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1. Introduction

Hazardous materials pervade our daily lives in many ways. The gasoline fueling our cars, radioactive and contaminated
hospital waste, special drugs sold by pharmacists, the chemicals utilized in car body repair shops, are all examples
of substances which pose little threat if properly used but can turn quite harmful to people and the environment if
accidentally spilled. Themost likely situation inwhich accidental release of hazardousmaterials (hazmat) can occur is during
transportation. While the probability of an accident is generally very low, consequences can be extremely deleterious. Such
a concern, fueled by a few fatal accidents that have occurred in the last few years, has motivated research on risk mitigation
in hazardous material transportation. Much has been done on the prevention side, such as enforcing strong safety rules on
material handling and packaging, as well as on the vehicles used for transportation. In the case of road transport, a critical
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step in the decision making process concerns vehicle routing, i.e., the selection of itineraries to be followed by hazmat
vehicles on their trips from origin to destination. In the unregulated scenario, without prescribed directions, drivers are
expected to select their minimum cost route among all possible origin–destination itineraries. The progressive urbanization
of city outskirts has resulted, in many cases, in an incongruous mix of residential and industrial land uses. As a result,
hazmat vehicle routes may cross residential areas (unless explicitly prohibited) when origins and destinations are located
within mixed industrial–residential areas. Therefore, when entirely left to drivers, route selection may yield extremely
risky itineraries, which generally should be avoided. At the same time, there may be alternative itineraries which are still
economically acceptable to drivers but quite different with respect to risk. Drivers should be supported in this critical
decision making step in order to make risk aware choices.

For some specific shipments, an ad hoc itinerary can be entirely planned and prescribed by the authority in charge of the
regulation. In this case we speak of the over regulated scenario. However, this cannot be assumed to be common practice,
since the burden of full control on route enforcement for each shipment would not be affordable. A more viable alternative
to the over regulated scenario is to indirectly encouraging safer itineraries, rather than enforcing them, by exploiting the
supposedly rational behavior of drivers. In such a rule-based scenario, the authority promulgates a set of common rules, easy
to check, with which drivers must comply. Such rules, in order to be effective, must be stated by taking driver reactions into
account. For this reason the problems arising in the rule-based scenario usually give rise to bilevel optimization problems,
which properly model the hierarchical relationship between the decision makers. Examples are the closure of some links of
the network to hazmat vehicle transit or specific pricing policies on the network links. The most significant contributions to
hazmat routing are briefly discussed in Section 2.

The Gateway Location Problem (GLP) arises precisely in the framework of rule-based routing. It consists of locating a
fixed number of check points (so called gateways) selected out of a set of candidate sites and assigning one such gateway to
each vehicle as a compulsory crossing point along its itinerary in such a way that the sum of the risk of the minimum cost
route of each vehicle from its origin to its destination via the assigned gateway is minimized.

GLP was first introduced in [2] where its efficacy as a risk mitigation tool was tested on a set of realistic instances.
In [2] it was assumed that the set of candidate sites among which gateway locations are selected is randomly sampled
out of the whole set of network nodes, according to a uniform probability distribution. While, for a given number of open
gateways, the level of risk mitigation obviously does not decrease by enlarging the candidate site set up to considering
all nodes in the network, in [2] it was also shown that a good level can be reached by way of an intelligent selection of
a limited number of nodes. Such a procedure becomes a compulsory step when tackling instances related to large size
urban areas, whose networks easily reach into the thousands of nodes. In such a case, the size of the candidate site set
may become a distinct problem. This paper aims at providing adequate policies for this step. Section 4 is devoted to their
introduction. In particular, we experimentally investigate the influence of different criteria for the selection of the ground
set out of which the candidate sites will be generated according to a probability distribution; moreover, we analyze the
impact of different probability distribution laws used for sampling. Indeed, previous results pointed out that this stage of
the process, i.e., candidate site generation, can impact not only on the efficacy of the method, i.e., the risk level associated
with the solution itineraries, but also on the efficiency of the method. In fact, [2] provides experimental evidence that a
wise choice of candidate sites may reduce the number of candidate sites to be considered in order to achieve target risk
mitigation thresholds. Section 5 is devoted to the experimental comparison. The proposed policies are compared against
plain uniform random generation through a wide experimental campaign which is based on the results of the associated
GLP run on a set of realistic instances and considers both quality and robustness of the results. In order to make the analysis
less data dependent, the test bed encompasses instances characterized by three different risk functions. Conclusions are
finally drawn in Section 6.

The GLP is not only the core of a new method for risk mitigation, but it also introduces a new problem in combinatorial
optimization. In Section 3, after recalling the problem structure, we provide the first complexity proof of NP-hardness of
GLP and highlight its relations with well known NP-hard problems.

2. Literature review

Two main research lines can be identified in the literature on risk mitigation policies to regulate the itineraries of
the hazmat shipments: (i) enforcing specific itineraries to vehicles in the framework of an over regulated scenario;
(ii) prescribing a set of rules that vehicle itineraries have to respect in a rule-based scenario.

Regarding the first research line, several criteria can be used to evaluate the quality of a given itinerary. Indeed, risk
assessment studies propose several alternative risk measures, such as societal risk, population exposure, and incident
probability. At the same time, however, carriers aim at cost reduction, usually achieved by minimizing travel time or travel
distance. All these criteria are potentially conflicting and naturally lead to multi-objective flow problems as studied in
[12,19]. Solutionmethods for hazmat routing are usually distinguishedbetween local and global ones, as documented in [20].

Local routing is concerned with selecting a set of routes between a given origin–destination pair for the repeated
shipment of a single commodity. The main issue concerns the equitable spread of risk among the population [11]. In this
case, not only the total risk should be minimized, but the risk should also be distributed in the most uniform way over the
whole transport region. This problem leads to the search for spatially dissimilar paths which can be addressed by various
modeling approaches, e.g., by means of the Iterative Penalty Method [18], by means of the Gateway Shortest Path [15], by



p-dispersion [7], by exploiting the k-shortest paths [5], or by combining the k-shortest paths with p-dispersion [1]. Note
that [15] is the first paper to introduce the notion of a gateway path in the context of corridor location, limited to a single
origin–destination pair, in order to generate a set of spatially different alternative paths from the shortest one.

Global routing concernsmany-to-many routing problems, dealingwithmulticommodity andmultiple origin–destination
routing decisions. Multiple conflicting objectives, such as cost minimization, risk minimization, and equity, are still present.
However, solution approaches formulticommodityminimum cost flow problems usually tackle the single objective variant.
Therefore, the aforementioned global routing problems arising in hazmat transport are usually tackled by goal programming
approaches [22].

All the previouslymentioned approaches return a set of itineraries to be assigned to carriers. Enforcing specific itineraries
has the disadvantage of requiring the use of remote control systems, e.g., GPS for vehicles tracking [3]. Moreover, in many
countries in Europe and North America, government agencies do not have the authority to dictate routes to hazmat carriers
and the remote control of carriers may conflict with privacy.

An alternative research line focuses on the indirect control of hazmat routing byway of rules that carriers have to respect
in a rule-based scenario. Since driver’ response must be included in the models, such approaches tend to generate bilevel
problems [6]. In this context, the most studied problem is the Hazmat Network Design (HND) problem, i.e., the interdiction
of some road arcs to hazmat transit. In their seminal work, Kara and Verter [13] provide the first bilevel formulation of
HND: in the upper-level problem the authority selects arcs to be closed according to risk minimization, whereas the lower-
level problemmodels carriers’ route choices that pursue cost minimization. Erkut and Alp [8] propose a greedy algorithm to
heuristically select a tree subnetwork such that the sum of the risk of the unique origin–destination path of each commodity
is minimized. For the general HND, Erkut and Gzara [9] propose a fast heuristic algorithmwhich guarantees stable solutions,
i.e., solutions such that no commodity has multiple minimum cost paths with different risk values. To take into account
carrier preferences, Kara and Verter in [21] introduced a single level path-based formulation, making explicit the set of
paths acceptable to carriers and their preferences within such a set.

