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1. Introduction

Dependability is increasingly becoming a key aspect in the
design of embedded systems, given their widespread adoption in
mission- and safety–critical applications such as industrial auto-
mation, transportation, network infrastructures and military facil-
ities. This need has been even more exacerbated as the aggressive
technological advances in transistor size scaling, increased fre-
quencies and power densities have negatively affected the reliabil-
ity of the components constituting such systems, also increasing
their susceptibility to transient faults, also known as soft errors [1].

In this context, it is mandatory to perform an assessment of the
dependability of the system under design in order to identify its
criticalities and, possibly, the vulnerabilities of the adopted fault-
tolerant mechanisms. Moreover, when considering the complexity
of modern embedded systems (in terms of both the architectural
platform and the number of executed applications and functional-
ities) and the stringent time-to-market, it becomes paramount to
perform this kind of analysis from the early phases of the design
flow – a common practice for the other design parameters, such
as performance or power consumption – to provide a prompt
feedback for the system refinement and to reduce the risk of late
discovery of safety-related design pitfalls.
Fault injection plays a relevant role in the fulfillment of depend-
ability-related analysis [2]; it allows to evaluate how the system
reacts to a controlled corruption of its internal state. However, it
is possible to state that classical fault injection approaches do
not suffice, especially in the early phases of the design flow, when
the designer is evaluating how to harden the system. In fact, most
approaches (e.g., [3–5]) are usually based on monitoring the final
outputs and comparing them against a golden counterpart for a
specified time window, reasonable to obtain the systems’ results.
This strategy suffices only in reporting statistics on the final effects
of the injected faults (e.g., how many times a system’s failure
occurred, or whether the hardening mechanisms were able to mit-
igate the fault effects on the system’s outputs), but it is not able to
state the effects of the fault in the system and, in particular, on the
various functionalities within the application. This aspect is espe-
cially relevant when considering that the executed applications
are composed of a large set of interconnected functionalities. In
conclusion, this strategy does not provide any relevant information
to the designer who aims at performing a local selective hardening
as a cost-effective countermeasure to the identified problematic
situations.

Aiming at investigating the presence of errors inside the archi-
tecture, other approaches (e.g., [6–8]) monitor not only the output
of the system but also its internal memory elements; in this way it
is possible to classify as latent the scenario in which, at the end of
the experiment, the output of the system is correct, but the
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internal state is corrupted, thus potentially producing an error in
the future. Unfortunately, this approach is still limited to the iden-
tification of a corrupted state in system architectures, but it hardly
provides additional information on the actual status of the applica-
tion executed on the embedded system. This represents again a
limitation when considering the complexity of both the embedded
system’s architectures and the executed applications; indeed, it
becomes mandatory to analyze how the executed application
failed because of the occurrence of a fault, and how the errors were
activated and propagated in the various parts of the application.
Nevertheless, the trace analysis may be also misleading by identi-
fying ‘‘false positive’’ situations: sometimes, faults may generate
errors in the control flow (e.g., a jump of few instructions
backwards causing their re-execution) whose final effect is a neg-
lectable timing error while the result is still correct. In fact, in these
situations, the considered approach would identify a considerable
difference between the status of the corrupted system and the
golden one. Moving one step further, when considering multipro-
cessor architectures the situation is even more critical, as the
effects of one failure may corrupt more cores, or the expected ben-
efits of hardening mechanisms using redundant computations may
not hold due to unexpected effects/interactions.

Given theses motivations, the goal of this work is to propose a
new methodology based on fault injection for the system-level
dependability assessment of heterogeneous multiprocessor systems
in the early stages of the design flow. The methodology aims at
providing the means to investigate the effects of the faults not only
on the produced outputs but also in the internals of the system
during the overall execution and from a system-level perspective,
i.e., combining the architectural abstraction level and the applica-
tion one. The purpose is to provide the support for an accurately
study of the system’s behavior after the faults happened, to provide
a detailed report on which are the critical portions of the architec-
ture and (especially) of the application, also with respect to the
system’s properties and functionalities and to the fault-tolerant
strategies employed for hardening the system. Therefore, the
methodology provides:

