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1. Introduction

Soils are ubiquitously structured and heterogeneous, exhibiting spa-
tial and directional variations on a range of scales. Western et al. (2002)
consider a triplet of scales expressed in terms of data spacing, support
and extent. Neuman and Di Federico (2003) discuss isotropic and direc-
tional dependencies on scales of measurement (data support), observa-
tion (extent of flow-related phenomena such as a dispersing solute
plume), sampling window (domain of investigation), spatial correlation
(structural coherence), and spatial resolution (descriptive detail).

Direction and/or scale dependent spatial statistics of sedimentary rock
and soil hydraulic properties have been analyzed (among others) by
Hewitt (1986), Molz and Boman (1993), Molz et al. (1997), Deshpande
et al. (1997), Tennekoon et al. (2003), Castle et al. (2004), Guadagnini
et al. (2012a), Riva et al. (in press), and Zimmermann et al. (2013).

Spatial (and/or temporal) increments of hydrogeophysical data are
often associated with heavy-tailed sample frequency distributions (e.g.,
Painter, 1996; Yang et al., 2009; Riva et al., 2013, in press). In some
cases, these distributions display a transition from heavy tailed to near
Gaussian with increasing separation scale or lag (Liu and Molz, 1997;
Painter, 2001; Ganti et al., 2009; Riva et al., 2013, in press; Guadagnini
et al., 2012a). Liu and Molz (1997), Riva et al. (2013, in press) and
Guadagnini et al. (2012a) analyzed spatial increments of log hydraulic
conductivities in various laboratory and field settings, finding their
frequency distributions to be reasonably well represented by a Lévy- or
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α-stable distribution (Samorodnitsky and Taqqu, 1994). These distribu-
tions have power-law tails characterized by a positive Lévy or stability
index,α, that decreases from2 in theGaussian case to 1 (or less in theory)
as the tails widen.

Much less has been done and published about direction and scale
dependent spatial statistics of soil and sediment texture characteristics
(such as percent sand, silt, clay and bulk density) which in turn impact
the associated hydraulic properties (e.g. porosity, saturated hydraulic
conductivity and constitutive relationships between relative hydraulic
conductivity, capillary pressure and saturation); most related publica-
tions consider particle-size indicators to scale (contrary to our findings
below) as multifractals (Miranda et al., 2006; Zeleke and Si, 2006;
Vidal Vázquez et al., 2008; Wang et al., 2008; Martín et al., 2009). In
this paper we analyze the statistical scaling properties of soil and sedi-
ment texture data measured to a depth of 15 m over an area of
3600 m2 in a vadose zone near Maricopa, Arizona. The data include
soil composition in terms of sand, silt and clay fractions as well as
their principal components and logit transforms. The logit transform al-
lows extending the support of variables constrained between upper and
lower limits (such as 0 and 1 in the case of sand fraction) to the infinite
domain of positive and negative real numbers.

2. Materials and methods

2.1. Site description

Work at the Maricopa site was initially funded by the U.S. Nuclear
Regulatory Commission with the aim of improving our ability to moni-
tor and model water flow and solute transport in a deep vadose zone
analogous to that found at the (now defunct) Yucca Mountain, Nevada,
potential underground high level nuclear waste repository site (Young
et al., 1999; Thomasson and Wierenga, 2003; Wang et al., 2003). Addi-
tional characterization of soil and sediment texture and hydraulic prop-
erty distributions, as well as flow modeling, at the Maricopa site were
conducted for scientific purposes a few years later under the auspices
of the U.S. National Science Foundation (Fang, 2009; Schaap, 2013).
The site is located in a broad alluvial valley with thick near-horizontal
sedimentary deposits that vary between gravel and clay with a fine
loamy soil at the surface. The complex has been sampled at 1029 loca-
tions along several vertical boreholes and a horizontal transect, shown
in Fig. 1. As bulk density data are limited to theupper 5 mof the soil pro-
file, we focus our analysis in this paper on particle size samples collected
down to a depth of 15 m. Additional details about the site and the sam-
pling procedure are given by Schaap (2013).

2.2. α-Stable distributions

We noted in the Introduction that frequency distributions of spatial
increments in a range of variables are reasonably well represented by a
Lévy- or α-stable distribution (Samorodnitsky and Taqqu, 1994). An α-
stable probability distribution is characterized by four real-valued pa-
rameters: Lévy or stability index α ∈ (0, 2], skewness β ∈ [−1, 1],
scale σ N 0 and shift μ. The distribution is defined by its characteristic
function written, among other possible forms (Samorodnitsky and
Taqqu, 1994), as
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where Z is an α-stable variable, 〈〉 represents expected value (ensemble
mean), ϕ is a real-valued parameter and sign(ϕ) = 1, 0,−1 if ϕ N 0, =
0, b 0, respectively. When α = 2 the distribution becomes Gaussian. In
Section 3 belowwe compute an estimate θ̂¼ α̂; β̂; σ̂ ; μ̂

� �
of the parame-

ter vector θ = (α, β, σ, μ) by the maximum likelihood (ML) method
using the computer code STABLE developed byNolan (2001).ML entails
maximizing the likelihood

l θð Þ ¼
Xn
j¼1

log f Z j θj Þ
�

ð2Þ

with respect to θwhere zj is the jth sample of Z n is sample size and f(Z |
θ) the conditional probability density function (pdf) of Z. STABLE yields
reliable estimates of stable densities for α N 0.1. A detailed description
of the STABLE algorithm is given by Nolan (1997).

