an alternating sequence of b chains

and b − 1 unstructured components. We then consider each chain as an unstructured component to yield a sequence of
2b − 1 UVSs but no chains (Fig. 2(c)). The articulation points remain unchanged.

Defining the Pγ

h as the lower bound Ph adapted to γ -routes and using the same argument as in Section 4.3.2, one observes
that Pβ

h ≥ Pα
h ≥ Pγ

h . Again, the LBF computed with W γ

h will be active on a larger solution space, when compared to Wα
h

andWβ

h .

Table 1
Parameter combinations used in the experiments.

m n f

2 60, 70, 80 90%, 92.5%, 95%
3 50, 60, 70 85%, 87.5%, 90%
4 40, 50, 60 80%, 82.5%, 85%

5. Exact separation procedure for the lower bounding functional

The exact separation procedure identifies partial routes for a given solution and generates their corresponding bounds
Pλ

=
f+1

h=1 P
λ
h , where λ stands forα, β or γ . This procedure explores the induced graph associatedwith the current solution

in order to detect partial routes, if they exist. For each identified partial route, the procedure provides its associated chains
and UVSs. All vertices not contained in the identified partial routes are grouped in a set used to compute Pr+1. Next we
provide a description of this separation procedure. The two pseudo-codes detailing this procedure are presented in the
Appendix as Algorithm 1 and Algorithm 2. The complexity of Algorithm 2 is O(|E|) since it scans a stack of edges. The
complexity of Algorithm 1 is therefore O(|E|

2) since it calls Algorithm 2 O(|E|) times.
Recall that Laporte et al. [19] proposed a heuristic separation procedure for constraints (15). This procedure determines

α-routes by first initializing sets S1h and S2h with two vertices strongly connected to the depot in the current solution and
then by expanding these sets using a greedy strategy. However, it should be noted that the procedure proposed in Laporte
et al. [19] only applies to α-routes. In order to separate constraints associated with β- and γ -routes described in Section 4,
it is necessary to first identify all chains and unstructured components of the current solution, and then combine them into
partial routes that will become candidates for LBFs.

The pseudo-code of the exact separation procedure we have developed to construct the general partial routes is
summarized in Algorithm 1. This algorithm is called once the separation procedure associated with constraints (15) has
been applied to no avail on the solution of the current subproblem. Algorithm 2 identifies partial routes by first expanding
unstructured vertex sets as much as possible. Once these sets are constructed, then all other vertices assigned to a partial
route are part of chains.

The procedure operates on two types of stacks, one for unstructured vertex sets (U stack), and another one for the chains
(C stack). These stacks serve as temporary buffers that hold vertices until a complete component is identified, i.e., a complete
unstructured vertex set or chain. Once identified, the components are added to a components list and are then used to
construct partial routes if these exist. The vertices that are not contained in the partial routes are stored into set B, which is
used to compute the general lower bound L in constraint (15).

6. Implementation and computational results

The integer L-shaped algorithm was coded in a C++ environment with CPLEX 12.3. All experiments are conducted on an
Intel(R) Xeon(R) CPU X5675 with 12-Core 3.07 GHz and 96 GB of RAM (by using a single thread). The branching procedure
was implemented by using theOOBBpackage developed at the CIRRELT. The separation procedure of the subtour elimination
and capacity constraints (4) was performed using the CVRPSEP package of Lysgaard et al. [22]. These cuts were added as
long as violated constraints were found. The instances were generated based on the same principles as in Laporte et al. [19].
Namely, n vertices were generated in [0, 100]2 following a continuous uniform distribution. Also, five rectangular obstacles
in [20, 80]2 were generated, each having a base of 4 and height of 25, covering 5% of the entire area.

In our instances customer demands ξi follow a normal distribution N (µi, σi) truncated at zero, and all demands are in-
dependently distributed. The coefficient of variation of the demand distribution was set equal to 30%. Let f =

n
i=2 µi/mD

be the average vehicle filling coefficient. Table 1 summarizes the parameter combinations used in our experiments. In each
case, 10 instances were generated for a total of 270 instances. The computation time limit for any given instance was set
to 5 h.

We have performed extensive numerical analyses to assess the performance of the algorithm. Section 6.2 assesses our
separation procedure, whereas Section 6.3, compares several LBF schemes.

