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Abstract

In this paper, a simulation-based method for the analysis and design of abstracted models for a stochastic hybrid system is
proposed. The accuracy of a model is evaluated in terms of its capability to reproduce the system output for all the realizations
of the stochastic input except for a set of (small) probability ε (ε-abstraction). This naturally leads to chance-constrained
optimization problems, which are here tackled by means of a recently developed randomized approach. The main thrust of
this paper is that, by testing how close the model and system outputs are over a finite number N of input realizations only,
conclusions can be drawn about the model capability as an ε-abstraction. The key feature of the proposed method is its high
versatility since it does not require specific assumptions on the system to be approximated. The only requirement is that of
being able to run multiple simulations of the system behavior for different input realizations.
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1 Introduction

This paper deals with the problem of approximating
a stochastic hybrid system by means of some simpler
model, [23,29,24,1]. Stochastic hybrid systems (SHS)
are characterized by intertwined continuous, discrete,
and stochastic dynamics, and are suitable for model-
ing complex, large scale systems. See e.g. [8,19] for an
overview of applications of SHS to various domains,
such as telecommunication networks, air traffic man-
agement, manufacturing, biology, finance, to mention
a few. The study of SHS is more challenging than for
other classes of systems, and many problems still lack
an effective solution (see, for example, the motivational
paper [26]). In particular, this is the case of analysis and
design of simple models approximating a SHS.
In this paper, we focus on system approximation for
verification purposes. Verification of properties related
to the SHS evolution, like, e.g., safety and reach/avoid
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properties, is typically addressed through numerical
methods involving state-space gridding, [2,3,33], and, as
such, is affected by an exponential growth of the com-
putational effort with the state-space dimension. The
aim of the approximation, then, is to build a model that
mimics the behavior of the original system and that can
be used in place of the system to scale-up numerical
methods for the verification of the property of interest.
In this respect, the notion of approximate stochastic
bi-simulation as introduced in [24,23] is well-suited to
quantify the model performance.
According to this notion, the behavior of system S is
characterized in terms of some output signal yS of in-
terest, while model M is fed with the same stochastic
elements affecting the dynamics of S (stochastic input
and initial state) and generates a signal yM that takes
values in the same domain of yS. The quality of M as an
approximate abstraction of S is quantified through the
maximal distance between the system and the model
outputs over all possible input realizations and initial
conditions except for a set of them of probability ε.
The evaluation of the maximal distance, however, is a
difficult task, computationally demanding in general.
The approach proposed in [24] is based on the quite
general notion of stochastic bi-simulation function, but
is able to provide a computational procedure for specific
classes of SHS only. Moreover, it results in overconser-
vative bounds as shown in the present paper.
The key idea developed in this paper is to assess the
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quality of the approximation by resorting to random-
ized techniques, which are gaining increasing popularity
in the systems and control community. See [13,34] for
comprehensive references on the state of the art of ran-
domized methods in the systems and control field.
The randomized approach proposed in this paper is in
the line of the so-called scenario approach, [10,11,16]. It
basically prescribes to compute the maximal distance
between the system and the model outputs over a fi-
nite number N of realizations of the initial state and of
the stochastic input only. The finiteness of the consid-
ered realizations makes the problem computationally
affordable. In addition, this sample-based approach is
supported by a solid theory: it can be proved that if N
is suitably chosen depending on the desired ε, then the
computed distance bounds with high confidence also the
distances between the outputs of S and M associated
with all the other unseen realizations of the initial state
and of the stochastic input except for a set of proba-
bility ε. This idea was first mentioned in [16] as one of
the possible applications to systems and control design
of the so-called scenario approach for solving chance-
constrained optimization problems. Papers [4,21] put
forward this idea, which is further elaborated here, lead-
ing to a significant improvement in terms of problem
formulation, theoretical and algorithmic developments,
and comparative analysis with the existing approaches.
Differently from the approach based on stochastic bi-
simulation functions in [24], the computational method
here provided returns nonconservative results and is of
general applicability. Indeed, the only assumption on S
is that one should be able to run multiple executions of
it and to determine the corresponding output realiza-
tions. If feasible, one could even run experiments on the
real system without the need of determining a mathe-
matical description and building a simulator for it.
Interestingly, the proposed framework is amenable not
only for the assessment of the approximation quality of
a given model, but also for model design, i.e., for select-
ing the best model in some given parameterized model
class. Indeed, performance assessment and model design
are formulated together in the paper, being the former
a special case of the latter. The problem of selecting the
model class, instead, is not addressed.
The proposed approach should be combined with com-
putational verification techniques to allow for the anal-
ysis of probabilistic safety and reachability properties of
large scale stochastic systems. Admittedly, being based
on simulation and randomization, our approach is con-
fined to properties that depend on the system behavior
over a finite horizon and is guaranteed with a certain
(arbitrarily high though) confidence, while the method
in [24] has not such limitations.

Paper structure: We start by formulating the prob-
lem of approximating a stochastic system S in Section 2,
where we precisely state the issue of assessing the perfor-
mance of a given abstracted model M for S and that of
designing the abstracted model. In Section 3, we develop

our randomized approach for both model design and per-
formance assessment. Special focus is given in Section
3.1 to the performance assessment problem, which can
be efficiently tackled via the scenario approach. In Sec-
tion 3.2 results based on VC theory are also reported
pointing out their possible conservativeness. Section 4
presents a numerical example where the proposed ap-
proach is compared with that in [24]. Some final conclu-
sions are drawn in Section 5.