Beside arc interdiction, another rule-based risk mitigation approach exploits toll-setting [16]. Here, tolls are used for the
first time to deter hazmat carriers from using certain roads and to channel the shipments on less-populated roads. This
policy also gives rise to a bilevel problem, which can be reformulated and solved as a single-level Mixed Integer Linear
Programming (MILP) problem. The authors experimentally show the effectiveness of such a technique.

Finally, in [2], a third alternative policy for indirectly regulating hazmat transport is proposed,which consists of detouring
vehicles through compulsory check points. This policy gives rise to GLP. To the best of our knowledge, GLP had never been
studied before nor used in the context of risk mitigation. Three mathematical formulations of GLP are proposed in [2]: a
path based ILP model, a k-median like ILP model, and a bilevel multicommodity flow model together with its reduction to a
single level MILP. All models assume that the candidate sites set, i.e., the set of the sites where a gateway can be installed, is
known. In the present work, we address a preparatory phase of GLP concerning precisely the generation of this set.

3. GLP: a new combinatorial optimization problem

3.1. Mathematical notation

Weare concernedwith the problemof routing a set of vehicles away from theirminimumcost routes by assigning to each
vehicle a gateway as a compulsory crossing point. A given number of gateways must be located at as many sites, selected
out of a set of candidate sites, and each vehicle assigned to one gateway, so that the risk of the new routes is minimized. Let
us introduce some mathematical notation in order to formalize GLP as a combinatorial optimization problem.

Regarding vehicles, let V = {1, . . . , n} be the vehicle set. For each vehicle v ∈ V , the pair (ov, dv) denotes its origin and
destination and ϕv its demand, i.e., either the amount of the commodity transported by v or the number of shipments. Let
O = {ov, v ∈ V } be the set of origins and, likewise, let D = {dv, v ∈ V } denote the destination set. Let NCS be the set of the
nCS candidate locations where k gateways with k < n and k ≪ nCS have to be installed.

A weighted directed graph G = (N, A)models the network in such a way that NCS
∪O∪D ⊆ N , i.e., the node set includes

the candidate sites as well as the origin and the destination of each vehicle. For each arc (i, j) in the arc set A ⊆ N × N ,
a positive cost coefficient cij and a non-negative risk coefficient rij per flow unit are given. Here, cij models the drivers
utility function, such as distance, travel time, or monetary cost of travel along the arc, while rij represents a measure of the
risk, i.e., the potential damage associated with transporting hazardous material along arc (i, j), and enters into the network
administrator objective function. For a discussion on how to model risk functions see [10]. Note that, in some applications,
cost, andmore significantly, risk coefficients can be commodity dependent and thus vary according to the vehicle. However,
since our discussion can be fully restated and easily adapted to such a case, hereafter we will omit the commodity index in
order to keep the notation simple.
Finally, let ρc

v (ρr
v) denote the c-optimal (r-optimal) path from ov to dv for each v ∈ V . Wewill also refer to ρc

v as the shortest
path and to ρr

v as the safest path for vehicle v. Let gtw(v) denote the gateway assigned to vehicle v. Once location h ∈ NCS

has been selected to host a gateway and the gateway at h has been assigned to vehicle v, i.e., gtw(v) = h, then vehicle v
will travel along the shortest gateway path with respect to h, say ρv(h). In particular, its route ρv(h) will be made up of two
paths, namely the upstream gateway path phv , i.e., the shortest path going from ov to h, and the downstream gateway path



ph
v
, i.e., the shortest path going from h to dv . Indeed, each one is optimal according to the cost criterion due to the rational

carrier behavior hypothesis.
GLP can be formalized as the problem of selecting a subset Ngtw of size k out of NCS and assigning to each vehicle v one

gateway h ∈ Ngtw so that the sum over each vehicle of the risks of the two paths ph
v
and phv is minimized. More formally, we

solve:

GLP : min

v∈V


h∈Ngtw :

h=gtw(v)

ϕv

 
(i,j)∈phv

rij +


(i,j)∈ph
v

rij

 (1)

Ngtw
⊆ NCS (2)

|Ngtw
| = k. (3)

A more general version of the problem accounts for the possibility of letting a vehicle free to follow its shortest path, in
case no shortest gateway path decreases its risk level. In such a case the vehicle is said to be exempted. Exemption can be
easily cast in the former framework by letting the summation over h vary in the broader set h ∈ Ngtw

∪{ov} rather than only
in Ngtw . Indeed, if h = gtw(v) belongs to ρc

v , then its shortest gateway path phv ∪ ph
v
coincides to ρc

v . The above feature can
be implemented by letting each ov act as a gateway for vehicle v without increasing the cardinality of Ngtw . Exemption is
quite important, since it guarantees that the risk value associated with any optimal solution of the GLP will never increase
the risk level of the unregulated scenario in which each vehicle travels along ρc

v .
Note that GLP is a hierarchical decision problem since expressions phv and ph

v
hide a nested level of optimization. In fact,

the minimum risk solution has to be searched for in the rational ‘‘reaction set’’ of the drivers. If the reaction set is not a
singleton, i.e., the shortest gateway path going through gtw(v) is not unique for at least one driver, we can distinguish two
cases. In the first case, drivers behave in a collaborative way, i.e., they choose the minimum risk path among their shortest
gateway paths; in the second case, drivers behave in an adversarial way, i.e., they choose the maximum risk path among
their shortest gateway paths. Note that the drivers’ adversarial behavior is not due to a real aversion to the administrator but
to the simple fact that drivers are not aware of the risks associated with their itineraries. In a similar way, suppose that the
administrator hasmultipleminimum risk alternatives regarding the gateways to be opened and their assignment to drivers,
and, in addition, he knows the costs of the vehicle itineraries. When the administrator selects the cheapest solution among
those of minimum risk, we say that the administrator is cost aware. All the MILP models presented in [2] can be generalized
to encompass the abovementioned variants, by suitably perturbing the cost (risk) coefficients of the drivers (administrator)
objective function. The two options for the follower and those for the leader can be combined giving rise to four variants. In
this paper we focus on the adversarial cost aware variant, which represents the most challenging case.

Finally, note that the solutions provided byGLP could not be obtained neither by solving aminimumriskmulticommodity
flow nor a goal programming problemwhere risk isminimized first and cost comes as a second objective. Costminimization
does not play the role of a lower priority objective function but it is introduced in the model with the sole purpose of repre-
senting driver reaction and mathematically characterizing the so called reaction set, i.e., the set of shortest gateway paths.

3.2. Computational complexity

GLP shares a few common features with location problems. Indeed, it can be shown to be a strongly NP-hard problem
itself due to a reduction from the k-medianproblemas described in the following. Recall that the k-medianproblem is defined
as follows: given a complete undirected graph G = (V , E), with V = {v1, . . . , vn}, and a distance function g : E → R+, the
k-median problem consists of finding a subset V ′

⊆ V such that |V ′
| = k and


u∈V minv∈V ′ g(u, v) is minimized.

Theorem 1. The GLP is strongly NP-hard.

Proof. Suppose that an instance of the k-median problem is given, we build the following GLP instance on a tripartite
complete graph G̃ = (N, A).