3. Results and discussion

3.1. Statistical analysis of particle size data

Our analysis focuses on particle size data given as fractions fi,
0 ≤ fi ≤ 1, of three texture categories i = sa, si and cl representing
sand, silt and clay, respectively. We employ the US Department of Agri-
culture (USDA) classification according to which particles having diam-
eters of less than 0.002 mm are categorized as clay, those having
diameters between 0.002 mmand 0.05 mm form silt, and all larger par-
ticles constitute sand. A textural triangle of all particle-size samples
(Schaap, 2013) indicates that most fall into sand, loamy sand and
sandy loam textural classes and relatively few into loam, clay loam,
sandy clay loam and silt loam classes. The data delineate an elongated
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Fig. 1. Spatial distribution of the sampling network at Maricopa experimental site. Gray scale represents measured relative sand fraction, fsa.



cluster of points that suggest a rough correlation between sand and clay
fractions caused partly by the need for sand, silt and clay tomake up the
whole of each sample and partly by the site's depositional history. It is
possible to reduce the number of dominant variables from three to
two by defining principal components of fi, labeled PC1 and PC2, parallel
and transverse to the longitudinal axis of the cluster. Schaap has done so
on the basis of 520 representative samples demonstrating that whereas
PC1 carries 92% of the cluster variance due primarily to variations in the
sand fraction, PC2 carries 8% of the variance due in large part to fluctu-
ations in the clay fraction. Schaap placed the origin of the coordinates at

the triangle center, which renders some of his PC1 and PC2 values neg-
ative. We include these, as well as logit transforms li = ln [fi / (1 − fi)]
of fi, in our analysis. Logit transforms allow us to extend the support of fi
from the positive unit domain (0,1) to the unbounded domain of all pos-
itive and negative real numbers, (−∞, ∞); we exclude from consider-
ation 11 li values corresponding to zero and unit fractions fi.

Fig. 2 depicts frequency distributions of sampled fi, li, PC1 and PC2
values together with theoretical α-stable pdfs fitted to these distribu-
tions according to the methodology described in Section 2.2. Gaussian
pdfs, included in Fig. 2 for comparison, are characterized by α = 2 and
zero skewness. Whereas the tails of a Gaussian pdf decay exponentially,
those of stable pdfs with α b 2 follow a power law; the smaller is α, the
heavier are the tails. Table 1 listsML parameter estimates ofα-stable pdfs
depicted in Fig. 2 and their 95% confidence limits. Estimates of the skew-
ness parameter β corresponding to estimates α̂ of α close to 2 are not re-
liable because the pdf is not sensitive to β when α → 2. This is the case
with fsa, fsi, fcl, PC1 and PC2 in Table 1. We used Kolmogorov–Smirnoff
(K–S) and Shapiro–Wilk (W) tests of normality at significance levels of
0.01, 0.05 and 0.10 to evaluate the hypothesis that fsa, fsi, fcl and PC1 are
Gaussian. Both tests reject the Gaussian hypothesis in all cases except
that of fsa which passes the K–S test at significance levels 0.01 and 0.05.
Normal probability plots (not shown) support these findings.

Whereas pdfs fitted to fi and PC1 distributions in Fig. 2 are seen to be
near symmetric with mild tails those fitted to lsa, lsi, lcl and PC2 are
skewed (the first to the right with positive β̂ , the rest to the left with
negative β̂ , Table 1) with heavier tails (1:400≤ α̂≤1:858). Principal
component PC1, being related largely to the variability of fsa, is charac-
terized by α̂ = 2 as is the latter; PC2, being related more closely to
the variability of fsi and fcl, is characterized by α̂ b 2 as are they.

3.2. Statistical scaling of vertical particle size increments

Next we analyze the statistical distribution and scaling of incremen-
tal fsa, fsi, fcl, lsa, lsi, lcl, PC1 and PC2 values in the vertical direction. We
consider vertical separation distances, or lags, sv, ranging from zero to
8.5 m, slightly more than half the vertical dimension of the sampled
soil volume. As noted by Schaap (2013), most wells were sampled at
vertical intervals of 0.25 m. This allows us to compute increments at
lags 0 m ≤ sv ≤ 1.6 m by grouping the data into bins of vertical length
Δbv = 0.2 m, at lags 1.6 m b sv ≤ 2.0 m into one bin of length Δbv =
0.4 m, and at larger lags 2.0 m b sv ≤ 8.5 m into bins Δbv = 0.5 m.
We thus obtain a maximum number of 1489 increments at sv =
2.00 m and a minimum number of 507 at sv = 8.50 m; the total num-
ber of vertical (and horizontal) increments for various lags is shown in
Fig. S1.