6.1. No LBF vs. with LBF

In order to evaluate the added value of introducing LBF cuts, we have compared the algorithmwithout LBF cuts with the
basic LBF implementation using the heuristic separation algorithm proposed by Laporte et al. [19]. The results of the former
algorithm are denoted by no LBF while those of the latter are denoted by LBF0.

Out of the 270 test instances, no LBF solved 56 instances to optimality, while LBF0 solved 99 instances. Table 2 summa-
rizes the experimental results for these instances. The last four columns report average values over the ten instances of each
type. The reported averages at the bottom of the table are weighted averages. All instances solved with no LBF were also
solved with LBF0. Considering these 56 instances the average runtimes for LBF0 are less than half the average runtime for no
LBF. We report average values for the instances solved to optimality. If the algorithm did not solve any of the ten instances
to optimality, then we do not report a value.

Table 2
Results for the instances solved to optimality by both no LBF and LBF0 .

n m f Number of
solved instances

Runtime (min) no
LBF

Runtime (min)
LBF0

Gap no LBF
(unsolved by both) (%)

Gap LFB0
(unsolved by both) (%)

60 2 0.90 6 2.5 10.2 0.3 0.1
60 2 0.93 8 31.9 3.8 0.3 0.2
60 2 0.95 4 59.5 19.8 0.7 0.4
70 2 0.90 6 29.3 6.9 0 0
70 2 0.93 3 3.6 7.2 0.4 0.4
70 2 0.95 1 19.1 7.1 0.9 0.7
80 2 0.90 6 2.8 3.5 0.1 0.1
80 2 0.93 4 69.8 65.9 0.8 0.7
80 2 0.95 0.9 0.7
50 3 0.85 3 7.1 0.7 1.1 0.2
50 3 0.88 1 0.4 0.5 1.7 0.6
50 3 0.90 2 1.2
60 3 0.85 3 11.4 2.2 1.1 0.5
60 3 0.88 1.4 0.8
60 3 0.90 1.5 1.2
70 3 0.85 2 5.4 1.4 1.2 1.2
70 3 0.88 1 115.8 33.7 1.4 1.1
70 3 0.90 2.1 2.1
40 4 0.80 3 33.5 2.7 2.2 1.3
40 4 0.82 2 8.6 0.6 2 1.9
40 4 0.85 2.7 2
50 4 0.80 2 69.3 26.8 2.1 1.8
50 4 0.82 1.5 1.5
50 4 0.85 2.3 2.5
60 4 0.80 2.6 1.4
60 4 0.82 1 34.2 94.2 1.3 1.2
60 4 0.85 2.6 2.6

Average 26.5 13 1.6 1.3
Total 56

6.2. Heuristic vs. exact separation procedure

In order to evaluate the added value of incorporating the exact separation procedure, we have compared the performance
of the heuristic separation algorithm proposed by Laporte et al. [19] with the exact separation procedure of Section 5. The
results of the former algorithm are denoted by LBF0 while those of the latter are denoted by LBFα .

Out of the 270 test instances, LBF0 and LBFα solved 99 to optimality. Table 3 summarizes the experimental results for
these instances. The last four columns report average values over the ten instances of each type. The reported averages at
the bottom of the table are weighted averages. The number of instances solved decreases with the number of vehicles, for
example, 49 out 90 instances with two vehicles were solved to optimality while only 15 instances with four vehicles were
solved to optimality. Similarly, the number of solved instances decreases with the average filling coefficient. The runtime
for the instances solved by both LBF0 and LBFα , is lower for LBFα when compared to LBF0. The last two columns of Table 3
report the gaps for instances unsolved by both LBF0 and LBFα . For these cases the average gap of LBFα is 1.28% while that of
LBF0 is 1.29%.

6.3. Comparative assessment of the lower bounding functionals

We now assess and compare the performance of the three families of LBFs using the exact separation procedure. We
present six experimental settings. The first three correspond to α-routes, β-routes, and γ -routes. In the fourth set, α-route
and β-route LBFs are added simultaneously: these are denoted by LBFαβ . Similarly, in the fifth set we present experiments
for LBFβγ . Finally, we combine the three options in the experimental set LBFαβγ .