� the support for an accurate planning of the fault campaign on
the basis of not only the architectural information but also the
application one, by integrating also some state-of-the-art
approaches as a support (e.g., for the fault modeling or the
pruning of the fault list);
� the capability to perform error monitoring also at application

level with the granularity of function call/return events, and
considering custom functionality-aware conditions for an accu-
rate analysis of the relationship between the architectural faults
and the error in the executed applications;
� a joint error propagation and classification approach, in partic-

ular offering the capability to perform a custom ad hoc classifi-
cation of the effects of the fault, not only on the final output at
the end of the simulation, but internally to trace the error evo-
lution both in the application (in particular in its functions) and
in the architecture.

Aiming at working in the early stages of the design flow, the
framework supporting the methodology has been implemented
within a state-of-the-art simulation framework [9] for architec-
tural specifications modeled with SystemC and Transaction Level
Modeling (TLM, [10]), and that has a fault injection infrastructure
[11]. The methodology will mainly focus on transient faults, due
to the peculiarities of the adopted fault injector; however the anal-
ysis mechanism can be easily extended to support permanent
faults. The effectiveness of the methodology will be demonstrated
in two different case studies considering a hardened image pro-
cessing system and a control system from the automotive scenario.
It will be shown how the proposed approach is able to produce an
accurate dependability report considering aspects of both the
architecture and the application of the system under consideration.

The rest of the paper is organized as follows. The following sec-
tion presents a review of the literature on the use of simulated
fault injection for dependability analysis, highlighting the limita-
tions of the previous approaches in the execution of accurate
dependability analysis in complex scenarios. Section 3 describes
the proposed system-level dependability analysis methodology
for SystemC/TLM specifications of heterogeneous multiprocessor
architectures; first an overview of the analysis flow will be given
and then the various steps will be described in details. A descrip-
tion of the methodology at work in two case studies is presented
in Section 4, while the last section draws the conclusions on the
presented approach.
2. Related work

A large number of fault injectors for digital systems has been
proposed in the past years, as shown in the survey presented in
[2]. Based on the goal we pursue, the most relevant aspect for their
classification is the abstraction level they work at: physical fault
injection (e.g., [12,13]), software implemented fault injection
(SWIFI, e.g., [14,15]), fault emulation (e.g., [5,8,6,4,16]), or fault
simulation (e.g., [11,3,7,17–21]). Since they act at different abstrac-
tion levels, the various approaches are complementary, and, there-
fore, they support the reliability analysis in the various phases of
the system design flow, from the preliminary evaluation towards
the final system validation. The methodology proposed in this
paper is integrated in the early phases of the design flow and
requires an high controllability and observability of the fault; thus,
we will consider a fault simulation framework.

The strategy for the analysis usually adopted by these injection
frameworks is based on the monitoring of the effects the injected
faults have on the system’s final results. In case of microprocessor
systems, these frameworks classify software result as silent or fail-
ure [3,4], and at most they will state whether an exception has
been thrown or a timeout expired [15,6]. Some approaches per-
form an evaluation of the sensitivity of the various architectural
components of the microprocessor [5,3]. Others perform an analy-
sis of the error propagation by comparing the traces of registers’
content with the golden counterparts [11,8,22], thus providing a
straightforward architectural-level evaluation. Such comparison
becomes unfeasible when considering complex systems due to
the large amount of values to be managed; nevertheless, in most
situations, it is difficult to give an application-level semantic to
such architectural raw data. In conclusion, the adopted strategies
are usually very simple and consider a classification based on a
reduced and generic set of classes of effects; moreover, when ana-
lyzing the internal state, these strategies work only at an architec-
tural abstraction level.