Vertical increments are seen to vary randomly and intermittently
throughout the domain. The amplitude of these variations is seen to
be largest for sand fraction and smallest for clay fraction. Fig. S2 illus-
trates this by catenating sequences of vertical increments in fsa, fsi and
fcl at vertical lags sv = 0.4, 2.0 and 5.0 m. Similar qualitative behavior
is exhibited by vertical increments in lsa, lsi and lcl as well as by PC1
and PC2 (not shown).

Frequency distributions of vertical increments associated with all
variables tend to be symmetric and exhibit heavy tails. Fig. 3 depicts,
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Fig. 2. Frequency distributions (symbols) of (a) fi (i = sa, si, cl), (b) li = ln(fi / (1 − fi))
and (c) PC1 and PC2 together with α-stable probability density functions (pdfs, solid)
fitted to these distributions by ML. Corresponding Gaussian pdfs (dashed) are included
for comparison.

Table 1
ML parameter estimates of α-stable pdfs fitted to fsa, fsi, fcl, lsa, lsi, lcl, PC1 and PC2. 95% confidence limits are listed for all estimates but some β̂, which are unreliable when α̂ is close to 2.

Variable No. of samples α̂ β̂ σ̂ μ̂

fsa 1029 2.000 N/A 0.090 ± 0.040 0.763 ± 0.007
fsi 1029 1.989 ± 0.029 0.146 0.059 ± 0.003 0.138 ± 0.005
fcl 1029 1.989 ± 0.029 0.326 0.043 ± 0.002 0.098 ± 0.004
lsa 1018 1.700 ± 0.075 1.000 ± 0.000 0.526 ± 0.027 1.402 ± 0.057
lsi 1018 1.700 ± 0.075 −1.000 ± 0.000 0.545 ± 0.028 −2.135 ± 0.058
lcl 1018 1.400 ± 0.162 −1.000 ± 0.000 0.475 ± 0.027 −2.760 ± 0.051
PC1 1029 2.000 N/A 11.14 ± 0.481 51.666 ± 0.963
PC2 1029 1.858 ± 0.060 −0.990 ± 0.028 3.291 ± 0.159 −10.65 ± 0.341



as an example, frequency distributions of vertical increments in fsa, lsa,
PC1 and PC2 at two lags. Correspondingdepictions for all other variables
are shown in Figs. S3 and S4. All distributions can be fitted quite closely
byML to α-stable pdfs with parameter estimates α̂ and σ̂ that vary with
vertical lag. These variations are illustrated for fsa and lsa in Fig. 4, and for
all remaining variables in Figs. S5–S7. Estimates α̂ of the stability indexα
are seen to fluctuate due, we believe, to relative paucity of incremental
data near the tails of the distributions. These estimates do nevertheless
suggest a tendency of α̂ to increase from relatively small values at short
lags toward a narrower range of larger values at longer lags: α̂ values
corresponding to vertical increments of fsa vary between 1.81 and
2.00, those of fsi between 1.68 and 2.00, fcl 1.83 and 2.00, lsa 1.65 and
2.00, lsi 1.40 and 2.00, lcl 1.69 and 2.00, PC1 1.80 and 2.00 and PC2 1.67
and 1.99. Estimates α̂ associated with increments of fcl, lcl and PC2
vary to a lesser extent with lag and tend to be lower than those associ-
ated with other incremental variables, implying that distributions of in-
cremental clay fractions tend to exhibit heavier tails across a wider
range of lags than do those of other incremental fractions. Kolmogo-
rov–Smirnov and Shapiro–Wilk tests at a significance level of 0.05 do
not, in most cases, support a hypothesis that increments associated
with estimates α̂ N 1.9 derive from a Gaussian pdf. We therefore con-
clude that the frequency distributions of vertical increments in all our
variables are consistent with symmetric α-stable pdfs.

Corresponding estimates of the scale or width parameter σ̂ in Fig. 4
and Figs. S5–S7 show a tendency to increase with lag toward relatively
stable asymptotes except in the case of clay: whereas σ̂ characterizing
vertical increments of fcl varies little with lag, that representing incre-
ments of lcl never stabilizes.

Nextwe compute sample structure functions SNq defined as qth order
statistical moments of absolute increments in a sample of size N(s),

SqN sð Þ ¼ 1
N sð Þ

XN sð Þ

n¼1

Δyn sð Þj jq ð3Þ

whereΔyn(s) = y(xn + s) − y(xn) is a sampled increment of a random
variable Y over a separation distance s between two points, xn and
(xn + s), on the x axis. The variable Y is said to exhibit power-law scal-
ing if

SqN sð Þ∝sξ qð Þ ð4Þ

where the power or scaling exponent, ξ(q), depends solely on the order
q. When the scaling exponent is linearly proportional to q, ξ(q) = H q, Y
is said to forma self-affine (monofractal) randomfield (or process)with
Hurst exponent H; when ξ(q) is a nonlinear function of q, Y has tradi-
tionally been taken to be multifractal or to form fractional Laplace mo-
tion (for a recent discussion see Neuman et al., 2013). Fig. 5 plots
sample structure functions of orders 1, 2 and 3 associated with vertical
increments of fsa and lsa as functions of vertical lag on logarithmic
scale. It is useful to note that SN1(s) is themeanof absolute sample incre-
ments and SN

2(s) is twice the sample semivariogram. In each case there
is a mid-range of lags within which the data can be fitted by regression
to straight lines at high levels of confidence as indicated by coefficients
of determination, R2, close to 1. We do so by varying the lower and
upper lag values delimiting this range and selecting that pair of lags
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which yields the largest R2. The fitted straight line implies that, in a
midrange of lags, each structure function scales as a power of lag.
Fig. 5 lists corresponding power exponents, which we designate by
ξ(q), ranging from 0.33 to 0.73 in the case of fsa and from 0.40 to 0.94
in the case of lsa. We refer to this way of determining power scaling
exponents for various orders q of a structure function asmethod of mo-
ments (M). Similar scaling behaviors are exhibited by sample structure
functions associated with vertical increments of all our variables up to
at least order 6.