We consider a set of n = |V | commodities, each associated with the origin–destination pair (oi, di) for i = 1, . . . , n. Let
O = {oi : i = 1, . . . , n} and D = {di : i = 1, . . . , n}. The set of candidate gateways is given by NCS

= {h1, . . . , hn}. N is the
union ofO,D, andNCS . Each node oi, di, hi ∈ N is associatedwith vertex vi ∈ V . The set of arcs is defined as A = A′

∪A′′, where
A′

= {(oi, hj) : oi ∈ O, hj ∈ NCS
} and A′′

= {(hj, di) : hj ∈ NCS, di ∈ D} (see Fig. 1). For each arc (oi, hj) ∈ A′ and (hj, di) ∈ A′′

we set the cost equal toM − g(vi, vj) whereM = max[vp,vq]∈E g(vp, vq)+ ε and ε is any small positive constant, and the risk
equal to 1

2g(vi, vj). In this way, the cost coefficients are positive, the risk coefficients are non-negative as required in GLP,
and the administrator’s objective function and the drivers objective functions become negatively correlated.

Firstly, observe that for each commodity every origin–destination path is made of two consecutive arcs belonging to A′

and A′′, respectively. Moreover, note that the authority has no advantage in exempting any commodity because in such a
case such a commodity ı̂ would choose the path oı̂, hȷ̂, dı̂ where hȷ̂ is argmaxhj∈NCS g(vı̂, hj), i.e., ı̂ would choose the riskiest
path. Therefore, the reaction set of the follower is a singleton and this GLP instance is well posed.



Fig. 1. GLP instance associated with the k-median one (the two values depicted on the arcs are the cost and the risk, respectively).

It is easy to see that any feasible solution to GLP where just k gateways can be opened corresponds to a feasible solution to
the k-median problemwith same value. Indeed, let hi1 , . . . , hik be the open gateways, then the corresponding solution to the
k-median problem is given by V ′

= {vi1 , . . . , vik}. Likewise, the risk of the GLP feasible solution is
n

i=1 minh∈NCS ( 1
2g(oi, h)+

1
2g(h, di)) =


u∈V minv∈V ′ g(u, v), which is also the value of the corresponding k-median feasible solution. Therefore, from

the optimal solution to the GLP on graph G̃ = (N, A), we can obtain the optimal solution to the k-median problem for the
original instance. �

Corollary 1. Given any constant ϵ > 0, the problem of approximating the GLP within an ϵ relative factor is NP-hard.

Proof. The proof follows immediately from the fact that the supposition holds for the k-median problem (Lemma 2 of [14])
and the reduction from k-median to GLP used in the proof of Theorem 1 is a gap-preserving reduction since the GLP optimal
value for the transformed instance coincides with the k-median optimal value for the original instance. �

4. Ground sets and generation policies

In this section we introduce 16 alternative policies for candidate site generation obtained by properly combining a
criterion for defining the ground set with a probability distribution law for sampling the current ground set. For any such
policy, we also propose a deterministic version based on the solution of a combinatorial optimization problem. Random
sampling according to uniform distribution on the whole set of the nodes of the network, as in [2], is the benchmark policy.

All policies have been inspired by the fact that the minimum risk level is achieved when each vehicle v ∈ V travels along
its minimum risk path ρr

v . In an ideal scenario, there would exist an internal node h of ρr
v such that ρv(h) = ρr

v , i.e., path ρr
v is

made of a shortest path from ov to h and one from h to dv , respectively. In such a case, selecting h as a gateway and assigning
h to v would route v on ρr

v . At the same time, however, no node on the shortest path ρc
v , if selected as a gateway and assigned

to v, would contribute to risk mitigation since the vehicle would follow ρc
v as it does in the unregulated scenario where no

risk mitigation policy is enforced. Therefore, from the perspective of a single vehicle v, there is no gain in adding the nodes
of path ρc

v to the ground set. We further elaborate on these basic concepts to build up several criteria upon which a node
qualifies to be part of the ground set. Criteria and sampling distribution laws are introduced in Sections 4.1 and 4.2.

4.1. Ground sets

One or more target paths are considered for each vehicle, i.e., paths such that, if followed by the driver as
origin–destination itineraries, would decrease the risk level with respect to the unregulated scenario. Let Θv denote the
set of the target paths of vehicle v (potentially a singleton) and let N (Θv) be the set of their internal nodes, i.e., the union
of the nodes of the paths in Θv minus ov and dv . The main target path for each vehicle v is the safest path ρr

v , while its
shortest path ρc

v provides the highest risk level admitted. In between these two extremes lies the Pareto frontier of the so
called efficient paths, i.e., those representing the best compromises between the objective functions of the two stakeholders
involved, namely the drivers and the network authority. Therefore, each efficient path can be considered as a target path.
Unfortunately, there is no guarantee that a vehicle gets actually routed on a target path just by setting gtw(v) equal to an
internal node of that path. On the contrary, for each elementary shortest gateway path, there is a value of p sufficiently large
to ensure that this path belongs to Γ r

v (p), i.e., the set of the p safest (less risky) loopless paths. In particular, Γ r
v (p) provides

a set of target paths as long as the risk of the p-th path is below the risk of path ρc
v , denoted by rρc

v
.

Each criterion Ci, i = 1, . . . , 4, identifies a ground set NGS
i ⊆ N out of which the selection probability of a node is null.

Each Ci induces a different set of target paths Θv for each vehicle. We say that a vehicle v sponsors the nodes in N (Θv).



A node belongs to the ground set according to the selected criterion only if it is sponsored by at least one vehicle. In this
study, the following criteria have been considered:

• The first criterion C1 aims at routing each vehicle on its safest path by using the internal nodes inρr
v as potential gateways.

Formally, Θv = {ρr
v } and NGS

1 =


v∈V N (ρr
v). In a cost aware variant, if ρr

v is not unique, the shortest one would be
selected.

• The second criterion C2 aims at getting rid of useless nodes, such as those belonging to the shortest path of a vehicle.
A vehicle sponsors a node i ∈ N (ρr

v) only if i ∉ N (ρc
v). Therefore, N

GS
2 =


v∈V (N (ρr

v)\N (ρc
v)). As NGS

2 ⊆ NGS
1 , its

cardinalitymay become a critical issue and it should be checked to ensure it is large enough to allow for sampling subsets
of the size required in case of partial collinearity between risk and cost.

• The third criterion C3 aims at attracting the vehicles into safe paths which are not too expensive with respect to the
drivers cost function. Here, we trade risk optimality for cost awareness. Let Γ r,c

v be the set of paths on the Pareto optimal
frontier of the bicriteria shortest path minimizing both risk and cost for vehicle v. According to C3, the set Θv coincides
with Γ r,c

v and NGS
3 =


v∈V N (Γ r,c

v ).
• According to the fourth criterion C4, the target paths are not necessarily optimal with respect to risk: we relax risk

optimality to enlarge the set of target paths with respect to C1 and C2, hoping to capture target paths similar to a shortest
gateway path. In this case, Θv is given by Γ r

v (p) and NGS
4 is made of the internal nodes of all the paths which are risk

suboptimal up to a threshold for at least one vehicle: rρc
v
is the straightforward threshold of risk deterioration and

indirectly provides a bound on p. Any such target path would contribute to risk mitigation if it could be enforced as
a shortest gateway path for the associated vehicle.

Each criterion can be properly combined with a distribution law to sample its ground set: several options are possible.
We investigate the following three probability distributions: (i) a uniform probability distribution over the ground set; (ii) a
distribution which considers howmany vehicles sponsor each node; (iii) a distribution similar to the previous one that also
takes into account the vehicle’s demand. In case of several target paths for each vehicle, alternatives are possible.