Notation: Throughout the paper, we use small letters
like s to denote a signal defined over the look-ahead time
horizon [0, T ], and st to denote the value taken by s at
time t ∈ [0, T ]. For each t ∈ [0, T ], st takes value in
the space S. S may be e.g. Rn or, when we are dealing
with hybrid systems and st has both a continuous and
a discrete component, Rn × {1, 2, . . . , q}. S [0,T ] denotes
the set of all signals defined over the time interval [0, T ]
and taking values in S at each time instant t ∈ [0, T ].

2 Problem formulation

System S is described as an operator that maps the ini-
tial state x0 ∈ X and the input signal w ∈ W [0,T ] into
the signal yS of interest: yS = fS(x0, w). Here, x0 and
w are assumed to be stochastic with known probability
measure P. Signal yS takes values in Y [0,T ].
Model M is defined as yM = fM(x0, w), where yM ∈
Y [0,T ], i.e., yM takes values in the same set of yS.
Note that S and M are driven by the same inputs, and
the aim of M is that of approximating the system by
producing an output yM which is close to yS. The fact
that the map fM depends on the initial condition x0 of
S does not mean that the state space of M has the same
size as that of S, but that fM incorporates the mapping
from the initialization of the state of S to the initializa-
tion of the (possibly lower-dimensional) state of M .
To be more concrete, we here introduce the class of Jump
Linear Stochastic Systems (JLSS) and present some ab-
stracted models that can be used to approximate JLSS.

Example 1 (JLSS) Let B be a Brownia motion and
consider a stochastic system S with state xS

t ∈ Rn that
evolves within [0, T ] according to the following Stochastic
Differential Equation (SDE)

dxS

t = AxS

t dt+ FxS

t dBt (1)

in-between the jump times 0 < τ1 < · · · < τi < · · · ≤ T
of a Poisson process P with rate ν > 0. At each jump
time τi, the state is reset according to

xτi = (I +R) lim
s→τ−

i

xs, (2)

where I is the identity matrix and R is a reset matrix. If
R = 0, then, no jump occurs in the state, which evolves
continuously.
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The Brownian motion B is assumed to be independent of
the Poisson process P , while bothB and P are assumed to
be independent of the initial state x0 ∈ X := Rn. In this
context, the stochastic inputw is given by the pair (B,P ),
which takes values inW = R×Z+ at each time t ∈ [0, T ].
The output of interest yS

t takes values in Y = Rp and is
given by

yS

t = CxS

t . (3)

This system is known as Jump Linear Stochastic System
(JLSS) since its evolution between jump times is charac-
terized by a SDE with drift and diffusion terms that are
linear in xS

t , and the state resets at the jump times are
linear in xS

t as well. A JLSS can be seen as a SHS with
a single operating mode characterized by a SDE. When
a (auto)transition occurs, the continuous state is subject
to some deterministic reset and the continuous dynam-
ics keeps unchanged after the transition.
We here present some reduced models that can be used to
approximate a JLSS.
All models are JLSS and are characterized by a jump dif-
fusion process xM

t ∈ Rñ that satisfies the SDE

dxM

t = ÃxM

t dt+ F̃ xM

t dBt, (4)

and is reset according to

xM

τi = (I + R̃) lim
s→τ−

i

xM

s (5)

at the jump times τi > 0 of the Poisson process P . The
model output yM

t ∈ Y is given by

yM

t = C̃xM

t . (6)

Ã, F̃ , R̃, and C̃ are suitably defined matrices, whereas the
initial condition xM

0 is a linear function of x0: xM
0 = Lx0.

A first reduced model can be obtained by taking only a
subset of the state variables xS

t (ñ < n) and setting Ã,

F̃ , R̃, and C̃ equal to suitable sub-matrices of A, F , R,
and C.
Other reduced models can be obtained by maintaining all
the state variables xS

t (ñ = n) and suppressing the con-

tribution either of the Brownian motion B setting F̃ = 0
in (4) or of the Poisson process P setting R̃ = 0 in (5).

The quality of M as an approximation of S is evalu-
ated by looking at the similarity of the output signals
yM and yS. To this purpose, we introduce a quasi-metric
D : Y [0,T ] × Y [0,T ] → R+ to assess how close signal yM

is to yS. For example, letting d be any metric defined
over Y, the metric D(yS, yM) = supt∈[0,T ] d(yS

t , y
M
t ), can

be used whenever we are interested in having yS and
yM close to each other at each time instant. If, other-
wise, we are interested in the distance between trajecto-
ries only, the directional Hausdorff metric can be used

D(yS, yM) = supt∈[0,T ] infτ∈[0,T ] d(yS
t , y

M
τ ). As for the

metric d, it highly depends on the space Y and on the
problem itself. For example, if Y = Rp, then it is custom-
ary to use the Euclidean metric d(yS

t , y
M
t ) = ‖yS

t − yM
t ‖.

If, instead,Y = Rp×{1, 2, . . . , q} so that yt ∈ Y has both
a continuous and a discrete component, say yt = (yct , y

d
t ),

then the metric

d(yS

t , y
M

t ) =

{
+∞ if yS,d

t 6= yM,d
t

‖yS,c
t − y

M,c
t ‖ otherwise.

can be used. The meaning of this metric is that we want
first to check whether S and M are in the same oper-
ation mode, and then, if so, how close the continuous
components of the y variables are.
When evaluating the quality of M as an approximation
of S, we can require either that yM is close to yS for every
and each realization of x0 and w or, alternatively, that
yM is close to yS for all realizations of x0 and w except
a set of them of pre-specified probability ε ∈ (0, 1). This
latter approach is adopted in [24] and presents the ad-
vantage that if there exist some “bad” but quite unlikely
realizations that would over-penalize the performance of
M as an approximation ofS, then, they can be discarded.
Accordingly, we define the notion of ε-abstraction of S
as follows.