Another way to determine the manner in which scaling exponents
ξ(q) vary with structure function order q is through extended power-
law scaling, also known as extended self-similarity or ESS (Siena et al.,
2012; Guadagnini et al., 2012b and references therein). We illustrate
the approach by plotting in Fig. 6 the dependence of SNq + 1 on SN

q for
fsa and lsa at q = 1, 2, 3 together with equations of corresponding
power law (linear on log–log scale) regression curves and associated co-
efficient of determination, R2. Fig. 6 shows that, regardless of q, log
SN

q + 1 varies linearly with log SN
q (and SN

q + 1 varies as a power of SNq)
at all (not just a limited range of) lags. We find the same to be true of
all our variables for q values at least as large as 6 (not shown). It follows
that, in midranges of lags where SN

q + 1 and SN
q scale according to

power-law (4), one has log SN
q + 1 ∝ [ξ(q + 1)/ξ(q)]log SN

q . This allows
us to first evaluate ξ(1) by themethod ofmoments and then to compute
ξ(q) for q = 2, 3,… up to any order from successive slopes of ESS curves
such as those in Fig. 6 (i.e., from the exponent of the power law fits in
Fig. 6).

Fig. 7 compares ways in which power-law scaling exponents ξ(q)
obtained for each of our variables by the method of moments, and by
ESS at increments Δq = 0.5, vary with q for 0.5 ≤ q ≤ 6.0. The two
methods are seen to yield comparable results. In each case ξ(q) scales
in a nonlinear manner with q, delineating a convex curve. Power-law

scaling of α-stable increments at intermediate lags, breakdown in
power-law scaling at small and large lags, extended power-law scaling
to all lags via ESS, and nonlinear variation of the power-law scaling expo-
nent ξ(q) with q have been shown by us elsewhere to be typical of sam-
ples from sub-Gaussian random fields or processes subordinated to
truncated fractional Brownianmotion (tfBm) and/or truncated fractional
Gaussian noise (tfGn); for up-to-date descriptions consult Guadagnini
et al. (2012b), Siena et al. (2012), Neuman et al. (2013) and Riva et al.
(2013, in press).

Whereas nonlinear variation of ξ(q) with q had previously been at-
tributed in the literature to multifractals and/or fractional Laplace mo-
tions, we note that fractional Brownian motion (fBm) and/or fractional
Gaussian noise (fGn) are monofractal self-affine. Like fBm and fGn, their
truncated tfBm and tfGn versions are characterized by a single power-
law scaling exponent,H, known as the Hurst coefficient. One way to esti-
mate H is from the slopes of straight lines passing through ξ(0) and ξ(1)
in Fig. 7. According to these fsa, fsi, fcl, lsa, lsi, lcl, PC1 and PC2 are character-
ized, respectively, by H values estimated with the method of moments
equal to 0.33, 0.37, 0.21, 0.40, 0.46, 0.37, 0.34 and 0.21. All of these H es-
timates are smaller than corresponding estimates of 1/α, implying that all
variables are anti-persistent, varying in a rough rather than a smooth
fashion as was the case with fsa, fsi, fcl in Fig. S1. Hurst exponents associat-
ed with logit transforms are somewhat larger than those associated with
particle-size fractions and their principal components. We believe this is
due to the transform's stretching of a signal's support, thereby increasing
its correlation length and rendering it less rough.

Our finding that vertical increments of particle-size indicators at the
Maricopa experimental site exhibit statistical distributions and scaling be-
haviors typical of samples from sub-Gaussian random fields or processes
subordinated to tfBmand/or tfGn allowsus to estimate the corresponding
Hurst exponents in yet another way. Truncated fBm are autocorrelated
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Gaussian random fields or processes, designated here by G, that are char-
acterized by truncated power variograms (TPV or semi structure func-
tions) γG2(s; λl, λu). The parameters λl and λu of a TPV represent lower
and upper cutoff integral (autocorrelation) scales, respectively, the first
proportional to a lower measurement scale or resolution limit on data
and the second to an upper domain or window size beyond which data
are not sampled. A TPV is fully characterized by its variance and integral
autocorrelation scale, which in turn depend on four parameters λl, λu, H
and a coefficient A. Neuman et al. (2008) noted that truncated power
variograms arise formally from the sampling of a heterogeneousmedium
across all geologic categories and scales within an investigation domain.
TPV models are able to capture variations of traditional geostatistical pa-
rameters, i.e., variogram sill (or variance) and range, which are observed
to take place as a function of measurement and sampling domain scales.
They are also imbuedwith the unique ability to representmultiscale ran-
dom fields associated with either Gaussian or heavy-tailed symmetric

probability distributions of the kind we analyze here. Being Gaussian,
all moments of G (including structure functions of all orders) are fully de-
fined by its mean and TPV, hence by these same four parameters, which
we estimate below. A corresponding subordinated α-stable random field
Y, that gives rise to samples such as those represented by our particle-size
variables, can be shown theoretically to have scale or width parameter
(Samorodnitsky and Taqqu, 1994)