4.2. Probability mass functions

Formally, given a ground set NGS , we introduce a probability mass function as a function Φ: NGS
→ [0, 1] so that

Φ(i) = φi, i.e., the probability of selecting a generic node i ∈ N , is null outside of NGS and the pair (Φ , NGS) forms a
probability space, i.e.,


i∈NGS φi = 1 and 0 ≤ φi ≤ 1. In order to enforce such properties, φi is defined as the ratio of a

weight ωi ≥ 0 and the sum of such weights over all nodes in NGS . We propose five different implementations of function Φ

which differ regarding the computation of the node weights {ωi}.
The basic version Φ1 is the uniform probability function, i.e., ωi = 1 and φi =

1
|NGS |

, so that each node in the ground set
gets the same chance of being sampled.
A more refined version Φ2 distinguishes among the nodes in the ground set according to howmany target paths each node
belongs to. Let avi be the number of paths in Θv having i as an internal node. Then, ωi =


v∈V avi.

The third probability mass function Φ3 also considers the influence of vehicle demands. In this case, ωi =


v∈V ϕv avi.
As to the fourth and the fifth cases, we focus on vehicles. Let bvi = 1 if and only if vehicle v sponsors node i (i.e. avi ≥ 1),
bvi = 0 otherwise. According toΦ4, a node’s probability is proportional to the number of its sponsor vehicles:ωi =


v∈V bvi.

According to Φ5, the previous quantity is weighted by the vehicle’s demand so that ωi =


v∈V ϕv bvi.

4.3. Building the set of candidate sites: sampling and covering

Herewe combine the ground set criteria introduced in 4.1with the probability laws introduced in 4.2 in order to generate
the different node subsets that we use as candidate sites in our instances. Note that criteria C1 and C2 can be combined only
with probability mass function Φ1, Φ2 and Φ3, while criteria C3 and C4, which potentially admit more than one target path
for each vehicle, can be combined with all the five probability mass functions, thus yielding a total of 16 combinations.
Two alternative approaches are considered. The first one is based on random sampling and it is made up of the following
steps: select a criterion, build the corresponding ground set, carry out the sampling according to any proper probability
distribution among those introduced in 4.2. Each sample is obtained by sampling without replacement individual nodes
out of the selected NGS according to the selected function Φ until we reach the required size. According to this scheme, our
benchmark policy can be recasted as the pair (C0, Φ1), where criterion C0 simply sets NGS equal to the whole set of nodes N .

The second one consists of a deterministic procedure based on the solution of a combinatorial optimization problem,
where the input is a ground set whose nodes are weighted by the φi coefficients of the distribution law. The procedure
combines heuristic features with an exact solution method. Indeed the criteria and the weights of distribution functions
come from qualitative observations and are used to define the coefficients of an Integer Linear Programming (ILP) model
whichwill be solved exactly. Sincewith samplingwe are not able to guarantee that asmany vehicles as possible have at least
one sponsored node selected as a candidate site, a covering model with cardinality constraint whose objective function is to
maximize such a number can thus be used. A lower priority objective can be added based on the node probabilities φi, which



aims at maximizing their sum over the selected nodes. The hierarchy between the two objective functions is implemented
by using a suitable bigM constant. Formally, we solve the following ILP model:

Pcover
: min M


v∈V

sv +


i∈NGS

(1 − φi) xi (4)


i∈NGS

xi = nCS (5)


i∈NGS

bvi xi + sv ≥ 1 ∀v ∈ V (6)

xi ∈ {0, 1} ∀i ∈ NGS (7)
sv ∈ {0, 1} ∀v ∈ V . (8)

Variables xi are the node selection variables. Coefficients bvi, as previously introduced, are equal to 1 if node i is sponsored
by v. Two types of constraints are present: a cardinality constraint (5), requiring a selection of exactly nCS nodes out of NGS ;
a covering constraint (6) for each vehicle v, requiring that either at least one node among those sponsored by v is selected
or the corresponding slack variable sv is set to 1. Indeed, it may not be possible to cover all vehicles with only nCS nodes.

In addition, an alternative function can be used as the lower priority objective of Pcover that maximizes the product of the
probabilities of the selected nodes, i.e., maxΠi∈NGSφ

xi
i . Actually, for each subset of NGS made of nCS nodes, Πi∈NGSφ

xi
i models

the probability of selecting such nodes according to the sampling procedure described above. Such an objective function can
be easily recast in linear form byminimizing the negative log-likelihood, i.e., min−


i∈NGS ln(φi)xi. Therefore, the resulting

model can still be solved by an ILP solver.
In the next section, previously mentioned policies are experimentally compared. First, the candidate site sets NCS

are computed by the random sampling procedure as well as by the deterministic approach according to each of the 16
aforementioned policies. In the deterministic approach, both the sum and the product based functions are tested as lower
priority objectives in the objective function of model Pcover . Then, each candidate site set NCS is given as input to the GLP
(1)–(3) which is solved by running the k-median based ILP model introduced in [2]. The resulting risk values are used to
compare the candidate site generation policies.

5. Experimental campaign

The aim of the experimental campaign is to provide numerical evidence for the following conjectures concerning the
impact of information guided policies for candidate site generation:

• The stable behavior observed for the random generation case is confirmed for the presented ad hoc policies, so that it is
possible to capturemost of the riskmitigation potential of the whole gateway based strategy byway of a limited number
of open gateways. The minimum number of open gateways required to reach almost the maximum achievable risk
reduction can be computed for each risk function when using information guided policies for candidate site generation.
Although these values vary according to the specific risk function, they are very close to each other.

• For such a fixed number k of open gateways, the same level of risk mitigation that is achieved, on average, by a given
number of randomly generated candidate sites can also be reached, on average, byway of an information guided selection
of a much smaller subset of nodes.

• Conversely, for a fixed size of the candidate site set, an information guided policy reaches on the average a lower risk
threshold than a purely random selection policy.

• Different kinds of information have different levels of effectiveness in selecting promising sets of candidate sites, that is,
containing k nodes with which low risk level solutions are associated.

• Adding proper information to the selection process may also improve the robustness of the solution approach. This may
be the key point when the percentage of nodes in NCS needs to be lowered to tackle larger, real sized network instances
without compromising performance.

5.1. Data set

The experimental campaign was carried out on the same set of instances used in our benchmark [2]. These, in turn, had
been derived from published studies in the field of hazardous material transportation. Instances were built on the data set
described in [9], i.e., an undirected graph with 105 nodes and 134 arcs as an abstraction of the road network of Ravenna
(Italy). For each arc, a positive cost coefficient is given while three different risk functions are considered, yielding three
different networks. Each network has been transformed into a directed network in standard way. In all cases, costs and
risks are not collinear. For all three risk functions, transport risk on the arc is computed by multiplying a population density
figure by the frequency of hazmat release in case of an accident. Regarding population density, the following data is used
in [9] for devising the risk functions: population density on the arc (persons/meter); population density in the proximity of



Table 1
kstab related values.

Risk measure Min kstab Max kstab Avg kstab Var kstab k∗

Aggregate 2 5 4.41 0.424 5
Around-arc 2 5 2.74 0.326 3
On-arc 2 4 3.60 0.324 4

the arc (within a given bandwidth); location and population density at population concentration points (schools, hospitals,
theaters, commercial centers, etc.) within 500 m of the arc. On the basis of this information, three different risk measures
are proposed in [9], namely, on-arc, around-arc, aggregate. More precisely, the aggregate risk function was first used in [8].
A few comments can be made. According to the aggregate risk measure, which depends on the presence of congregation
points near the arc, a considerable percentage of arcs have null risk, providing a patchy risk distribution on the network.
On the other hand, the other two risk measures have no null risk value arc, although risk coefficients span a wide range of
values, varying from almost zero to 5 · 106 for the on-arc measure and an order higher for the around-arc. The on-arc risk
measure tends to be weakly correlated to distance, so that, for most carriers, there is not much difference between the
cheapest and the safest path and thus the gain in applying risk mitigation policies is quite limited. On the contrary, the
around-arc risk measure is uncorrelated to distance, so that risk mitigation policies can really impact population safety.
While we do not question which risk function is the most appropriate, we believe that a risk mitigation policy should be
as robust as possible with respect to how risk is measured; therefore, we test our information guided policies on all of the
three risk measures proposed in the hazmat transport literature. Finally, travel demand data is also taken from [9], i.e., a set
|V | = 35 of commodities along with their origin–destination pairs and shipment requests.