Definition 1 Model M is said to be an ε-abstraction of
S with accuracy function h : X → R+ if

P
{
D (yS, yM)

2 ≤ h(x0)
}
≥ 1− ε. (7)

Note that, according to Definition 1,D(yS, yM)2 is upper
bounded by some positive function h(x0) of the initial
condition x0. This is so because in many situations, for
fixed w, different initializations correspond to different
similarity levels of yM and yS (in, e.g., linear stochastic
systems, the larger x0, the worse the similarity between
yM and yS in general), and using a uniform bound would
be too conservative.
In (7) the approximation quality of a model is measured
through h(x0) over a set of realizations of probability
1 − ε. Evidently, the bigger ε, the more h(x0) can be
pushed towards small values, because h(x0) is required to
be an upper bound onD(yS, yM)2 over a smaller fraction
of realizations of x0 and w. However, the approximation
quality assessment in (7) becomes meaningless if ε is
too close to 1, and the probability ε has to be chosen
so as not to penalize accuracy, while leading to sensible
statements on the properties of S through the analysis
of M . This is made more explicit in Remark 1, showing
how the notion of ε-abstraction can be used in system
verification.

Remark 1 Suppose that Y = Rp and the aim is to com-
pute the probability that yS enters an unsafe set U , but,
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due to the complexity of S, this task is not computa-
tionally affordable using e.g. state space gridding meth-
ods on S, [2,3,33]. Suppose that a model M that is an
ε-abstraction of S with accuracy function h(x0) is avail-
able. For each initialization x0, by enlarging U by a width
equal to

√
h(x0), a new set U(x0) is obtained such that,

whenever D (yS, yM)
2 ≤ h(x0), if yS enters U , then yM

enters U(x0). If the abstractionM is simple enough, then
one can actually compute the probability that yM enters
U(x0), and the probability that yS enters U can be upper
bounded as follows:

P {∃t : yS

t ∈ U}
≤ P

{
∃t : yS

t ∈ U |D (yS, yM)
2 ≤ h(x0)

}
·

P
{
D (yS, yM)

2 ≤ h(x0)
}

+ P
{
D (yS, yM)

2
> h(x0)

}
≤ P

{
∃t : yM

t ∈ U(x0)|D (yS, yM)
2 ≤ h(x0)

}
·

P
{
D (yS, yM)

2 ≤ h(x0)
}

+ P
{
D (yS, yM)

2
> h(x0)

}
≤ P

{
∃t : yM

t ∈ U(x0)
}

+ ε. (8)

Note that considering an enlarged set U(x0) whose width
depends on the initialization x0 may prevent the bounding
in (8) to be overconservative.

Given Definition 1 of ε-abstraction, we next address the
problems of assessing the accuracy of a given modelM as
an ε-abstraction and designing an optimal ε-abstraction.
In the case of the assessment of the abstraction perfor-
mance, we suppose that both the operators fS and fM

defining S and M are given and the objective is to as-
sess the accuracy of M as an ε-abstraction of S. In the
design of an optimal abstraction, the operator fM defin-
ing M is no more given and our goal is to choose fM in
some given class so that M is an ε-abstraction of S with
the smallest possible accuracy. Both assessment and de-
sign involve determining an accuracy function h(x0) so
that condition (7) is satisfied. Clearly, the solution of
this problem is not unique, and we are interested in de-
termining the “smallest possible” h(x0) so as to assess
the actual capabilities of the model without introducing
conservatism. Since x0 is stochastic, the expectation of
h(x0) can be taken as a sensible measure of the size of
h(x0) 1 .
If we let the accuracy function and the model class be
respectively parameterized by ϑ and λ, then, model de-
sign can be naturally formulated as the following opti-

1 Note that this is not the only possible choice. One may
head for alternative options, such as minimizing the maxi-
mum of h(x0) over each one of the admissible initial condi-
tions (worst-case approach) or minimizing the value of h(x0)
over all initial conditions except for a set of pre-defined prob-
ability (value-at-risk approach).

mization problem:

min
ϑ,λ

E[hϑ(x0)] (9)

subject to: P
{
D (yS, yM

λ )
2 ≤ hϑ(x0)

}
≥ 1− ε,

where yM

λ is the output of the parametric model. Model
quality assessment can be viewed as a particular case of
problem (9), where the only optimization variable is ϑ.

Remark 2 Note that if one is dealing with model quality
assessment and the accuracy function hϑ(x0) is assumed
to be constant, then problem (9) reduces to

min
h∈R

h

subject to: P
{
D (yS, yM)

2 ≤ h
}
≥ 1− ε,

which was previously considered in [4] and can be seen as
a particular case of our setting.

The optimization problem (9) is called chance-
constrained problem since we have to minimize a cost
function subject to a constraint which holds in proba-
bility. Unfortunately, P {D (yS, yM

λ ) ≤ hϑ(x0)} ≥ 1 − ε
is in general a non-convex constraint even when, for
every fixed realization of x0 and w, the constraint
D (yS, yM

λ ) ≤ hϑ(x0) is convex with respect to the opti-
mization variables. For this reason, chance-constrained
problems are usually hard to solve and, indeed, they
are NP-hard with few exceptions, [31,32]. In the next
section, suitable algorithms aiming at finding an ap-
proximate solution to (9) at low computational cost are
introduced. For the sake of comparison, we first review
the approach proposed in [24], spotting out advantages
and drawbacks.