σ s;λl;λuð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2
G s;λl;λuð Þ

q
; ð5Þ

details are given by Eqs. (4)–(13) in Neuman et al. (2013). Having
obtained estimates σ̂ of σ(s;λl,λu) for each of our variables in Fig. 4 and
Figs. S5–S7 thus allows us to estimate the corresponding parameters of
γG2(s;λl,λu).
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Table 2
Estimates Ĥ based on the method of moments and corresponding estimates λ̂l , λ̂u and Îv , as well as σ̂2

G with associated 95% confidence limits (in parentheses) for vertical increments of
particle size indicators; estimates λ̂l ≤ 10−7 m are reported as zero.

Variable λ̂l (m) λ̂u (m) Îv (m) σ̂2
G

fsa
(Ĥ = 0.33 from M)

0.00
(–)

1.09
(0.42; 1.77)

0.44
(0.16; 0.70)

0.013
(0.011; 0.015)

lsa
(Ĥ = 0.40 from M)

0.03
(0.00; 0.24)

1.65
(0.86; 2.44)

0.76
(0.38; 1.08)

0.62
(0.56; 0.68)

fsi
(Ĥ = 0.37 from M)

0.01
(0.00; 0.30)

1.37
(0.0; 2.74)

0.60
(0.00; 1.16)

0.007
(0.006; 0.008)

lsi
(Ĥ = 0.46 from M)

0.18
(0.00; 0.64)

1.39
(0.23; 2.56)

0.77
(0.11; 1.22)

0.78
(0.64; 0.91)

fcl
(Ĥ = 0.21 from M)

0.00
(–)

0.50
(0.09; 0.91)

0.15
(0.02; 0.27)

0.0017
(0.0015; 0.0018)

lcl
(Ĥ = 0.37 from M)

0.00
(–)

6.42
(1.48; 11.35)

2.73
(0.63; 4.82)

0.69
(0.49; 0.89)

PC1
(Ĥ = 0.34 from M)

0.00
(–)

1.12
(0.43; 1.80)

0.45
(0.17; 0.73)

206.04
(179.32; 232.75)

PC2
(Ĥ = 0.21 from M)

0.00
(–)

1.85
(0.48; 3.22)

0.55
(0.28; 0.95)

16.61
(14.42; 18.80)



As demonstrated theoretically by Siena et al. (2012) the slope of logffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2
G s;λl;λuð Þ

q
versus log s at intermediate lags, and by implication that

of log σ(s;λl,λu), is equal to the Hurst exponent; one can therefore esti-
mate the latter from corresponding slopes of σ̂ along their rising limbs
in Figs. 4, S5, S6 and S7. This yields estimates Ĥ equal to 0.21, 0.27,
0.32, 0.39, 0.19, 0.26 and 0.23 for fsa, fsi, lsa, lsi, lcl, PC1 and PC2, respective-
ly, as compared to 0.33, 0.37, 0.40, 0.46, 0.37, 0.34 and 0.21 obtained for
these variables earlier from straight line slopes in Fig. 7. Values of σ̂ as-
sociated with fcl do not show a rising limb and are therefore not amena-
ble to a similar analysis.

Having thus estimated H for each of our variables allows us to esti-
mate all remaining parameters of the corresponding TPVs. We consider
TPVs having functional forms given by Eq. (12) in Neuman et al. (2013).
We then estimate λl, λu and A (or, equivalently,σG

2) byML using a public
domain code (PEST, Doherty, 2002) which, in our case, is equivalent to
minimizing a simple least squares criterion. Results based on H esti-
mates obtained by the method of moments, together with correspond-
ing 95% confidence limits, are listed in Table 2. The table also lists
estimates Îv of vertical integral scales, Iv, characterizing each TPV
according to Eq. (8) in Neuman et al. (2013). Integral scale estimates as-
sociated with fractions fi are generally smaller than those associated
with their logit transforms li, consistent with our earlier discussion of
a similar trend in correspondingH estimates.Whereas integral scale es-
timates characterizing fsa, lsa, fsi, lsi, PC1 and PC2 lie within a narrow
range between 0.44 and 0.77 m, that of fcl is shorter and of lcl longer.

As noted by Neuman et al. (2008), truncated power variograms are
often difficult to distinguish from classical exponential variogram
models. This suggests that hierarchical datawhich have been previously
interpreted by traditional variogram models on the basis of some
goodness-of-fit criteria, could (and perhaps should) be reinterpreted
in light of our findings and the theoretical framework of Guadagnini
et al. (2012b), Siena et al. (2012), Neuman et al. (2013) and Riva et al.
(2013, in press). In principle, themultiscale cokriging algorithms devel-
oped by Neuman et al. (2008) could then be extended to transfer

information about the statistics of the underlying Gaussian process
across scales. At the same time, the theoretical framework presented
by Neuman et al. (2013) can be employed jointly with an analysis of
the kind we perform here to generate multiple realizations of sub-
Gaussian random fields which are (a) conditional on data, and (b) fully
consistent with observed statistical scaling behavior. These could then
be employed in the context of stochastic numerical analysis of flow and
transport processes in the investigated domain.