Table 4 summarizes the number of instances solved for each of the three routes types, and three of their combinations.
When using a single type of partial route, the γ -routes solve the largest number of instances when compared to α- and
β-routes. Although LBFγ yields aweak lower bound, the corresponding cuts are active on a larger solution space,which leads
to overall better results in terms of the number of solved instances. In contrast, LBFβ solves the least number of instances
to optimality, and LBFβ yields the strongest lower bound. Yet their corresponding cuts are active on a smaller subset of the
solution space, which translates into the exact solution of fewer instances. However, using LBFβ in conjunction with LBFγ

(combination LBFβγ) yields results that are superior to those achieved by LBFβ alone in terms of the number of instances
solved to optimality. Table 5 summarizes the runtimes for the solved instances for all experimental settings. On average
LBFαβγ has relatively large runtimes.

Table 6 presents the average gaps for the unsolved instances. All algorithms achieved an average gap of less than 1.5%.
The table shows that the gaps increase with the number of vehicles. A similar observation can be made by considering the

Table 3
Results for the instances solved to optimality by both LBF0 and LBFα .

n m f Number of solved
instances

Runtime
(min) LBF0

Runtime
(min) LBFα

Gap LBF0
(unsolved by both) (%)

Gap LFBα

(unsolved by both) (%)

60 2 0.90 8 39.5 39.3 0.1 0.1
60 2 0.93 9 4.3 4.4 0.2 0.2
60 2 0.95 4 19.8 21.9 0.4 0.4
70 2 0.90 10 11.9 11.6
70 2 0.93 3 7.2 7 0.4 0.4
70 2 0.95 2 103.1 100.8 0.7 0.7
80 2 0.90 8 23.6 22.8 0.1 0.1
80 2 0.93 5 104 101.7 0.7 0.7
80 2 0.95 0.7 0.7
50 3 0.85 7 57.3 57.1 0.2 0.3
50 3 0.88 6 103.4 101.9 0.6 0.6
50 3 0.90 2 23.4 23.9 1.2 1.2
60 3 0.85 5 23.1 22.4 0.5 0.5
60 3 0.88 3 68.5 66.5 0.8 0.8
60 3 0.90 2 113.2 110.9 1.2 1.2
70 3 0.85 8 9.6 9.5 1.2 1.2
70 3 0.88 2 24.3 26.6 1.1 1.1
70 3 0.90 2.1 2.1
40 4 0.80 3 2.7 2.7 1.3 1.3
40 4 0.82 4 15 14.3 1.9 1.9
40 4 0.85 1 12.6 12.8 2.0 2.0
50 4 0.80 4 46.4 49.2 1.8 1.8
50 4 0.82 1 56.6 60.7 1.5 1.5
50 4 0.85 2.5 2.3
60 4 0.80 1 174 158.3 1.4 1.4
60 4 0.82 1 94.2 102.1 1.2 1.2
60 4 0.85 2.6 2.5

Average 38.6 38.3 1.3 1.3
Total 99

Table 4
Number of solved instances to optimality for several families of partial routes.

n m f LBFα LBFβ LBFγ LBFαβ LBFβγ LBFαβγ

60 2 0.90 8 6 10 7 10 10
60 2 0.93 9 9 9 9 9 9
60 2 0.95 4 4 5 4 6 6
70 2 0.90 10 10 10 10 10 10
70 2 0.93 3 3 5 3 5 5
70 2 0.95 2 2 2 1 2 2
80 2 0.90 8 6 9 8 9 9
80 2 0.93 5 3 4 3 4 4
80 2 0.95 0 0 0 0 0 0
50 3 0.85 7 7 8 6 6 7
50 3 0.88 6 6 6 4 5 4
50 3 0.90 2 2 2 2 1 1
60 3 0.85 5 5 5 5 6 5
60 3 0.88 3 3 1 3 1 1
60 3 0.90 2 2 0 1 1 0
70 3 0.85 8 8 7 8 7 7
70 3 0.88 2 2 2 2 2 2
70 3 0.90 0 0 0 0 0 0
40 4 0.80 3 4 4 4 4 4
40 4 0.82 4 4 4 4 5 5
40 4 0.85 1 1 1 1 1 1
50 4 0.80 4 4 4 4 4 4
50 4 0.82 1 1 1 1 0 1
50 4 0.85 0 0 0 0 0 0
60 4 0.80 1 1 1 0 1 1
60 4 0.82 1 1 2 1 1 1
60 4 0.85 0 0 0 0 0 0

Total 99 94 102 91 100 99

Table 5
Runtimes in minutes of the solved instances to optimality for several families of partial
routes.