For the required size of NCS , we generate 10 samples of candidate site nodes for each policy based on random sampling
and we compute one candidate site set by way of the deterministic procedure. For each such set NCS , the associated GLP is
solved according to the adversarial scenario regarding driver behavior and to the cost aware scenario regarding the network
administrator. In practice, this means that in case of multiple shortest paths, the riskiest one is selected, while, if the same
risk level is achievedwith a lesser cost, such a solution is preferred. All instances have been solved using Cplex 12.1 on a AMD
Athlon (tm) 64 × 2 Dual Core Processor 4200 + (CPU MHz 2211.186). Running times are negligible and are in the order of
fewmilliseconds. The Pareto frontier of the efficient pathswith respect to risk and cost was computed by an implementation
of the algorithm described in [4], while criterion C4 exploited the code described in [17] which was kindly provided by the
authors.

5.2. Computational results

Hereafter, the following notation is used. ∆R denotes the marginal improvement of the risk mitigation level (i.e., the
marginal risk reduction when opening an additional gateway divided by the risk achieved for k = 1). Likewise, ∆C denotes
the corresponding marginal cost. kstab denotes the minimum value of k such that ∆R becomes negligible (below 0.5%) and
remains such from kstab onward. For each pair (C, Φ), RobIndex denotes howmany samples over 10 reach a risk mitigation
value that is very close to the best one achievable (within 2%).

As a first step, we investigated the stability of k when using ad hoc policies for candidate site generation. In particular,
we wanted to verify if the marginal improvement of the risk mitigation level for increasing values of k tends to 0, as we had
observed in [2] for the benchmark policy. Given a risk function, for each ad hoc policy, for each of the 10 samples, and for
different sizes of the candidate site set, we solved GLP with k ranging from 1 to 10 and computed the respective value of
kstab; Table 1 reports theminimum, themaximum, the average, and the variance of these values. On the basis of this data, we
proposed a value for k for each risk function, that we denote by k∗, to be used in the experimental campaign as the number
of gateways to be opened; these values are reported in the last column of Table 1, i.e., k∗

= 5 for the aggregate risk measure,
k∗

= 3 for the around-arc risk measure, and k∗
= 4 for the on-arc risk measure.

Tables 2–4, pertain to the aggregate, on-arc, and around-arc risk measure, respectively, and report data on risk reduction
computed on the previous set of instances for the proposed values of k∗

± 1. Such data supports our statement concerning
the stability of kwhen using ad hoc policies and confirms our choice regarding the k∗ values. In particular, the first column of
each table reports the percentage marginal improvement in risk reduction with respect to the case k = 1 when comparing
the values k∗

− 1 to k∗, while the second column reports the values when increasing k’s value from k∗ to k∗
+ 1. It can

be noted that, for all risk measures, the average value is by and large below the 0.5% threshold required for stability when
going from k∗ to k∗

+1 (second column), whereas it goes beyond this threshold when going from k∗
−1 to k∗ (first column).

Furthermore, when increasing the value of k∗ (second column) in all tables, the maximum increase is always below 1%, the
minimum is 0, and, notably, variance is at most 0.02. This data supports the idea that the gain in further adding another
open gateway to the k∗ open ones is very limited.

Having set k = k∗, let us analyze the data provided in Tables 5–10 related to the random sampling based approach. Here,
the average of the 10 instances corresponding to the 10 samples is considered for all configurations, which is to say, for each
pair (C, Φ) and for each considered size of the candidate site set, namely 20%, 25%, and 30% of the nodes. The risk function
values are expressed as the percentage gap from the values of a reference solution obtained by solving the GLP with 100% of
the network nodes as candidate sites (NCS

= N) and using k = k∗ for each risk measure. The columns report, from left to



Table 2
Stability analysis on risk function aggregate.

k∗ vs k∗
− 1 k∗

+ 1 vs k∗

Min %∆R 0.00 0.00
Max %∆R 0.73 0.34
Avg %∆R 0.57 0.23
Var %∆R 0.04 0.01

Table 3
Stability analysis on risk function on-arc.

k∗ vs k∗
− 1 k∗

+ 1 vs k∗

Min %∆R 0.05 0.00
Max %∆R 1.01 0.33
Avg %∆R 0.67 0.20
Var %∆R 0.06 0.01

Table 4
Stability analysis on risk function around-arc.

k∗ vs k∗
− 1 k∗

+ 1 vs k∗

Min %∆R 0.37 0.00
Max %∆R 1.71 0.92
Avg %∆R 0.88 0.41
Var %∆R 0.07 0.02

right, the policy name expressed as criterion-Φ-percentage, the average, the variance, the minimum and the maximum on
the 10 instances; column (RobIndex) reports howmany cases out of 10 achieve a valuewithin 2% from the reference solution
value and we intend it as a robustness indicator; finally, the last column reports information on the cost of the solutions,
i.e., the average percentage increase with respect to the cost of the reference solution. The top of Tables 5, 7 and 9 reports
the values obtained for the benchmark policy, which is referred to as the pair (C0, Φ1).

For both the aggregate and the around-arc risk measures, every information guided policy improves, on average, upon
the benchmark policy (C0, Φ1) for the same size of NCS . Regarding the on-arc risk measure, any policy based on criteria C1
and C2 improves upon (C0, Φ1) for any percentage. On the contrary, policies (C3, Φ1) and (C4, Φ1) are worse for the 20%
case, while (C4, Φ4) and (C4, Φ5) are worse than (C0, Φ1) for any percentage.

It should be said that, for the on-arc risk measure, there is little room for risk reduction probably due to its weak
correlation to the cost function. Therefore, it is very challenging to improve upon the unregulated scenario.

It appears that, for any criteria, function Φ1 is too naive, which also means that the information about how many paths
to which a node belongs as well as the demand of the associated vehicles play a role, especially when the size of the ground
set is much larger than nCS . Criterion C3 deserves some further comment. All associated policies have a high variance and
the performance of each policy differs according to the risk measure. This suggests that, while the intuition of using the
paths on the Pareto frontier as a reference should not be discarded as a whole, the node selection procedure has to be
refined. Intuitively, too many paths have been considered as target paths, including the shortest paths, leading us towards
the unregulated scenario concerning risk. At the same time, however, not enough significant cost decreases can be correlated
to this criteria to support its use in the present form. A similar observation holds for criterion C4. We believe that this is due
to the current value p = 5 probably being too large for sparse networks. For this reason C4 is disregarded from any further
analysis. Finally, it is evident that policy (C2, Φ3) not only is the onewith the best performance but also themore robustwith
respect to risk measures. Concerning the size of the candidate sites, results suggest that the 30% percentage value captures
the maximum level of risk mitigation that is achievable using the GLP method. Indeed, for most of the policies, the risk
level of the best solution is the same as the one achieved when the candidate sites comprises the whole set of nodes. Thus,
30% represents a satisfactory trade-off between the candidate sites size and the solution quality. For this reason results are
reported for the 30% percentage only from now on.

For each risk measure, Figs. 2–4 show the boxplot of the 10 solution values for percentage value 30% and k = k∗. The
median is the bolded row within the box which divides the second from the third percentile; whiskers span the first and
the fourth percentiles; single points denote outliers (∗), i.e., values that are between 1.5 and 3 box lengths from either end
of the box, and extremes (◦), i.e., values that are more than 3 box lengths from either end of the box.