We conclude our analysis of vertical increments by comparing in
Fig. 8 estimates of scale parameters σ obtained by ML from sample fre-
quency distributions of such increments at various lags and theoretical-
ly on the basis of Eq. (5) with estimates of H, λl, λu and σG

2 listed in
Table 2. Also depicted in Fig. 8 are 95% confidence limits on the theoret-
ical estimates. Upper and lower confidence limits were computed by
setting λl = 0, σ̂2

G to its upper and lower bounds of the corresponding
confidence limits and λ̂u to its lower and upper bounds, respectively.

3.3. Statistical scaling of horizontal particle size increments

We complement the above by analyzing the statistical distribution
and scaling of incremental fsa, fsi, fcl, lsa, lsi, lcl, PC1 and PC2 values in the
horizontal direction. We do so for horizontal lags, sh, ranging from
zero to sh = 52.50 m. Considering that the relative position of samples
at the site entails a horizontal uncertainty of about 1 m (Schaap, 2013),
we set the shortest non-zero horizontal lag equal to sh = 2.5 m. Corre-
spondingly the data were grouped into bins of horizontal length Δbh =
2.50 m which in turn served to compute increments between pairs of
such values within a 5° vertical wedge bounded by horizontal bound-
aries separated by a vertical distance of 0.5 m.We thus obtained amax-
imum number of 3494 absolute increments at sh = 22.50 m and a
minimum number of 325 such increments at sh = 50.00 m. The num-
bers of horizontal absolute increments per lag are shown in Fig. S1.

Catenated sequences of horizontal increments (not shown) exhibit
random, intermittent fluctuations similar in appearance to those
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displayed by vertical increments (see Fig. S2). Frequency distributions
of horizontal increments, like those of vertical increments in Figs. 3, S3
and S4 tend to be symmetric and exhibit heavy tails (not shown). All
distributions can again be fitted byML to α-stable pdfs with parameter
estimates α̂ and σ̂ that vary with lag. Fig. 9 illustrates this behavior for
fsa, lsa. Corresponding depictions for all other quantities are found in
Figs. S8–S10. As in the case of vertical increments, α̂ fluctuates with a
tendency to increase from relatively small values at short lags toward
a narrower range of larger values at longer lags: α̂ values correspond-
ing to horizontal increments of fsa vary between 1.86 and 2.00, those of
fsi between 1.80 and 2.00, fcl 1.85 and 2.00, lsa 1.86 and 2.00, lsi 1.63 and
2.00, lcl 1.65 and 2.00, PC1 1.81 and 2.00 and PC2 1.80 and 2.00. Kolmo-
gorov–Smirnov and Shapiro–Wilk tests at a significance level of 0.05
do, in some cases, support a hypothesis that increments associated
with estimates α̂ N 1.9 derive from a Gaussian pdf (characterized by
α = 2).We conclude that the frequency distributions of horizontal in-
crements in all our variables are consistent with symmetric α-stable
pdfs, some of which tend toward the Gaussian with increasing lag.

Estimates of the scale or width parameter σ̂ in Figs. 9 and S8–S10
show either a pronounced or a subtle tendency to increase with lag to-
ward relatively stable asymptotes in all cases. This too is consistentwith
a view of horizontal increments as samples from populations having
symmetric α-stable (including Gaussian when α approaches 2) pdfs.

Sample structure functions of absolute horizontal increments ex-
hibit power-law scaling at intermediate lags with breakdown in such
scaling at small and large lags (not shown). Estimates Ĥ of Hurst ex-
ponents obtained by the method of moments are very close to those
derived from slopes of σ̂ versus lag (Table 3). All estimates are small-
er than 1=α̂ , indicating antipersistence, similar to that observed in
Section 3.2 for vertical increments. Estimates Ĥ for fsa and fsi, respec-
tively, are slightly larger and smaller in the horizontal than in the
vertical direction. We note however that the unusually small esti-
mates of H obtained by the two methods for PC2 is associated with
a relatively small coefficient of determination, R2 = 0.66, rendering
them less reliable than other values in Table 3.

Fig. 10 compares ways in which power-law scaling exponents ξ(q),
obtained for each of our variables by the method of moments and by
ESS, vary with q up to order 6. Results obtained by the two methods

differ from each other a bit more than they did in the case of vertical in-
crements (Fig. 7). Though ξ(q) generally scales in a nonlinear manner
with q, some of the curves it delineates are convex (as in Fig. 7) while
others are concave. Such nonlinear scaling was found by us elsewhere
(Guadagnini et al., 2012b; Neuman et al., 2013; Riva et al., 2013, in
press) to be typical of samples from sub-Gaussian random fields or pro-
cesses subordinated to tfBm and/or tfGn.