Other approaches for a more accurate analysis of the fault
effects have been proposed in the past years. One interesting
approach consists in the employment of Failure Models and Effects
Analysis (FMEA) on the embedded system; however, it has been
only adopted at the digital logic level [23] or the architectural level
[24] thus not considering the application executed on the system
under test. In [25] the authors present an analysis of the propaga-
tion of the fault effects to critical registers in a specific microcon-
troller. In [26], error propagation and fault classification are
combined; in particular, the status of the system is analyzed during
the overall simulation according to a set of user-custom classes of
effects exploiting the error propagation. Again, the approach acts at
architectural level. Other kinds of analysis strategy that focus on a
higher level of abstraction are the Architecture Vulnerability Factor



Fig. 1. Workflow of the proposed methodology.
(AVF, [27]), which aims at estimating the probability that a fault
affecting the various components of a processor leads to an error
on the primary output of the system, and the derived Program Vul-
nerability Factor (PVF, [28]) and Thread Vulnerability Factor (TVF,
[29]). Unfortunately, these approaches work at assembly instruc-
tion level, thus too low to analyze a complex system/application;
nevertheless, another common limitation is that they never con-
sider complex heterogeneous architectures composed by several
processors and with hardware accelerators.

When considering the aim of anticipating the dependability
analysis at the early stages of the design flow, the usage of SystemC
and TLM [10] is particularly appealing due to their support for the
modeling of the system at different levels of abstraction, and in
particular at the functional one. A large set of fault injection frame-
works for SystemC/TLM specifications has been proposed in the lit-
erature (e.g., [9,17–19,30]). However, most of these works mainly
investigate fault injection strategies specific for the SystemC mod-
els [11,18,30] or define functional fault models for high-level
specifications modeled with the TLM approach [31,17], neglecting
the issues of the dependability analysis. Very few works proposed
approaches for the system-level dependability evaluation in com-
plex systems specified with SystemC/TLM [19,32,33,30]. For
instance, the approach in [19] supports FMEA by specifying custom
monitoring conditions on the primary output of the systems, thus
taking into account the system functionality. However, among
them, only in [32] the authors highlight the necessity to define
internal watch points for the application-level monitoring of the
occurred errors and their propagation in order to identify critical-
ities of specific parts of the system; no systematic approach is pro-
posed in the paper for achieving this goal. Furthermore, since these
approaches work at system level, they adopt virtual platforms con-
sisting of behavioral models; for our purpose, this represents a lim-
itation since at this high abstraction level there is no distinction
between the architecture and the executed application. Therefore,
it is not possible to capture many relevant aspects for the depend-
ability analysis. On the other hand, other approaches have consid-
ered more detailed architectural models based on instruction
set simulators or cycle-accurate processor models in SystemC
[3,9,17]. However, similarly to the approaches discussed above,
they support only the analysis of the final results of the executed
application.

In conclusion, there is a lack of a methodology supporting a sys-
tem-level dependability analysis able to focus at the same time on
the architecture and on the application of the system under design,
and supporting an accurate analysis of the effects of the faults in
the various parts of the system. In [34] we defined a preliminary
simulation framework for performing an application-level depend-
ability analysis in SystemC/TLM multiprocessor models; however,
it did not propose a complete methodological approach. Here, we
adopt that framework and we define the overall methodology
achieving the pursued goal; moreover, we propose two case stud-
ies accurately highlighting the effectiveness of the methodology in
the identification of the dependability issues of the system under
design.
Fig. 2. An example of image processing application mapped on a processor-based
architecture.
3. The dependability-analysis methodology

The proposed methodology for the system-level dependability
analysis is depicted in Fig. 1. It takes as input a specification of
the embedded system in terms of the architectural platform and
the executed application, and produces a dependability report
showing the vulnerabilities and the critical aspects of that system.

The embedded system under analysis is composed of a multi-
processor architecture running a parallel application. The architec-
ture is composed by a set of heterogeneous processing units,
general purpose processors or hardware accelerators; the architec-
ture is described in SystemC/TLM to provide a model to be
simulated that can be used for the fault injection campaigns.
Coherently with the other design and analysis activities performed
during the early stages of the design flow, the application is mod-
eled as a set of tasks, each one representing a specific functionality.
The source code is implemented in C: tasks are implemented in
terms of functions and they are parallelized by means of the thread
paradigm. Moreover, each task is mapped on a specific processing
unit, in charge of its execution. Fig. 2 presents an example of a



1 The re-engineered version of the tool can be downloaded from [35].
simple architecture running an image processing application, orga-
nized as a chain of tasks. Ffor sake of simplicity the main function
orchestrating the execution of the various functions is omitted; for
the same reason, a simple-thread application has been considered
even if during the presentation it will be shown how the method-
ology works in multi-threaded scenarios.