Regarding the deterministic variant of the candidate site generation procedure, where NCS is computed by solving Pcover ,
in Tables 11–13 we report the numerical results for both the sum based and the product based lower priority objective
functions. These are denoted by the sum and product symbol


and


, respectively. It can be noted that


and


yield

basically the same results; indeed, they are identical for the aggregate risk function. Concerning the around-arc and the on-
arc risk functions, differences arise only for the policies involving the Φ1 probability mass function, where all nodes in the
ground set have the same coefficient in the lower priority objective function. A possible explanation is that several optimal



Table 5
Statistic information on risk function aggregate for criteria C1 , C2 , and C3 .

Policy + %Gtw Avg %∆R Var %∆R Min %∆R Max %∆R RobIndex Avg %∆C

C0-81-20% 17.19 254.39 0.75 49.32 2 0.28
C0-81-25% 8.15 93.09 0.06 25.37 5 3.71
C0-81-30% 6.47 73.79 0.05 18.97 6 5.57

C1-81-20% 6.27 70.27 0.09 19.21 6 3.24
C1-81-25% 4.32 51.59 0.00 17.81 7 2.03
C1-81-30% 3.52 50.95 0.00 17.33 8 3.94

C1-82-20% 3.66 49.39 0.00 17.19 8 2.10
C1-82-25% 3.68 50.01 0.00 17.39 8 0.88
C1-82-30% 2.37 29.17 0.00 16.79 8 2.80

C1-83-20% 8.53 66.75 0.02 23.50 3 −0.73
C1-83-25% 3.50 52.37 0.00 22.81 7 0.04
C1-83-30% 0.61 3.63 0.00 6.04 9 0.09

C2-81-20% 7.29 75.75 0.34 17.61 6 −0.36
C2-81-25% 5.39 67.71 0.00 17.77 7 0.40
C2-81-30% 1.91 29.57 0.00 17.37 9 0.45

C2-82-20% 10.01 109.63 0.00 23.47 5 −1.11
C2-82-25% 10.50 77.75 0.02 17.61 4 −1.46
C2-82-30% 5.15 64.44 0.00 16.79 7 0.98

C2-83-20% 7.77 72.19 0.00 23.21 4 −1.86
C2-83-25% 2.06 8.43 0.00 6.38 7 −1.90
C2-83-30% 0.01 0.00 0.00 0.02 10 −0.56

C3-81-20% 11.28 370.06 0.09 61.11 5 0.90
C3-81-25% 13.41 60.52 0.09 18.97 2 −1.33
C3-81-30% 5.93 84.16 0.05 21.13 7 2.68

C3-82-20% 5.94 69.34 0.02 23.49 5 −1.08
C3-82-25% 5.50 70.79 0.00 23.35 6 0.78
C3-82-30% 4.95 50.47 0.02 18.02 6 1.12

C3-83-20% 5.84 49.00 0.03 23.21 4 −0.78
C3-83-25% 5.73 44.39 0.03 17.93 4 −1.50
C3-83-30% 2.27 8.13 0.00 6.06 6 −1.18

C3-84-20% 12.38 136.35 0.06 24.91 4 −2.79
C3-84-25% 3.82 29.61 0.02 17.61 5 0.67
C3-84-30% 4.27 51.02 0.02 17.79 7 −1.37

C3-85-20% 5.36 38.73 0.49 21.38 3 −6.25
C3-85-25% 14.59 70.40 0.47 21.62 1 −4.68
C3-85-30% 6.53 73.96 0.00 20.98 5 −3.91

Table 6
Statistic information on risk function aggregate for criterion C4 .

Policy + %Gtw Avg %∆R Var %∆R Min %∆R Max %∆R RobIndex Avg %∆C

C4-81-20% 8.92 99.97 0.34 25.79 4 2.66
C4-81-25% 5.66 49.31 0.04 18.42 5 1.19
C4-81-30% 4.20 49.76 0.04 17.39 7 2.49

C4-82-20% 6.29 72.41 0.02 23.96 5 −1.35
C4-82-25% 6.33 89.23 0.00 24.01 6 −1.33
C4-82-30% 2.43 28.93 0.00 16.79 8 2.62

C4-83-20% 3.18 9.49 0.02 6.86 5 −1.21
C4-83-25% 4.55 49.11 0.00 17.39 6 −1.33
C4-83-30% 1.66 7.28 0.00 6.49 7 3.76

C4-84-20% 5.90 46.62 0.09 17.47 5 1.69
C4-84-25% 0.27 0.08 0.02 0.78 10 4.06
C4-84-30% 0.17 0.03 0.02 0.47 10 5.31

C4-85-20% 4.90 24.60 0.09 16.77 3 0.69
C4-85-25% 2.86 9.13 0.02 6.49 5 2.29
C4-85-30% 0.57 1.69 0.02 4.23 9 1.94

solutions to Pcover are present whenever a cover, i.e., a subset of nodes in the ground set such that each vehicle sponsors at
least one node in the subset, is made of less than the required number of nodes, i.e., nCS . In this case, the set NCS can be built
by completing this cover in more than one way. The selection of the additional nodes required to reach the requested size
is thus guided by the lower objective function according to the φi coefficients. Therefore, in case of Φ1, all solutions to Pcover

obtained by completing a cover have the same objective function value. Moreover, due to the cardinality constraint (5), the



Table 7
Statistic information on risk function around-arc for criteria C1 , C2 , and C3 .

Policy + %Gtw Avg %∆R Var %∆R Min %∆R Max %∆R RobIndex Avg %∆C

C0-80-20% 36.64 979.24 3.10 104.27 0 2.78
C0-80-25% 20.88 450.99 0.48 53.14 1 3.30
C0-80-30% 12.12 155.68 0.01 43.40 1 2.17

C1-81-20% 7.41 216.77 0.49 48.57 2 −0.39
C1-81-25% 8.07 250.94 0.00 52.50 3 −0.04
C1-81-30% 6.22 197.03 0.00 46.00 3 −0.24

C1-82-20% 0.92 1.01 0.00 2.58 7 −0.66
C1-82-25% 0.22 0.08 0.00 0.60 10 −0.42
C1-82-30% 0.05 0.02 0.00 0.49 10 −0.10

C1-83-20% 0.57 0.96 0.00 2.58 8 −0.41
C1-83-25% 0.05 0.02 0.00 0.48 10 −0.11
C1-83-30% 0.00 0.00 0.00 0.00 10 0.00

C2-81-20% 1.09 0.97 0.00 2.23 6 −0.63
C2-81-25% 1.52 4.51 0.00 6.63 6 −0.62
C2-81-30% 0.54 1.04 0.00 2.67 8 −0.32

C2-82-20% 0.73 0.64 0.00 2.20 8 −0.74
C2-82-25% 0.49 0.83 0.00 2.20 8 −0.21
C2-82-30% 0.22 0.48 0.00 2.20 9 −0.05

C2-83-20% 0.00 0.00 0.00 0.00 10 0.00
C2-83-25% 0.00 0.00 0.00 0.00 10 0.00
C2-83-30% 0.00 0.00 0.00 0.00 10 0.00

C3-81-20% 21.82 1860.64 0.56 136.40 1 −0.41
C3-81-25% 16.69 528.97 0.02 56.59 2 1.61
C3-81-30% 2.61 5.36 0.00 6.64 3 −0.94

C3-82-20% 6.20 208.04 0.02 46.86 5 −0.30
C3-82-25% 1.57 4.56 0.00 6.64 6 −0.76
C3-82-30% 0.70 0.98 0.00 2.80 8 −0.58

C3-83-20% 11.89 417.64 0.02 51.15 5 0.77
C3-83-25% 17.27 543.84 0.49 53.79 3 2.65
C3-83-30% 1.73 1.23 0.00 2.80 3 −0.73

C3-84-20% 6.77 196.84 0.48 46.38 3 −0.45
C3-84-25% 1.99 3.89 0.00 6.63 4 −0.86
C3-84-30% 7.07 257.38 0.00 52.12 5 0.49

C3-Φ5-20% 2.72 7.52 0.00 7.96 4 −1.28
C3-85-25% 8.17 218.02 0.00 49.05 4 −0.66
C3-85-30% 1.71 1.37 0.00 2.68 4 −1.15

Table 8
Statistic information on risk function around-arc for criterion C4 .