Table 4 lists estimates λ̂u , horizontal integral scale Îh and σ̂2
G for all

particle size indicators obtained by ML upon setting λ̂l ¼ 0 (following
the criteria outlined in Section 3.2) and Ĥ based on the method of mo-
ments. Associated 95% confidence limits are also given. The estimates
were obtained by following the same approach as that we had used in
Section 3.2 in the context of vertical increments. Integral scale estimates
associated with fractions fi are again smaller than those associated with
their logit transforms li, though no such trend is now reflected in corre-
spondingH estimates. Horizontal integral scales are larger by oneor two
orders of magnitude than are vertical integral scales listed in Table 2.
This is consistent with soil stratification observed at the Maricopa site
by Wang et al. (2003) and Schaap (2013).

Finally we compare in Fig. 11 estimates of scale parameters σ
obtained byML from sample frequency distributions of such increments
at various lags and theoretically on the basis of Eq. (5) with estimates of
H, λl, λu and σG

2 listed for horizontal increments in Table 4. The figure in-
cludes 95% confidence limits on the theoretical estimates. Upper and
lower confidence limits were computed in the same manner as in the
case of vertical increments (Fig. 8).

4. Summary and specific findings

We analyzed the statistical scaling properties of vertical and horizon-
tal increments in soil and sediment texture variables sampled across a
relatively large vadose zone volume nearMaricopa, Arizona. Variables in-
cluded sand, silt and clay fractions fsa, fsi and fcl, their principal compo-
nents PC1 and PC2, and logit transforms lsa, lsi and lcl. PC1 and PC2,
defined and computed for these samples earlier by Schaap (2013) are
dominated by variabilities in sand and in silt and clay fractions, respec-
tively. Logit transforms extend the support of variables constrained be-
tween finite upper and lower limits, such as 0 and 1, to the infinite
domain of positive and negative real numbers. We found all variables to
exhibit statistical scaling properties that are difficult to detect with stan-
dard geostatistical methods. These properties include (a) pronounced in-
termittency (rough, irregular spatial variability) and antipersistence
(tendency for large and small values to alternate rapidly); (b) symmetric,
non-Gaussian frequency distributions characterized by heavy tails that
often decay with separation distance or lag; (c) nonlinear power-law
scaling of sample structure functions (statistical moments of absolute in-
crements) in amidrange of lags, with breakdown in such scaling at small
and large lags; (d) extended power-law scaling (linear relations between
log structure functions of successive orders) at all lags; (e) nonlinear scal-
ing of power-law exponent with order of sample structure function; and
(f) pronounced anisotropy in these behaviors. Similar statistical scaling
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Table 3
Estimates Ĥ obtained for horizontal increments by the method of moments (M) and from
slopes of σ̂ (sh).

Variable Ĥ from M Ĥ from σ̂ (sh)

fsa 0.35 0.35
lsa 0.34 0.35
fsi 0.27 0.29
lsi 0.24 0.21
fcl 0.24 0.24
lcl 0.27 0.25
PC1 0.35 0.34
PC2 0.09 0.12



behaviors are known to be exhibited by a wide variety of earth, environ-
mental and other variables (including ecological, biological, physical, as-
trophysical and financial). The literature has traditionally interpreted
this to imply that the variables are multifractal, which however explains
neither the observed breakdown in power-law scaling at small and large
lags nor extended power-law scaling. We proposed an alternative inter-
pretation that is simpler and consistent with all the above phenomena.
Our interpretation, and corresponding novel method of geostatistical in-
ference, view the data as samples from stationary, anisotropic sub-
Gaussian random fields subordinated to truncated fractional Brownian
motion (tfBm) or truncated fractional Gaussian noise (tfGn). Such sub-
Gaussian fields are mixtures of Gaussian fields with random variances.
Truncation of monofractal fBm (which is non-stationary) and fGn entails
filtering out components below the measurement or resolution scale of
the data and above the scale of their sampling domain. Our newapproach
allowed us to obtain maximum likelihood estimates of all parameters

characterizing the underlying truncated sub-Gaussian fields. These pa-
rametersmake it possible to downscale or upscale all statisticalmoments
to situations entailing smaller or larger measurement or resolution and
sampling scales, respectively. They also allow one to perform conditional
or unconditional Monte Carlo simulations of random field realizations
corresponding to these scales.

Following is a list of additional, more specific findings:

1. The frequency distribution of each sampled variable at the site can be
fitted by the maximum likelihood method (ML) to an α-stable prob-
ability density function (pdf). ML-estimated pdfs of most variables
are skewed with heavy tails.

2. Vertical and horizontal increments in variables representing sand
fraction show larger amplitudes of spatial variations than do those
associated with clay fraction, reflecting a relatively small range of
values spanned by the latter.
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Table 4
Estimates Ĥ based on the method of moments and corresponding estimates λ̂u , Îh and σ̂2

G with associated 95% confidence limits (in parentheses) obtained for horizontal increments of
particle size indicators upon setting λ̂l ¼ 0.