2.1 The stochastic bi-simulation function method: a
brief review

In [24] a method is proposed for finding a h(x0) which
satisfies the probabilistic constraint (7). This method is
based on the introduction of a so-called stochastic bi-
simulation function and it applies to systems/models
which admits a state-space representation:

xS = φS(x0, w) xM = φM(x0, w)

yS
t = ψS(xS

t ) yM
t = ψM(xM

t )
,

with xS
0 = x0 and xM

0 = l(x0) for some function l.
A stochastic bi-simulation function of S by M is a func-
tion π : X S ×XM → R+ ∪+∞ such that:

1. π(xS
t , x

M
t ) ≥ d(ψS(xS

t ), ψM(xM
t ))2, for any value taken

by xS
t and xM

t ;
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2. the stochastic process π(xS
t , x

M
t ) is a super-martingale.

The interest in stochastic bi-simulation functions lies on
the fact that, once such kind of function is found, then
it is easy to prove that

P

{(
sup
t≥0

d(yS

t , y
M

t )

)2

≤ π(x0, l(x0))

ε

}
≥ 1− ε, (10)

i.e. M is an ε-abstraction of S according to the
the supt≥0 d(yS

t , y
M
t ) metric with accuracy function

π(x0,l(x0))
ε .

Plainly, a main issue then is that of finding a stochastic
bi-simulation function for given S and M . In [24], this
problem is tackled for two classes of systems/models,
namely the JLSS described in Example 1 and the Linear
Stochastic Hybrid Automata (LSHA). It is e.g. shown
that when S and M are both JLSS, one can consider
quadratic bi-simulation functions of the type:

π(xS

t , x
M

t ) =
[
(xS
t )T (xM

t )T
]
Q

[
xS
t

xM
t

]
.

When d is the Euclidean metric, conditions 1. and 2. then
translates into the following Linear Matrix Inequalities:

Q−CTC < 0 (11)

Q(A + νR) + (A + νR)TQ+ FTQF + νRTQR 4 0,

where we recall that ν is the rate of the Poisson process,
whereas C, A, R, and F are given by

C =
[
C −C̃

]
, A =

[
A 0

0 Ã

]
, R =

[
R 0

0 R̃

]
, F =

[
F 0

0 F̃

]
,

with matrices C, A, R, F and C̃, Ã, R̃, F̃ describing S
(see equations (1), (2) and (3)) andM (see equations (4),
(5) and (6)), respectively. Then, setting xM

0 = l(xS
0) =

LxS
0 , problem

min
Q<0

E

[[
xT0 xT0 L

T
]
Q

[
x0

Lx0

]]
(12)

subject to (11)

can be solved to optimize the accuracy function h(x0) =
π(x0,l(x0))

ε in equation (10). Note that, though this was
not considered in [24], problem (12) can be extended to
address the design ofM by introducing further optimiza-
tion variables representing some parametrization of M .
Despite its elegance, the bi-simulation approach suffers
from the following drawbacks:

- It is difficult to work out a bi-simulation function in
general, and, in this respect, the cases of JLSS and

LSHA are more exceptions than rules. To the present
state of knowledge, the usability of the bi-simulation
approach is limited to very few classes of systems and
models.

- Being generated by a stochastic bi-simulation func-
tion is a loose sufficient condition for h(x0) to
be an accuracy function, and it may happen that

P
{(

supt≥0 d(yS
t , y

M
t )
)2
> π(x0,l(x0))

ε

}
is much smaller

than ε. Hence, there are no guarantees about the
optimality of the obtained h(x0) with respect to the
condition (7). This may lead to a severe underes-
timation of the abstraction capabilities of M and
eventually to conservative results.

3 A new method based on randomization

In recent years, a considerable effort has been devoted
to the development of the scenario approach, a random-
ized algorithm for the resolution of chance-constrained
problems, see e.g. [10,11,14,16,5,15,20,9]. The scenario
approach allows the user to find approximate yet guar-
anteed solutions at relatively low computational effort.
Here, we rely on this method to tackle problem (9).
Algorithmically speaking, the scenario approach builds
on a very intuitive and basic idea: a number, say N ,

of realizations of x0 and w, say x
(i)
0 and w(i) for i =

1, 2, . . . , N , are extracted according to the underlying
probability measure P and optimization is performed
by taking into account this finite number of instances
of x0 and w only. More precisely, letting α be a user
chosen parameter such that 0 ≤ α < ε, and letting

yS,(i) = fS(x
(i)
0 , w(i)) and y

M,(i)
λ = fM

λ (x
(i)
0 , w(i)), i =

1, 2, . . . , N , the randomized algorithm described in the
following Algorithm 1 aims at finding a solution that vio-

lates the constraint D
(
yS,(i), y

M,(i)
λ

)2 ≤ hϑ(x
(i)
0 ) with an

empirical probability equal to α, that is, bαNc times 2

out of N . We choose α < ε because, as it is intuitive,
it is very likely that the actual probability with which
the constraint D (yS, yM

λ )
2 ≤ hϑ(x0) is violated is larger

than the empirical one, and, hence, if α were exceed-
ing ε, then the actual violation probability could not be
guaranteed to be smaller than the desired level ε as re-
quired in (9). Ideally, one should determine N − dαNe
uncertainty instances out ofN that result in the smallest
value of the cost. Given that achieving the best possible
overall cost reduction is a hard combinatorial problem,
a sub-optimal solution is adopted in Algorithm 1.

Algorithm 1 (Randomized Algorithm)

0: Extract N realizations x
(i)
0 and w(i), i = 1, . . . , N , of

x0 andw; run the correspondingN executions of S and

M and compute via simulation yS,(i) = fS(x
(i)
0 , w(i)),

yM,(i) = fM(x
(i)
0 , w(i)), i = 1, 2, . . . , N ;

2 b·c denotes integer part.