The output of the methodology is an accurate report on the
dependability characteristics of the system under analysis. It will
contain statistical information on the response of the system to
the occurrence of faults taking also into account the possibly-avail-
able fault management mechanisms, and a detailed report on the
error propagation, both at application and architecture levels for
a selected subset of fault scenarios, which will accurately illustrate
the fault/error relationship. The granularity level of the applica-
tion-level monitoring and classification activities supported by
the methodology are intended for single task execution, in partic-
ular capturing the function call/return events. Thus, this report will
represent a characterization of the sensible zones in the architec-
ture and the critical functionalities in the application, information
that can be used by the designer as a feedback for refining the
applied hardening solution, or for guiding a selective hardening
of the system.

The methodology workflow is organized in several steps
divided into three main phases:

1. preliminary characterization of the system,
2. set-up of the experimental campaign, and
3. execution experimental campaign and results’ post-processing.

Preliminary characterization of the system. This phase is devoted
to an analysis of the internal structure of the model of the consid-
ered system and of its nominal behavior, i.e., when not affected by
any fault. First, the architecture specification is analyzed and suit-
able fault models are defined; due to the adoption of SystemC/TLM
architecture specifications, functional fault models corrupting the
internal status of the architecture’s components are defined. This
activity is performed also by leveraging possibly available lower
level information on the hardware implementation of the architec-
ture’s components. The second step is devoted to the extraction of
specific information from the application source code and the exe-
cutable; this characterization is used in the subsequent phases for
interpreting architecture raw data at an application-execution
level, similarly to a software debugger. The last step of the preli-
minary phase is the golden model characterization of the system
execution at both architectural and application level: the result is
a graph representing the sequence of executed tasks annotated
with actual input/output values, timing and mapping information,
and the traces of the relevant observation points in the
architecture.

Set-up of the experimental campaign. The fault list is defined
according the system characterization performed in the previous
phase and a liveness analysis of the memory locations; in this
way, it is possible to accurately stimulate the system under analy-
sis to obtain a precise dependability report. Moreover, the monitor-
ing and classification strategies to be used during the experiments
are defined by the designer, with the aim of accurately studying
the dependability properties exposed by the system under design.
The methodology offers the possibility to define ad hoc conditions
to monitor the system behavior at both application and architec-
ture level, also with respect to the properties and the functional-
ities the system exposes. Such conditions allow to analyze at
system level the evolution of the error in both the system’s internal
points and outputs.

Experimental campaign and results post-processing. Planned
experiments are executed and results are collected and analyzed
to generate a dependability report. Experiments will produce
statistics on the response of the system to the occurrence of faults
from both the architectural and application points of view. More-
over, the most problematic situation can be further investigated
to determine step-by-step the actual evolution and propagation
of the errors in the system. The experimental sessions may be exe-
cuted several times according to the analysis of the results’ post-
processing, to better investigate specific situations; to this purpose,
it is also possible to go back to the set-up phase to refine the mon-
itoring and classification strategy or to generate a more specific
fault list.

The various steps composing the three phases of the methodol-
ogy are discussed in details in the following sections. As a conclu-
sive discussion necessary for presenting the details of the various
steps we here introduce the fault simulation environment that
supports the proposed methodology.