n m f LBFα LBFβ LBFγ LBFαβ LBFβγ LBFαβγ

60 2 0.90 39.3 32 42.1 43.0 44.1 48.2
60 2 0.93 4.4 7.8 4.3 8.3 3.2 3.5
60 2 0.95 21.9 29.5 19.5 29.3 74.7 56.1
70 2 0.90 11.6 31.4 18.9 19.7 7.4 6.3
70 2 0.93 7.0 12.9 84.5 13.3 68 83
70 2 0.95 100.8 121.7 59.4 10.0 25.3 44.6
80 2 0.90 22.8 3.8 34.0 21.8 41.5 45.3
80 2 0.93 101.7 11.4 21.5 8.1 23.4 24.8
80 2 0.95
50 3 0.85 57.1 72.4 103.5 43.6 78.1 85.0
50 3 0.88 101.9 107 110.6 51.5 82.4 73.9
50 3 0.90 23.9 95.3 176.6 29.1 255.5 291.2
60 3 0.85 22.4 33.6 39.5 39.9 46.8 89.7
60 3 0.88 66.5 80.3 79.1 116.4 256.6 171
60 3 0.90 110.9 95.8 23.9 275.1
70 3 0.85 9.5 23.5 25.6 17.2 42.2 38.1
70 3 0.88 26.6 29.3 41.9 30.8 70.7 75.9
70 3 0.90
40 4 0.80 2.7 63.5 21.4 69.0 24.3 30.9
40 4 0.82 14.3 14.8 11.3 22.5 52.1 57.3
40 4 0.85 12.8 12.7 55.3 15.1 21.6 29.7
50 4 0.80 49.2 61.9 25 64.5 21.4 20.9
50 4 0.82 60.7 47.0 13.4 65.9 16.7
50 4 0.85
60 4 0.80 158.3 174.3 94.5 133.7 139.8
60 4 0.82 102.1 91.5 75.8 37.2 67.3 63.8
60 4 0.85

Average 38.3 43.7 45.2 32.7 49 49.4

Table 6
Optimality gaps of the unsolved instances for several families of partial routes.

m n f LBFα

(%)
LBFβ

(%)
LBFγ

(%)
LBFαβ

(%)
LBFβγ

(%)
LBFαβγ

(%)

60 2 0.90 0.1 0.2 0.2
60 2 0.93 0.2 0.3 0.1 0.3 0.1 0.2
60 2 0.95 0.4 0.5 0.4 0.5 0.5 0.5
70 2 0.90
70 2 0.93 0.4 0.5 0.2 0.4 0.3 0.3
70 2 0.95 0.7 0.8 0.7 0.7 0.7 0.7
80 2 0.90 0.1 0.2 0.1 0.1 0.1 0.1
80 2 0.93 0.7 0.6 0.5 0.6 0.5 0.5
80 2 0.95 0.7 0.8 0.6 0.8 0.6 0.6
50 3 0.85 0.3 0.5 0.2 0.3 0.4 0.3
50 3 0.88 0.6 0.7 0.3 0.4 0.8 0.7
50 3 0.90 1.2 1.1 1 1.2 1.3 1.3
60 3 0.85 0.5 0.7 0.5 0.6 0.8 0.6
60 3 0.88 0.8 0.8 0.7 0.8 0.6 0.7
60 3 0.90 1.2 1.2 0.8 1.1 0.9 0.8
70 3 0.85 1.2 0.9 0.5 0.9 0.6 0.6
70 3 0.88 1.1 1 1.1 1.1 1.4 1.4
70 3 0.90 2.1 2 2.2 2 2.4 2.4
40 4 0.80 1.3 1.5 1.3 1.6 1.7 1.7
40 4 0.82 1.9 1.7 0.7 1.9 1.1 1.4
40 4 0.85 2 2.2 2.1 2.1 2.9 2.6
50 4 0.80 1.8 1.8 1.7 1.9 1.7 1.7
50 4 0.82 1.5 1.6 1.4 1.6 2 2
50 4 0.85 2.3 2.6 2.4 2.8 2.5 2.5
60 4 0.80 1.4 1.7 1.4 1.5 1.4 1.2
60 4 0.82 1.2 1.2 1.9 1.3 1.8 1.8
60 4 0.85 2.5 2.3 2.6 2.4 3.2 3

Average 1.3 1.3 1.2 1.3 1.4 1.4

Table 7
Cumulative percentage of instances solved for several ranges of gaps.