5



1: SET

ϑ∗, λ∗ := arg min
ϑ,λ

E[hϑ(x0)] subject to:

D
(
yS,(i), y

M,(i)
λ

)2

≤ hϑ(x
(i)
0 ), i ∈ {1, . . . , N};

2: SET V := ∅ AND p := 0;
% V is the set of indexes of constraints violated by
ϑ∗, λ∗, while p is the cardinality of V

3: WHILE p < bαNc
3.1: SET

{i1, . . . , im} :=
{
i : D

(
yS,(i), y

M,(i)
λ∗

)2
= hϑ∗(x

(i)
0 )
}

;

% {i1, . . . , im} are the indexes of active constraints
3.2: FOR k = 1, 2, . . . ,m

SET

ϑ̂, λ̂ := arg min
ϑ,λ

E[hϑ(x0)]

subject to: D
(
yS,(i), y

M,(i)
λ

)2

≤ hϑ(x
(i)
0 ),

i ∈ {1, . . . , N}/({ik} ∪ V );

IF E[h
ϑ̂
(x0)] < E[hϑ∗(x0)] THEN SET ϑ∗ := ϑ̂,

λ∗ := λ̂;
END FOR

3.3: SET V :=

{
i : D

(
yS,(i), y

M,(i)
λ∗

)2

> hϑ∗(x
(i)
0 )

}
AND

p := |V |;
END WHILE

4: RETURN ϑ∗, λ∗.

In the algorithm, the constraints to be violated are pro-
gressively selected by discarding one active constraint
at a time, precisely, the constraint that, when removed,
gives the largest immediate cost improvement (greedy
approach). The search is restricted to active constraints
only, because eliminating a nonactive constraint does
not improve the cost value. Though the greedy approach
may not yield the best possible overall cost reduction, a
fair sub-optimality is obtained, while the computational
effort is kept at a reasonable level.

Remark 3 (removal rules) If the greedy approach is
still too computationally expensive, variants of Algo-
rithm 1 can be adopted to further reduce the computa-
tional effort. For instance, one can choose one constraint
at random among the active ones at each iteration of the
WHILE cycle (random removal), or one can remove at
each step all the active constraints (block removal) until
the number of constraints to be removed is lower than the
number of active ones, in which case the last constraints
to be removed can be chosen at random among the active
ones. Though the solution achieved through these ap-
proaches is even more sub-optimal than the greedy one,
notably, the guarantee on chance-constrained feasibility
given in the theorems to follow continues to hold.

Each optimization problem that has to be solved in the
Algorithm 1 is of standard type, i.e. with a finite number
of constraints. In particular, if the cost function and the
constraints are convex, then, the problem can be tack-
led via optimization modeling languages like CVX, [22],
and YALMIP, [25], equipped with standard solvers. An
inspection of the code reveals that Algorithm 1 comes to
termination as long as, each time the FOR cycle at line
3.2 is called, one active constraint whose removal im-
proves the cost can be found. This condition is satisfied
in normal situation and is assumed here for granted.
Although obtained based on a finite number of samples
of x0 and w only, the solution returned by the random-
ized Algorithm 1 (hereafter, called the randomized so-
lution) comes with precise guarantees about its feasi-
bility for the original chance-constrained problem (9).
This is the main feature of the scenario approach, which,
hence, can be reliably (as opposed to empirically) used
to tackle chance-constrained problems otherwise deemed
intractable.
The following theorem precisely states this feasibility
property and can be derived quite directly from [15, The-
orem 2.1] under the following assumption.

Assumption 1 (convexity) E[hϑ(x0)] is a convex
function of ϑ and, for every fixed realization of x0 and
w, the constraint D (yS, yM

λ )
2 ≤ hϑ(x0) is convex in the

optimization variables ϑ, λ.

Before stating the theorem, we define r̃ = r−1, where r is
the overall dimensionality of the optimization variables
ϑ, λ.

Theorem 1 Under Assumption 1, if N is big enough so
that(

bαNc+ r̃

bαNc

) bαNc+r̃∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β, (13)

then the randomized solution (ϑ∗, λ∗) is such that

P
{
D (yS, yM

λ∗)
2 ≤ hϑ∗(x0)

}
≥ 1− ε

with confidence at least 1− β.

The theorem says that the randomized solution can be
made feasible for (9) with high confidence. It is worth
noticing that it is not possible to guarantee that the ran-
domized solution is always feasible for (9), since this so-

lution depends on theN extracted samples x
(i)
0 , w(i) and

it may well happen that these samples are not enough
representative of the whole distribution of x0 andw. Yet,
this latter case is very unlikely for large N and, indeed,
Theorem 1 says that if N is chosen as indicated, then,
the probability of such bad event is no greater than β.
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In Theorem 1, the sample size N is implicitly given. Ex-
plicit bound on the sample size can be obtained by rely-
ing on suitable inequalities for the binomial term in (13),
see [12,7,6]. In particular the following corollary can be
derived by using the so-called Chernoff bound, [34], in a
way similar to that adopted in [12]. See [30] for the proof.

Corollary 1 Under the assumptions of Theorem 1, if

N ≥ (2 + α)ε

(ε− α)2

[
r̃ ln

(
2εr̃(2 + α)

(ε− α)2

)
+ ln

1

β

]
+
r̃

2
, (14)

then the randomized solution (ϑ∗, λ∗) is such that

P
{
D (yS, yM

λ∗)
2 ≤ hϑ∗(x0)

}
≥ 1− ε

with confidence at least 1− β.

The explicit bound in (14) reveals a very important fact,
namely, that N increases logarithmically with β. This
means that we can enforce a very small value for β –
like β = 10−10, which guarantees the achievement of

P
{
D (yS, yM)

2 ≤ h(x0)
}
≥ 1−ε beyond any reasonable

doubt – without affecting the sample size N too much.
The following remark sheds light on the role of α as a
means to tune the level of approximation of the random-
ized solution.