Variable λ̂u (m) Îh (m) σ̂2
G

fsa
(Ĥ = 0.35 from M)

24.59
(13.48; 35.71)

10.20
(5.59; 14.80)

0.010
(0.009; 0.012)

lsa
(Ĥ = 0.34 from M)

30.86
(13.42; 48.31)

12.57
(5.47; 19.68)

0.337
(0.272; 0.401)

fsi
(Ĥ = 0.27 from M)

43.95
(14.16; 73.74)

15.43
(4.97; 25.89)

0.006
(0.004; 0.007)

lsi
(Ĥ = 0.24 from M)

92.89
(0; 259.29)

30.38
(0; 84.80)

0.618
(0.155; 1.080)

fcl
(Ĥ = 0.24 from M)

14.60
(8.27; 20.93)

4.76
(2.70; 6.83)

0.0019
(0.0018; 0.0021)

lcl
(Ĥ = 0.27 from M)

19.75
(8.37; 31.11)

6.90
(2.92; 10.87)

0.215
(0.189; 0.241)

PC1
(Ĥ = 0.35 from M)

25.65
(13.98; 37.31)

10.62
(5.79; 15.45)

161.48
(138.76; 184.22)

PC2
(Ĥ = 0.091 from M)

53.61
(0; 137.22)

8.26
(0; 21.15)

16.23
(12.61; 19.91)



3. Frequency distributions of both vertical and horizontal increments, as-
sociated with any variable, tend to be symmetric and exhibit heavy
tails. All distributions can be fitted quite closely by ML to α-stable
pdfs with parameter estimates depending on lag. Tails of the distribu-
tion are generally heavier at small than at larger lags. Distributions of
vertical and horizontal clay fraction increments tend to show heavier
tails across a wider range of lags than do those of other incremental
fractions.

4. Power-law exponents of absolute vertical increments in each vari-
able, plotted versus the order of corresponding structure functions,
delineate convex curves. Power-law exponents of absolute horizon-
tal increments, plotted in a similarmanner delineate convex, concave
or near-linear curves.

5. The observed statistical scaling behaviors of vertical and horizontal in-
crements in any variable are consistent with those of samples from
sub-Gaussian random fields or processes subordinated to truncated
fractional Brownianmotion (tfBm) and/or truncated fractional Gauss-
ian noise (tfGn). As such they are fully defined by truncated power
variograms (TPVs or semi structure functions of secondorder) that de-
pend on four parameters: a Hurst scaling exponent H, a lower cutoff
scale λl proportional to measurement or resolution length scale of
the data, an upper cutoff scale λu proportional to length scale of the
sampling domain or window, and a coefficient A. These parameters
in turn define the variance (sill) and integral (autocorrelation) scale
of the TPV.

6. The available data allowed us to estimate all parameters of TPVs asso-
ciatedwith vertical and horizontal increments of each variable. Our es-
timates of the Hurst exponent H are consistently lower than those of
the inverse stability index, α−1, implying rough antipersistent vari-
ability in both the vertical and the horizontal directions of the kind ac-
tually demonstrated by the data. Estimates of H associated with
vertical and horizontal increments are generally quite similar. On the
other hand, estimates of vertical integral scale are smaller by one to

two orders of magnitude than those of horizontal integral scale,
reflecting the stratified nature of soils at the site. This suggests an ellip-
tical model of statistical scaling anisotropy for tfBm at the site of the
kind proposed by Di Federico et al. (1999). The latter in turn allows
one to bridge geostatistical information and analysis across scales of
data measurement or resolution and sampling domain in a manner
similar in principle to that of Neuman et al. (2008).

List of abbreviations

ESS extended self similarity
fBm fractional Brownian motion
fGn fractional Gaussian motion
M method of moments
ML maximum likelihood
pdf probability density function
tfBm truncated fractional Brownian motion
tfGn truncated fractional Gaussian motion
TPV truncated power variogram

Acknowledgements

Our work was supported in part through a contract between the
University of Arizona and Vanderbilt University under the Consortium
for Risk Evaluation with Stakeholder Participation (CRESP), funded by
the U.S. Department of Energy. Funding from MIUR (Italian Ministry of
Education, Universities and Research— PRIN2010-11; project: “Innova-
tivemethods for water resources under hydro-climatic uncertainty sce-
narios”) is acknowledged.

0

4

8

12

16

0

0.2

0.4

0.6

0

0.02

0.04

0.06

0.08

0.1

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 10 20 30 40 50 600 10 20 30 40 50 60

0 10 20 30 40 50 600 10 20 30 40 50 60

Horizontal lag, sh [m]

ˆ | f saσ

a b

fsa

lsa

fsi

lsi

Horizontal lag, sh [m]

Horizontal lag, sh [m]

c d

fcl

lcl PC1

PC2

Horizontal lag, sh [m]

σ̂

ˆ | l saσ ˆ | f siσ
ˆ | l siσ

ˆ | f clσ ˆ | l clσ

Fig. 11.ML estimates of scale parameters σ (symbols) and their theoretical equivalents (solid curves) based on estimates of H, λl, λu and σG
2 in Table 4 for horizontal increments of (a) fsa

and lsa, (b) fsi and lsi, (c) fcl and lcl, and (d) PC1 and PC2. Dashed curves represent 95% confidence limits on the theoretical curves.



Appendix A. Supplementary data

Supplementary data to this article can be found online
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