Range LBF0
(%)

LBFα

(%)
LBFβ

(%)
LBFγ

(%)
LBFαβ

(%)
LBFβγ

(%)
LBFαβγ

(%)

= 0% 36.7 36.7 34.8 38.1 33.7 37 37
≤ 1% 70.4 70.4 67.8 76.7 68.5 70.7 71.9
≤ 3% 93.7 93.7 94.4 93 93.3 90.4 90.7
≤ 5% 99.6 99.6 99.3 98.1 99.3 97 97
≤ 7% 100 100 100 100 100 100 100

Table 8
Results for the instances solved by both LBF0 and LBFγ .

Average % of instances
LBF0 LBFγ LBF0 − LBFγ LBF0> LBFγ

Runtime (min) 29.5 31.1 −1.5 64.4%
Subtour elimination and capacity constraints (4) 1285.0 1933.7 −648.7 15.6%
Total LBF cuts 1125.1 126.5 998.6 90.0%
Optimality cuts (10) 283.2 507.2 −224.0 30.0%

total number of instances solved in Table 4. Although LBFβ solved the least number of instances to optimality, it yielded a
relatively low average gap. This is partly due to the fact that LBFβ yields low gaps on instances solved to optimality by other
combinations.

We have computed in Table 7 the cumulative percentage of instances solved for several ranges of gaps. For example,
94.4% of the 270 instances solved with LBFβ had a gap of at most 3%. Similarly we observe that LBF0 solves more than 99.6%
of the instances with a gap under 5%, indicating that while the exact separation procedure helped to solve a larger number
of instances to optimality, the heuristic separation procedure yielded a relatively low variability in the distribution of the
resulting gaps.

Finally, in Table 8 we compare several solution characteristics for instances solved by both LBF0 and LBFγ , the latter
representing the best solution strategy in terms of the number of solved instances. In total 90 instances were solved to
optimality by both LBF0 and LBFγ , and an additional 12 instances were solved to optimality only by LBFγ . The runtime of
the instances solved by LBFγ is 1.5 min longer than that of LBF0, yet in 58 out of the 90 instances the runtime for LBF0 was
longer than that of LBFγ . The instances solved by LBF0 required on average 648.7 fewer subtour elimination and capacity
constraints. The third line of Table 7 compares the total number of LBF cuts produced by LBFγ and LBF0. We observe that on
average 998.6 additional LBF cuts were added per instance in LBF0. Furthermore, the number of optimality cuts added by
LBFγ is on average only 224 more than the corresponding number for LBF0.

7. Conclusions

Wehave developed an exact algorithm for the vehicle routing problemwith stochastic demands. It extends and improves
the integer L-shaped algorithm of Laporte et al. [19] by generalizing the lower bounding functional introduced by these
authors and by separating them exactly. The proposed LBFs stem from a generalization of the concept of a partial route
originally proposed by Hjorring and Holt [13]. Extensive computational experiments have shown that some combinations
of the proposed LBFs outperform the classical version. As a result, on a set of 270 benchmark instances the number of solved
instances to optimality increases from 99 to 102.

Our experiments have shown that the exact separation procedure solved a larger number of instances to optimality
compared with the heuristic version of Laporte et al. [19]. Using our algorithm the largest instances solved with normally
distributed demands contain 60 vertices and four vehicles, or 80 vertices and two vehicles. Our success can be attributed to
the use of new LBFs which substantially reduce the number of cuts added to the relaxed problem. Our results also indicate
that the overall performance of LFBγ is better than that of LFBβ , implying that in our instances a weaker lower bound active
on a larger solution space outperforms a stronger bound restricted to a smaller space.

This study can be extended in a number of ways. First, the generalization of a partial route may lead to the development
of other families of LBFs by using different aggregation mechanisms for chains and unstructured components. Second, the
LBFs we have developed can potentially be incorporated within exact algorithms applicable to the solution of other types
of stochastic routing problems involving, for example, different recourse functions or other stochastic features.

Acknowledgments

Thanks are due to Serge Bisaillon for his outstanding assistance with the implementation of the algorithm and
Marco Veneroni for his valuable comments. This research was partly supported by the Canadian Natural Sciences and

Engineering Research Council under grants 436014-2013, 338816-10, 39682-10, and 227837-04. This support is gratefully
acknowledged.