Remark 4 (Choice of α) It is worth noticing that the
empirical probability of violation α is a user chosen pa-
rameter through which the level of approximation of the
randomized solution can be tuned. If one chooses α = 0,
then, no constraints need to be removed and the problem
reduces to finding a solution to a single optimization prob-
lem. This is computationally attractive, but the actual
violation of the obtained randomized solution is typically
much smaller than the desired ε and the performance of
the model significantly underestimated. As a matter of
fact, though the feasibility of the randomized solution is
guaranteed for every α ∈ [0, ε), it is intuitively clear that
the closer α to the desired violation probability ε the better
the randomized solution approximates the actual solution
to the chance-constrained problem (9). At the same time,
however, it holds that N → ∞ as α → ε, see (14). The
ultimate choice for α rests with the user, who can select
his/her own best comprise between the accuracy required
by the application at hand and computational tractability.

As is clear the applicability of Theorem 1 rests on the
validity of Assumption 1. It is a fact that Assumption 1
can be easily satisfied when addressing performance as-
sessment as discussed in the next Subsection 3.1. When
dealing with model design, instead, the satisfaction of
Assumption 1 depends on the model parametrization
and it may be harder to achieve. Subsection 3.2 hints
at some possible extensions of Theorem 1 to the non-
convex case.

3.1 Performance assessment

In performance assessment, the sole optimization vari-
able is ϑ, the parameter of h, being fM given and fixed.
In order to apply Theorem 1, we need to ensure the
convexity with respect to ϑ of both E[hϑ(x0)] and the

constraint D (yS, yM)
2 ≤ hϑ(x0). Since the convexity

E[hϑ(x0)] is achieved when hϑ(x0) is convex in ϑ, while

the convexity of D (yS, yM)
2 ≤ hϑ(x0) requires that

hϑ(x0) is concave in ϑ, function hϑ(x0) must be linearly
parameterized in ϑ.
Plainly, a possible parametrization is hϑ(x0) =∑l
i=1 ϑihi(x0), where hi(x0), i = 1, 2, . . . , l, are given

positive basis functions 3 , subject to the linear condition
ϑi ≥ 0, ∀i. We suggest, however, to use an alternative
parametrization, namely, the class of positive quadratic
hybrid functions of the continuous part of x0. To be
precise, letting x0 = (xc0, x

d
0) be the decomposition of

x0 into its continuous part xc0, taking value in Rn, and
its discrete part xd0, taking value in the finite alphabet
{1, 2, . . . , q}, hϑ(·) is parameterized as follows

hϑ(x0) =

q∑
k=1

[
xc0
′ΘA

k x
c
0 + 2Θb

kx
c
0 + Θc

k

]
1[xd

0=k],

where 1[·] is the indicator function and ϑ is the vector of

the entries of ΘA
k , Θb

k, Θc
k, k = 1, . . . , q. This choice seems

to fit many situations of interest where, for each mode
xd0, the approximation capability of model M is better
for a certain initial condition xc0 = x̄c0 and decreases as
xc0 moves away from x̄c0.
Letting

Θk =

[
ΘA
k Θb

k

′

Θb
k Θc

k

]
,

then, we have that

xc0
′ΘA

k x
c
0 + 2Θb

kx
c
0 + Θc

k =
[
xc0
′ 1
]
Θk

[
xc0

1

]
,

and the condition of positiveness of hϑ(x0) simply trans-
lates into a positive semi-definite condition on the ma-
trices Θk, that is, Θk � 0, k = 1, 2, . . . , q, which is a
convex constraint on Θk. Moreover, E [hϑ(x0)] can be

3 E.g., when x0 ∈ Rn, i.e., the state has no discrete compo-
nents, hi(x0) = exp(−(x0 −mi)

′Vi(x0 −mi)) with mi and
Vi given.
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expanded as follows (tr denotes trace):

E [hϑ(x0)] =

q∑
k=1

E

[
tr

([
xc0
′ 1
]

Θk

[
xc0

1

]
1[d0=k]

)]

=

q∑
k=1

tr

(
ΘkE

[[
xc0x

c
0
′ xc0

xc0
′ 1

] ∣∣∣xd0 = k

]
P(xd0 = k)

)
,

where the conditional expectation in the last equality
can be computed from the knowledge of P. When x0 ∈
Rn, i.e. the state has no discrete component, then the

parametrization simplifies to hϑ(x0) =
[
x0
′ 1
]
Θ

[
x0

1

]
,

Θ � 0, while E[hϑ(x0)] = tr

(
ΘE

[
x0x0

′ x0

x0
′ 1

])
.

Note that, since matrices Θk, k = 1, . . . , q, are symmet-
ric and of size n + 1, it follows from Corollary 1 that
the number N of realizations to be used in Algorithm 1
scales as n2 ln(n).

3.2 Some hints for addressing the non-convex case

Though convexity is advantageous from a computational
perspective, admittedly, relying on Theorem 1 only may
be limitative in our context because it is often the case
that the constraint D (yS, yM

λ )
2 ≤ hϑ(x0) is not convex,

especially because of the dependence on λ. We here hints
at some results that can be used in the non-convex case.
Though these results are not conclusive, because of the
inherent difficulty of this case, they may be useful for
some problems, and, moreover, they represent a promis-
ing start for future research.
The following theorem can be derived from [5, Theorem
7], see [30] for a formal derivation, and provides guaran-
tees about the chance-constrained feasibility of the ran-
domized solution under a condition other than convex-
ity. Before stating the theorem, we define dV C as the VC
dimension associated to the constraint D (yS, yM

λ )
2 ≤

hϑ(x0), see [5, Definition 6].