Policy + %Gtw Avg %∆R Var %∆R Min %∆R Max %∆R RobIndex Avg %∆C

C4-81-20% 7.97 41.93 0.50 22.56 1 −0.46
C4-81-25% 11.33 285.85 0.48 56.59 2 2.14
C4-81-30% 8.51 190.15 0.48 46.48 3 0.38

C4-82-20% 6.44 206.39 0.01 46.85 5 −0.28
C4-82-25% 1.60 1.12 0.00 2.62 4 −0.84
C4-82-30% 0.58 0.98 0.00 2.59 8 −0.41

C4-83-20% 3.41 12.27 0.00 7.11 5 −1.06
C4-83-25% 0.82 1.26 0.00 2.79 7 −0.42
C4-83-30% 2.11 3.86 0.00 6.64 3 −0.73

C4-84-20% 8.43 213.71 0.00 49.05 2 0.11
C4-84-25% 2.45 3.11 0.00 6.63 2 −0.82
C4-84-30% 1.12 5.44 0.00 7.48 8 −0.51

C4-85-20% 3.72 21.34 0.01 14.66 4 −0.22
C4-85-25% 4.35 16.67 0.00 10.30 4 −1.24
C4-85-30% 6.54 20.07 2.20 14.66 0 −0.29


and the


objective functions share the same set of optimal solutions. As a consequence, the returned optimal solution

is chosen arbitrarily by the ILP solver in this set. However, different optimal solutions provide different NCS sets which, in
turn, may yield different GLP solutions with different risk values.

Asmentioned,


and


yield dissimilar results for the risk functions on-arc and around-arc but not for the aggregate risk
function, which is the only one with zero-risk arcs. We suppose that in such a case, target paths of different vehicles tend



Table 9
Statistic information on risk function on-arc for criteria C1 , C2 , and C3 .

Policy + %Gtw Avg %∆R Var %∆R Min %∆R Max %∆R RobIndex Avg %∆C

C0-81-20% 1.98 0.83 0.27 3.55 5 −3.05
C0-81-25% 2.30 0.52 1.65 4.06 4 −2.03
C0-81-30% 1.87 1.35 0.26 4.16 6 −2.32

C1-81-20% 0.90 0.85 0.00 1.87 10 −1.71
C1-81-25% 0.90 0.74 0.00 1.95 10 −1.44
C1-81-30% 0.48 0.95 0.00 2.84 9 0.12

C1-82-20% 0.71 0.77 0.00 1.95 10 −1.64
C1-82-25% 0.04 0.01 0.00 0.26 10 0.08
C1-82-30% 0.64 0.69 0.00 1.67 10 −1.74

C1-83-20% 0.49 0.46 0.00 1.64 10 0.50
C1-83-25% 0.25 0.28 0.00 1.26 10 0.84
C1-83-30% 0.00 0.00 0.00 0.00 10 0.00

C2-81-20% 1.15 0.60 0.00 1.68 10 −1.17
C2-81-25% 1.50 0.20 0.27 1.86 10 −2.26
C2-81-30% 0.17 0.25 0.00 1.59 10 −0.44

C2-82-20% 0.36 0.45 0.00 1.67 10 −0.29
C2-82-25% 0.05 0.01 0.00 0.26 10 0.07
C2-82-30% 0.32 0.45 0.00 1.59 10 −0.91

C2-83-20% 0.17 0.16 0.00 1.29 10 0.34
C2-83-25% 0.02 0.00 0.00 0.04 10 −0.08
C2-83-30% 0.01 0.00 0.00 0.04 10 0.01

C3-81-20% 2.18 0.81 0.30 3.43 4 −2.21
C3-81-25% 1.67 0.47 0.03 2.84 9 −3.04
C3-81-30% 0.97 1.20 0.00 3.06 9 −2.28

C3-82-20% 1.66 0.72 0.03 3.04 8 −0.31
C3-82-25% 1.18 1.33 0.00 2.98 8 −0.35
C3-82-30% 1.06 1.52 0.00 3.03 8 −1.60

C3-83-20% 1.17 1.80 0.00 2.98 7 −1.23
C3-83-25% 0.98 1.34 0.00 2.84 8 0.33
C3-83-30% 1.21 0.64 0.00 2.84 9 1.44

C3-84-20% 1.43 0.98 0.06 2.91 8 −1.58
C3-84-25% 0.94 0.93 0.00 2.84 9 −0.27
C3-84-30% 0.30 0.35 0.00 1.59 10 0.01

C3-85-20% 1.09 0.97 0.00 2.84 9 −2.37
C3-85-25% 1.00 0.90 0.00 2.84 9 0.89
C3-85-30% 0.27 0.32 0.00 1.46 10 0.28

Table 10
Statistic information on risk function on-arc for criterion C4 .

Policy + %Gtw Avg %∆R Var %∆R Min %∆R Max %∆R RobIndex Avg %∆C

C4-81-20% 2.21 1.83 0.07 4.62 7 −2.90
C4-81-25% 1.21 1.14 0.03 2.97 9 −2.57
C4-81-30% 1.65 2.48 0.02 4.54 7 −1.85

C4-82-20% 1.48 1.50 0.02 3.33 7 −0.34
C4-82-25% 0.82 0.72 0.00 2.02 9 −0.38
C4-82-30% 0.64 0.65 0.00 1.68 10 −0.83

C4-83-20% 1.22 0.81 0.00 2.68 9 −0.21
C4-83-25% 0.66 0.47 0.00 1.49 10 1.49
C4-83-30% 0.94 0.86 0.00 2.84 9 2.11

C4-84-20% 2.43 1.11 1.46 4.28 5 −1.30
C4-84-25% 2.32 0.86 1.26 3.43 5 −2.67
C4-84-30% 1.79 0.48 1.26 3.26 8 1.09

C4-85-20% 2.04 2.28 1.26 6.13 8 −0.32
C4-85-25% 2.31 1.13 1.46 4.57 6 −1.11
C4-85-30% 2.20 0.76 1.25 3.25 5 −0.25

to have few nodes in common and, consequently, covers with few nodes tend to be quite rare. Therefore, we can conclude
that, whatever the criterion, a policy that does not discriminate among the nodes in the ground set, i.e., using the uniform
probability mass function, is not robust.

These results suggest that the deterministic approach provides an effective tool for candidate site generation. In fact,
for all policies and risk measures, it provides solutions as good as the average of the solution values over the 10 instances



Fig. 2. BoxPlot representation of the percentage risk reductions for risk measure aggregate, k = k∗ , and nCS = 30%|N|.

Fig. 3. BoxPlot representation of the percentage risk reductions for risk measure around-arc, k = k∗ , and nCS = 30%|N|.

computed by the random sampling procedure (reported in column Avg%∆R), while, for policy (C2, Φ3), the deterministic
approach achieves the best solution values (reported in column Min %∆R).