Appendix. Pseudo-codes for the separation procedure

Algorithm 1 Partial route separation procedure
1: consider all edges of the current solution
2: repeat
3: if there exists an integer edge from the depot, not already visited in the C stack then
4: initialize C stack with depot
5: else
6: initialize U stack with depot
7: end if
8: repeat
9: if U stack is not empty then
10: generate an unstructured vertex set from the first vertex of the U stack.
11: remove vertex from U stack iteratively while adding sequentially all adjacent edges with fractional values linked to it. If integer edges are encountered

fill C stack with the connected vertices
12: if there is only one vertex in the U stack that is not the depot then
13: then transfer vertex to the C stack
14: end if
15: if two chains or more are coming out of the U stack then
16: expand unstructured vertex set by Algorithm 2
17: end if
18: end if
19: repeat
20: if C stack is not empty then
21: generate chain from solution by sequentially adding and iteratively removing vertices that are connected by integer edges and putting fractional

edges in U stack.
22: insert chain into component list and remove from C stack
23: end if
24: until C stack is empty
25: if current U stack contains the depot or has at least two elements then
26: insert unstructured vertex set into component list and remove from U stack
27: end if
28: until both stacks are empty
29: if the number of vehicles involved equals one and the U stack and C stack are empty then
30: current sequence of components induces a partial route
31: end if
32: if number of vehicles involved is greater than one then
33: the identified structure is not a partial route
34: merge all components and place all vertices into the L component
35: end if
36: until all edges have been processed

Algorithm 2 Expanding unstructured component
1: repeat
2: repeat
3: generate chain from solution by sequentially adding and iteratively removing vertices that are connected by integer edges and putting fractional edges in

U stack.
4: if segment contains depot then
5: insert segment into component list
6: else
7: insert segment into expanded unstructured vertex set
8: end if
9: until C stack is empty
10: repeat
11: generate an unstructured vertex set from the first vertex of the U stack.
12: remove vertex from U stack iteratively while adding sequentially all adjacent edges with fractional values linked to it. If integer edges are encountered fill

C stack with the connected vertices
13: if current unstructured vertex set contains the depot or has at least two elements then
14: insert current unstructured vertex into the expanded unstructured vertex set
15: end if
16: until U stack is empty
17: until one chain coming out of the U expanded unstructured vertex set

References

[1] A. Ak, A. Erera, A paired-vehicle recourse strategy for the vehicle-routing problem with stochastic demands, Transp. Sci. 41 (2) (2007) 222–237.
[2] R. Baldacci, A. Mingozzi, R. Roberti, New route relaxation and pricing strategies for the vehicle routing problem, Oper. Res. 59 (5) (2011) 1269–1283.
[3] J.F. Benders, Partitioning procedures for solving mixed-variables programming problems, Numer. Math. 4 (1962) 238–252.

http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref1
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref2
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref3

[4] D.J. Bertsimas, A vehicle routing problem with stochastic demand, Oper. Res. 40 (3) (1992) 574–585.
[5] D.J. Bertsimas, Probabilistic combinatorial optimization problems (Ph.D. thesis), Operations Research Center, Massachusetts Institute of Technology,

1988.
[6] D.J. Bertsimas, P. Jaillet, A.R. Odoni, A priori optimization, Oper. Res. 38 (6) (1999) 1019–1033.
[7] C.H. Christiansen, J. Lysgaard, A branch-and-price algorithm for the capacitated vehicle routing problem with stochastic demands, Oper. Res. Lett. 35

(6) (2007) 773–781.
[8] J.-F. Cordeau, G. Laporte, J.-Y. Potvin, M.W.P Savelsbergh, Transportation, in: Handbooks in Operations Research and Management Science, Elsevier,

Amsterdam, 2007, pp. 367–428.
[9] M. Gendreau, G. Laporte, R. Séguin, An exact algorithm for the vehicle routing problem with stochastic demands and customers, Transp. Sci. 29 (2)

(1995) 143–155.
[10] M. Gendreau, G. Laporte, R. Séguin, A tabu search heuristic for the vehicle routing problem with stochastic demands and customers, Oper. Res. 44 (3)

(1996) 469–477.
[11] B.L. Golden, S. Raghavan, E.A. Wasil, The Vehicle Routing Problem: Latest Advances and New Challenges, Springer, New York, 2008.
[12] J.C. Goodson, J.W. Ohlmann, B.W. Thomas, Cyclic-order neighborhoods with application to the vehicle routing problem with stochastic demand,