Theorem 2 Suppose that dV C < +∞. If

N ≥ 5ε

(ε− α)2

[
dV C ln

(
40ε

(ε− α)2

)
+ ln

4

β

]
, (15)

then the randomized solution (ϑ∗, λ∗) is such that

P
{
D (yS, yM

λ∗)
2 ≤ hϑ∗(x0)

}
≥ 1− ε

with confidence at least 1− β.

The interpretation of Theorem 2 is the same as for The-
orem 1, and, likewise, all the comments we made before

still apply.
Note that although the lack of convexity makes the res-
olution of optimization problems in Algorithm 1 harder,
the guarantees provided by Theorem 2 apply to any lo-
cal solution, so that one has not necessarily to head
for the global optimizer when solving the optimization
problems in Algorithm 1. In turn, though the assump-
tion that the VC dimension is finite is relatively mild,
the computation of dV C is nontrivial and often only con-
servative bounds can be derived. This means that the
sample size N in Theorem 2 is overestimated, with an
increase of the computational complexity that can ham-
per the applicability of the approach. In this respect, the
computation of tight bounds for dV C is still an open is-
sue. Results for specific classes of problems are available
in [5] and references therein.

4 Jump Linear Stochastic Systems: A numerical
example

In this section, we illustrate the results obtained by the
proposed randomized method on a numerical example
that was first studied in [24], and we compare them with
those obtained by the stochastic bi-simulation method
revised at the end of Section 2.
Suppose that system S is a JLSS whose state xt ∈ R6 is
governed in-between the jump times of a Poisson process
with rate ν = 0.5 by the SDE in equation (1) with

A = diag

([
−1 −10

10 −1

]
,

[
−2 −20

20 −1

]
,

[
−2 0

0 −2.5

])
,

F = 0.5 ·

[
F1 F2

F3 F4

]
, F1 = I4,

F2 =

[
1 0 1 0

1 0 1 0

]T
, F3 =

[
1 0 0 0

0 0 1 0

]
, F4 =

[
0 1

1 0

]
,

Im denoting the identity matrix of size m. At the jump
times the state is reset according to (2) whereR = 0.7·I6.
The output of interest yS

t takes values in R2 and is given
by yS

t = CxS
t , where

C =

[
0.84 −1.03 1.07 −0.88 0.5 0

−0.6 −1.35 −0.26 −0.27 0 −0.5

]
.

To the purpose of reproducing the output yS
t along the

time horizon [0, 10], we consider three different JLSS
models as indicated in Example 1, equations (4)-(6):

- modelM1 is obtained by considering only the first four
state variables in xS

t and deriving the matrices Ã, F̃ ,

R̃, C̃ by removing fromA,F ,R,C those rows/columns
that relates to the contribution of the last two state
variable in xS

t .
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- model M2 is obtained by removing the contribution
of the Brownian motion, i.e. by letting Ã = A, F̃ = 0,
R̃ = R, C̃ = C.

- model M3 is obtained by removing the contribution
of the Poisson process, i.e. by letting Ã = A, F̃ = F ,
R̃ = 0, C̃ = C.

As for models M2 and M3, the initial state x0 of sys-
tem S is mapped into that of the approximating models
through the identity map, whereas the initial state of
model M1 is given by the first four entries of vector x0.
The performance of each model Mi, i = 1, 2, 3, as an ab-
straction of S is assessed through the following chance-
constrained optimization problem

min
Θ�0

tr

(
ΘE

[
x0x0

′ x0

x0
′ 1

])
subject to: (16)

P

{(
sup
t∈[0,T ]

||yS

t − y
Mi
t ||

)2

≤
[
x0
′ 1
]

Θ

[
x0

1

]}
≥ 1− ε.

Problem (16) is approximately solved by means of Al-
gorithm 1 and its further variants with the random and
block constraint removal rules implemented (see Re-
mark 3). We set ε = 0.25, β = 10−10, and progressively
increase α from 0.10 to 0.20. Correspondingly, accord-
ing to Theorem 1, N grows from 1697 to 27874 (note
that r = 28 since Θ is a 7 × 7 symmetric matrix). We
adopt the greedy removal for α = 0.10, random removal
for α = 0.15 and block removal for α = 0.20. For the
sake of comparison the stochastic bi-simulation function
method is also used. Results obtained when the state
x0 is Gaussian with zero mean and identity covariance
(x0 ∼ N (0, I6)) are shown in Table 1. In this table,

α = 0.10 α = 0.15 α = 0.20 SSF

M1

J = 4.86 J = 3.515 J = 2.88 J = 10.13

ε̂ = 0.127 ε̂ = 0.160 ε̂ = 0.200 ε̂ = 0.040

M2

J = 15.26 J = 10.97 J = 8.42 J = 19.77

ε̂ = 0.121 ε̂ = 0.165 ε̂ = 0.206 ε̂ = 0.107

M3
J = 16.99 J = 10.43 J = 7.22 J = 15.63

ε̂ = 0.118 ε̂ = 0.158 ε̂ = 0.203 ε̂ = 0.132

Table 1
Performance of the randomized method and of the stochastic
bi-simulation function (SSF) method, when x0 is a Gaussian
random variable with zero mean and identity covariance.