The GLP effectiveness has already been experimentally proved in [2] and it is not a target of this paper. However, it is
worth providing additional information in order to rank GLP solutions in the range between the two extremes provided
by the risk level achieved in the over regulated scenario and the one achieved in the unregulated scenario, denoted by
R(over regulated) and R(unregulated), respectively. In the former each vehicle is forced by the authority to follow the
minimum risk path, while in the latter each vehicle follows its minimum cost path. These two values provide a lower
and an upper bound to risk level and are commonly used in the literature to evaluate the risk reduction achieved by
any risk mitigation policy [9]. Due to the exemption mechanism, the risk of our solution is guaranteed to belong to this
interval. Table 14 reports the risk of our reference solution R(GLP) obtained by solving GLP with NCS

= N and k∗ open
gateways for each riskmeasure. This data indirectly allows to evaluate the quality of the information guided policy solutions
reported in Tables 5–10. At a glance, consider that the percentage gap between the minimum and the maximum risk, i.e.,
(R(unregulated) − R(over regulated))/R(over regulated), is 1669.14%, 257.13%, and 13.61%, for the aggregate, around-arc,
and on-arc risk measure, respectively. By making R(over regulated) 0 and R(unregulated) 100, our reference solution ranks



Table 11
Results of the deterministic approach for risk measure
aggregate—30%.

Policy
 
%∆R %∆C %∆R %∆C

C1-81 0.00 0.30 0.00 0.30
C1-82 0.02 −1.41 0.02 −1.41
C1-83 0.02 −1.10 0.02 −1.10
C2-81 0.34 −0.04 0.34 −0.04
C2-82 0.00 −0.01 0.00 −0.01
C2-83 0.00 −0.01 0.00 −0.01
C3-81 0.88 6.45 0.88 6.45
C3-82 0.02 −3.47 0.02 −3.47
C3-83 6.04 −3.76 6.04 −3.76
C3-84 6.04 −3.75 6.04 −3.75
C3-85 6.04 −3.71 6.04 −3.71
C4-81 28.50 −5.18 28.50 −5.18
C4-82 0.02 4.73 0.02 4.73
C4-83 0.02 −1.11 0.02 −1.11
C4-84 0.02 −1.10 0.02 −1.10
C4-85 6.04 −3.46 6.04 −3.46

Table 12
Results of the deterministic approach for risk measure
around-arc—30%.

Policy
 
%∆R %∆C %∆R %∆C

C1-81 46.48 4.61 0.49 −1.04
C1-82 0.00 0.00 0.00 0.00
C1-83 0.00 0.00 0.00 0.00
C2-81 0.00 0.00 0.00 0.00
C2-82 0.00 0.00 0.00 0.00
C2-83 0.00 0.00 0.00 0.00
C3-81 0.64 −1.01 8.08 −1.82
C3-82 0.01 0.00 0.01 0.00
C3-83 46.38 5.51 46.38 5.51
C3-84 0.00 0.00 0.00 0.00
C3-85 11.73 −0.76 11.73 −0.76
C4-81 74.92 1.30 21.79 11.71
C4-82 0.00 0.00 0.00 0.00
C4-83 0.00 0.00 0.00 0.00
C4-84 0.00 0.00 0.00 0.00
C4-85 7.11 −2.54 7.11 −2.54

Table 13
Results of the deterministic approach for riskmeasure
on-arc—30%.

Policy
 
%∆R %∆C %∆R %∆C

C1-81 2.00 −4.55 2.01 −4.52
C1-82 1.25 4.18 1.24 4.18
C1-83 1.25 4.18 1.25 4.18
C2-81 1.74 −3.84 1.93 −4.62
C2-82 0.00 0.00 0.00 0.00
C2-83 0.00 0.00 0.00 0.00
C3-81 2.10 −4.30 2.01 −4.52
C3-82 1.25 4.18 1.25 4.18
C3-83 1.25 4.18 1.25 4.18
C3-84 1.25 4.18 1.25 4.18
C3-85 1.25 4.18 1.25 4.18
C4-81 4.20 −5.62 4.20 −5.62
C4-82 1.25 4.18 1.25 4.18
C4-83 1.25 4.18 1.25 4.18
C4-84 1.51 4.04 1.51 4.04
C4-85 1.51 4.04 1.51 4.04



Fig. 4. BoxPlot representation of the percentage risk reductions for risk measure on-arc, k = k∗ , and nCS = 30%|N|.

Table 14
Risk range width and GLP efficacy.

Risk measure R (unregulated) R (GLP) R (over regulated)

Aggregate 2208,839,655 396,152,220 124,854,028
Around-arc 7229,256,314 2079,803,990 2024,247,704
On-arc 567,773,424 514,788,176 499,767,899

at 13.02%, 1.07%, and 22.09%, for the aggregate, around-arc, and on-arc risk measure, respectively. It can be noted that
when the window is large, there is room for improvement and indeed we achieve large risk reductions. However, when
the unregulated solution is not very different from the over regulated one, our method is still able to reach almost 80% of
the achievable risk reduction.

In summation, we can affirm that policy (C2, Φ3) is the best performing and the most robust with respect to size of the
candidate site set and risk measure. In fact, a considerable gain is achieved with respect to the benchmark policy and the
variance on the 10 instances is small. Enlarging the set of target paths to efficient paths or to risk suboptimal paths increases
the variance of the results quality. We believe that these ideas deserve more investigation and that these new criteria must
be strengthened by acquiring more information in order to guarantee that we trade what we relax on the risk side for a real
improvement on the cost side.

6. Conclusions and open issues

This paper is concernedwith the first step to solving theGateway Location Problem (GLP), a newproblem in combinatorial
optimization arising in the framework of rule-based policies for risk mitigation in hazardous material transportation. GLP
consists of installing k gateways at as many locations selected out of a set of candidate sites, NCS , and assigning to each
vehicle one of such gateways as a compulsory check point along its route from origin to destination. Previous experience, in
which NCS was randomly sampled on the whole set of the network nodes, has shown that the features of NCS may influence
the performance of the whole approach. Here, different policies for building NCS have been proposed and tested. Each policy
is made of two phases, the generation of a ground set NGS and a distribution law for sampling NCS out of NGS . Furthermore,
for each policy, the deterministic variant has also been studied in which the probabilities of each node in NGS being sampled
are used as weights in a covering-like, ILP problem. Such policies have been tested on realistic instances taken from the
literature of hazmat transit.

First of all, for all policies, a limited number of open gateways is sufficient to provide a good level of risk mitigation.
Furthermore, the results provide computational evidence that some of the information guided policies are quite effective
in selecting a good quality subset of nodes, i.e., a subset containing k nodes with which low risk solutions are associated.
When compared to the purely random generation policy, such information guided policies allow us to achieve, on average,
the same level of risk mitigation with less candidate sites, or a lower level of risk with the same number of candidate sites.
These policies prove to be more robust in the sense of reducing the variance of risk level mitigation achieved over the



generated samples. If willing to get rid of any random component in the whole process, one can resort to the deterministic
variant for the NCS generation, which also proved to be effective.
The same behavior for the three risk functions has been observed in the majority of the cases, adding more generality to our
findings. Different levels of risk reduction have been achieved for each risk function. However, the range width of the risk
levels associatedwith the solutions of the over regulated scenario and the unregulated scenario varies remarkably according
to the risk function, and this may explain the previous behavior.

We can conclude that this initial step towards a GLP solution, i.e., candidate site generation, deserves as much attention
as solving GLP itself, in order to exploit all the potentials of GLP as a risk mitigation policy. Information guided policies,
which reduce the size of the candidate site set required to achieve most of the risk mitigation potential of GLP, have been
presented. Basically, the tools so far developed for risk mitigation by GLP are all risk driven. At the same time, however, the
issue of cost control seems to be open and requires ad hoc strategies. Indeed, the issue of a controlled trade-off between risk
and cost within GLP is currently under investigation.
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