European J. Oper. Res. 217 (2) (2012) 312–323.
[13] C. Hjorring, J. Holt, New optimality cuts for a single-vehicle stochastic routing problem, Ann. Oper. Res. 86 (1999) 569–584.
[14] P. Jaillet, A priori solution of a traveling salesman problem in which a random subset of the customers are visited, Oper. Res. 36 (6) (1978) 929–936.
[15] A. Juan, J. Faulin, S. Grasman, D. Riera, J. Marull, C. Mendez, Using safety stocks and simulation to solve the vehicle routing problem with stochastic

demands, Transp. Res. C 19 (5) (2011) 751–765.
[16] V. Lambert, G. Laporte, F.V. Louveaux, Designing collection routes through bank branches, Comput. Oper. Res. 20 (7) (1993) 783–791.
[17] G. Laporte, Fifty years of vehicle routing, Transp. Sci. 43 (4) (2009) 408–416.
[18] G. Laporte, F.V. Louveaux, The integer L-shapedmethod for stochastic integer programswith complete recourse, Oper. Res. Lett. 13 (3) (1993) 133–142.
[19] G. Laporte, F.V. Louveaux, L. Van hamme, An integer L-shaped algorithm for the capacitated vehicle routing problem with stochastic demands, Oper.

Res. 50 (3) (2002) 415–423.
[20] H. Lei, G. Laporte, B. Guo, The capacitated vehicle routing problem with stochastic demands and time windows, Comput. Oper. Res. 38 (12) (2011)

1775–1783.
[21] F.V. Louveaux, An introduction to stochastic transportation models, in: M. Labbé, G. Laporte, K. Tanczos, P. Toint (Eds.), Operations Research and

Decision Aid Methodologies in Traffic and Transportation Management, in: NATO ASI Series, Series F: Computer and Systems Sciences, Springer-
Verlag, Berlin and Heidelberg, 1998, pp. 244–263.

[22] J. Lysgaard, A.N. Letchford, R.W. Eglese, A new branch-and-cut algorithm for the capacitated vehicle routing problem, Math. Program. 100 (2) (2004)
423–445.

[23] K. Chepuri, T. Homem de Mello, Solving the vehicle routing problem with stochastic demands using the cross entropy method, Ann. Oper. Res. 134
(2005) 153–181.

[24] W. Rei, M. Gendreau, P. Soriano, A hybrid monte carlo local branching algorithm for the single vehicle routing problem with stochastic demands,
Transp. Sci. 44 (1) (2010) 136–146.

[25] N. Secomandi, F. Margot, Reoptimization approaches for the vehicle-routing problem with stochastic demands, Oper. Res. 57 (1) (2009) 214–230.
[26] I. Sungur, F. Ordóñez, M. Dessouky, A robust optimization approach for the capacitated vehicle routing problem with demand uncertainty, IIE Trans.

40 (2008) 509–523.
[27] P. Toth, D. Vigo (Eds.), The vehicle routing problem, SIAMMonographs on Discrete Mathematics and Applications, Philadelphia, 2002.
[28] R.M. Van Slyke, R. Wets, L-shaped linear programswith applications to optimal control and stochastic programming, SIAM J. Appl. Math. 17 (4) (1969)

638–663.
[29] W.-H Yang, K. Mathur, R.H. Ballou, Stochastic vehicle routing problem with restocking, Transp. Sci. 34 (3) (2000) 99–112.

http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref4
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref5
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref6
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref7
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref8
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref9
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref10
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref11
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref12
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref13
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref14
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref15
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref16
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref17
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref18
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref19
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref20
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref21
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref22
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref23
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref24
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref25
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref26
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref27
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref28
http://refhub.elsevier.com/S0166-218X(14)00255-8/sbref29

	Partial-route inequalities for the multi-vehicle routing problem with stochastic demands
	Introduction
	Model and algorithmic framework
	The VRPSD model
	The integer L -shaped algorithm

	General partial routes
	Lower bounding functionals
	Lower bound on the cost of recourse
	Computation of the lower bounding functional
	Description of Wh (x)
	Extension of Wh (x) onto the solution space
	Valid inequality

	Three special cases of the lower bounding functional
	 α -routes
	 β -routes
	 γ-routes

	Exact separation procedure for the lower bounding functional
	Implementation and computational results
	No LBF vs. with LBF
	Heuristic vs. exact separation procedure
	Comparative assessment of the lower bounding functionals

	Conclusions
	Acknowledgments
	Pseudo-codes for the separation procedure
	References