The framework automating the methodology has been imple-
mented in ReSP1 [9], a simulation platform for multiprocessor sys-
tems with hardware accelerators running parallel multi-threaded
applications. ReSP is a flexible simulation framework for SystemC/
TLM models, implemented in Python and C++, providing many facil-
ities for an agile and non-intrusive analysis of the systems during the
simulation (e.g., performance evaluations, processor’s software
debugging and power estimation and fault injection). Among them,
two are particularly relevant for the current work: the fault injection
infrastructure and a set of monitoring interfaces. ReSP implements
the fault injection infrastructure described in [11], particularly tar-
geted for transient faults. It supports the injection of faults in the
internal status of the architecture’s components (represented by
the attributes of the SystemC modules) by means of simulation com-
mands, and in the interconnections between TLM ports by means of
saboteurs automatically instantiated and interconnected. Moreover,
to support the various analysis, the following specific monitoring
interfaces are provided:

� processor modules offer a sort of debugging interface for con-
tinuously monitoring issued instructions and for accessing the
registers and the memory locations,
� probes can be instantiated on the TLM interconnections simi-

larly to the saboteurs, thus implementing traffic monitors, and
� architecture-level monitors can be implemented by means of

SystemC simulation delta-cycle callbacks, that are user-defined
functions executed by ReSP simulation kernel at the end of each
simulation delta-cycle.

Fig. 3 summarizes the mentioned injection and monitoring
facilities.
3.1. Static characterization of the application

The static characterization of the application is a necessary step
to enable the debug-like application-level interpretation of the
architectural raw data. In particular, during this step, the source
code of the application is analyzed to retrieve all the information
necessary to know how each function will be invoked and executed
during the system’s execution. For instance, it is of interest to know
the required parameters, their types, and in which register of
memory location they are stored. The extracted information will
be organized in a data structure, called functions table, that is
returned as output by the current step. Such table will allow during
the simulation to interpret the content of the register bank and the
issued instruction of each processor to detect when a function is
invoked or terminates and which are the transmitted actual
parameters.



Fig. 3. Injection and monitoring facilities available in ReSP.

Table 1
Functions table for the image processing application in Fig. 2.

Function Memory addresses Parameters

Name Position Type Location

main 0x1498 – 0x1640

rgb2gray 0xea0 – 0xf64 inputImg 0 char⁄ (dim = 17,280) reg0
outputImg 1 char⁄ (dim = 5760) reg1
width 2 unsigned reg2
height 3 unsigned reg3

edgeDetector 0xf68 – 0x12fc inputImg 0 char⁄ (dim = 5760) reg0
outputImg 1 char⁄ (dim = 5760) reg1
width 2 unsigned reg2
height 3 unsigned reg3

edgeOverlapping 0x1300 – 0x1480 inputImg 0 char⁄ (dim = 17,280) reg0
edgeImg 1 char⁄ (dim = 5760) reg1
outputImg 2 char⁄ (dim = 17,280) reg2
width 3 unsigned reg3
height 4 unsigned SP + 0x0

readBitmap HW inputImg 0 char⁄ (dim = 17,280) reg0
width 1 unsigned reg1
height 2 unsigned reg2

writeBitmap HW outputImg 0 char⁄ (dim = 17,280) reg0
width 1 unsigned reg1
height 2 unsigned reg2
Table 1 shows the functions table for the example in Fig. 2. The
table stores an entry for each function representing an application
task. The entry specifies the name of the function and the range of
addresses in the instruction memory occupied by the function
assembler code. Moreover, the entry contains the list of parameters
and the related data, in particular describing: (i) the position in the
prototype, (ii) its type, and (iii) the register or memory location
that will be used for its transmission. The return value (if any) is
represented similarly to the parameters. The parameter type is a
particularly relevant item since it represent not only the actual
data type of the parameter but also the modality of the parameter
transmission, that is by value or by address (i.e., by using a poin-
ter). In fact, the modality specifies if the parameters represent an
input or an output for the function, and therefore if a change of
its value will affect the function callee. Moreover, since we con-
sider C source code, arrays are passed only by address; for this rea-
son, the designer has to manually specify the size of each array. It is
worth noting that the size of the array may change according to the
input data specified during the execution; therefore, if necessary,
these parameters can be also specified in the subsequent step deal-
ing with the golden model characterization. Finally, we assume
that tasks executed by hardware accelerators are invoked in the
application source code by means of a function call mechanism
(as in [36]); therefore, also these functions will have an entry in
the functions table. It is worth noting that this assumption does
not represent a limitation; in fact, hardware accelerators are usu-
ally configured as slave components piloted by means of a set of
data and control registers mapped on the memory address space.
Thus, if these operations are not wrapped in a single function,
the entry in the functions table will be filled manually by the
designer, and will contain the addresses of the registers to be
accessed for starting the accelerator.