J denotes E[hϑ∗(x0)], i.e. the average upper bound on
(supt∈[0,T ] ||yS

t − y
Mi
t ||)2 in correspondence of the found

solution (see (16) and (10) for the expression of hϑ(x0)
in the randomized approach and in the bi-simulation
function method). Instead, ε̂ is a Monte Carlo estimate
of the actual violation probability. As expected ε̂ is be-
low the threshold ε = 0.25 in all cases.
The table shows that the average accuracy J provided

by the stochastic bi-simulation function method is typ-
ically worse than that obtained by the randomized
method. Consistently with this result, in the stochastic
bi-simulation function method ε̂ is significantly lower
than the desired value ε, especially in the case of model
M1. As for the randomized method, irrespectively of
the greedy, random or block implementation, ε̂ is close
to the empirical violation α. If α is increased, then J
improves and ε̂ grows. This is a strength of the pro-
posed approach, where, by means of the choice of α, the
user can modulate the actual violation probability so as
to better match the desired ε value. The stochastic bi-
simulation function method, instead, does not offer this
opportunity and generally provides conservative values
for the average accuracy J .
Focusing now on M1, suppose that we want to optimize
its initialization so as to better reproduce the system
output. More precisely, we want to optimize the ñ × n
matrix L mapping the initial state x0 of S into the ini-
tial state xM1

0 of M1: xM1
0 = Lx0.

Given that the JLSS is characterized by linear drift and
diffusion terms and by a linear reset map, it is easily
seen that the resulting function fM1

λ (x0, w) is linear

in λ = L, so that D (yS, yM1)
2

is convex in λ. Hence,
Algorithm 1 and Theorem 1 can be applied to opti-
mize the performance of M1 with respect to λ (and ϑ).
To this purpose, we need to specify how to determine
yM1 = fM1

λ (x0, w) as an explicit function of λ = L for
each pair of initial condition x0 and input realization w.
To this purpose one can simulate ñ executions of equa-
tions (4) and (5), each with the same input w and for
the ñ initial conditions xM1

0 = e1, . . . , x
M1
0 = eñ, where

ei is the vector with all elements equal to 0 except for
the i-th element equal to 1. Then, yM1 can be obtained
as a linear combination of these executions according
to Lx0. More precisely, letting ξi,t be the execution of
(4) and (5) associated with the initial condition ei at
time t, and letting Ξt = [ξ1,t ξ2,t · · · ξñ,t] be the matrix

with ξi,t as columns, then we have that yM1
t = C̃ΞtLx0,

∀t ∈ [0, T ].
We next report the results obtained when the initial
state of S is deterministic and given by x0 = [1 1 1 1 1 1]

′
,

and T = 0.2. In this case, the accuracy function can be
replaced by a scalar h. The randomized method with
random constraint removal is run with the following set
of parameters: ε = 0.25, β = 10−10 and α = 0.10. As in
the performance assessment case, the obtained solution
(h?, L?) is such that the actual violation probability ε̂
is close to the empirical violation α.
Figure 1 represents two histograms: the gray histogram
refers to the values of h obtained by computing 100 times
the randomized solution to (9) when both xM1

0 = Lx0

and h are optimized, whereas the black histogram refers
to the case when only h is optimized and xM1

0 is set equal

to the first four components of x0: xM1
0 = [1 1 1 1]

′
. The

optimization of the initial condition is shown to be quite
effective in improving the accuracy of the abstracted
model, despite of the randomness affecting the solution.
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In order to improve the solution one should adopt a
larger value for α, say α = 0.22, thus getting the actual
violation probability close to the desired ε = 0.25 value.
This may, however, cause an excessive computational
effort. To cope with this issue, one can adopt a two-step

1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

16

18

20

Fig. 1. Histograms showing the performance of the random-
ized solution to (9) when α = 0.10.

procedure similar to that discussed in [18,17], where
first α = 0.10 is used to optimize both xM1

0 and h, and
then, for α = 0.22, only h is optimized setting xM1

0 equal
to the value xM1,?

0 obtained when α = 0.10. The guar-
antees provided by Theorem 1 on the re-optimized h
still hold for model M1 initialized with xM1,?

0 . The value
for h obtained through this 2-step procedure is better
than that obtained by setting xM1

0 equal to the first 4

components of x0, i.e., xM1
0 = [1 1 1 1]

′
, and optimizing

h with α = 0.22. This is shown in Figure 2, where the
histograms of h obtained by running 100 times the 2-
step procedure (gray histogram) and by optimizing only
h with xM1

0 = [1 1 1 1]
′

(black histogram) are depicted.
This shows that the optimization of xM1

0 leads to an
improved accuracy h, even when performed according
to the suggested 2-step heuristics. Note that the his-

1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4
0

5

10

15

20

25

Fig. 2. Histograms showing the performance of the random-
ized solution to (9) when α = 0.22.

tograms in Figure 1 reveal a larger variability compared
to those in Figure 2. This is due to the fact that the
latter results are associated to a value of α that is closer
to the desired ε value for the violation probability.

5 Conclusions

In this paper, we proposed a simulation-based method
for the analysis and design of an approximate abstraction
of a SHS. This approach rests on recent results on the
randomized solution to chance-constrained programs,
and turns out to be much less conservative than other
approaches in the literature. The counterpart for the im-
proved performance is that guarantees on the quality of

the solution hold with a certain confidence, which, how-
ever, can be set arbitrarily close to 1, though at the ex-
pense of a larger computational effort.
A key advantage of the proposed method is that it does
not require specific assumptions on the system S to be
approximated. In the case of performance assessment,
a computational convenient convex formulation is also
suggested. Since some of the approaches in the literature
to the design of simpler abstracted models of a hybrid
system do not provide an evaluation of the model accu-
racy, see e.g. [27], the proposed reformulation can then
be used to complement them with such an evaluation,
[28].
Our method can also be employed in principle to design
optimal abstracted models, in that it allows to choose
the best model in some given parameterized model class.
The quite challenging issue of choosing the best model
class, however, remains open.
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