The activities executed to build the described table are shown in
Fig. 4. First, the function prototypes are extracted from the source
code and are parsed to retrieve the function names and the list of
parameters (position, name and type). If any, the designer will
specify the size of the arrays; since such information cannot be
automatically computed. Then, each function prototype is ana-
lyzed according to the function-calling convention defined in the
Application Binary Interface (ABI) of the processor that will exe-
cute the application (an example of ABI for the ARM processor is
available in [37]). The function-calling convention will determine
which register or memory address will contain parameters passed
to the function. For instance, when considering the ARM processor,
the first four actual parameters will be passed through the register
bank and the subsequent will be pushed on the memory stack; for
this reason, in Fig. 1, the location of the last parameter of the
edgeOverlapping function is a memory address specified rela-



Fig. 4. Generation of the functions table.
tively to the stack pointer value. Moreover, it is important to notice
that during the execution, the location specified for the parameters
passed by address will contain a pointer; thus, in order to access
the actual data, it will be necessary to follow that pointer and to
read the referenced memory location. Finally, the executable is dis-
assembled to analyze its organization in the memory; in particular,
the boundary addresses of the memory space containing the code
of each function are retrieved and added to the functions table.

The described activities have been automated by means of a
simple parser tool that has been integrated in ReSP; in particular
the executable disassembling has been implemented by means of
the GNU Binary File Descriptor (BFD) library for the manipulation
of executable files.

As a final consideration, the retrieved information supports the
analysis of the system execution at the application level with a
granularity of single function call; however, it does not allow to
further delve into the execution of the single instructions in the
source code. From a methodological point of view, this approach
is consistent with our interest in performing an analysis at system
level; indeed we consider only the executed functionalities by
making the reasonable assumption that the tasks executed by
the application are opportunely structured in functions in the
source code. In order to enable an analysis of the execution of each
single instruction, it is necessary to compile the source code with
the debugging symbols; however, this represents an intrusive
action since a different executable is generated.
3.2. Analysis of the architecture and definition of the fault model

A preliminary analysis on the architecture is performed with
the goal of (i) identifying the observation points that can be probed
to analyze the status of the system during the simulation, and (ii)
defining the fault models used for soliciting the system during the
experimental campaigns.

As discussed above, ReSP supports a non-intrusive read and
write access (i) to the internal state of the architectural compo-
nents (registers and memories), and (ii) to the TLM ports. There-
fore, these two elements will represent the selectable
observation points and injection ones; they are listed to be used
in the subsequent steps.

Given ReSP fault injector’s capabilities, this work is mainly
focused on soft errors, that are usually represented by means of
transient corruptions of the memory content. However, since we
are not working at Register-Transfer Level (RTL) but at transaction
level, only a subset of the memory locations are actually represented
in the considered model in terms of a set of internal state’s elements,
while the other ones are ‘‘encapsulated’’ in the algorithmic
descriptions of the various functionalities. In this scenario, it is nec-
essary to define functional fault models for SystemC transaction-
level specifications; to this end, we integrated in the proposed
methodology the approach presented in [31], here briefly presented.
Each component in the architecture is analyzed separately. If a full
RTL specification of the component or partial information on its
implementation are available, the effects of faults affecting the
RTL memory locations are abstracted and represented in terms of
corruptions of the internal state of the high level model. Moreover,
possible available information of the final implementation of the
component at logic level and device level can be considered and
abstracted to further characterize the fault model. If no RTL specifi-
cation is available, functional failures are defined by mutating the
model functionalities and by capturing the effects on the compo-
nent’s internal state and output TLM ports. As a final note, the
described analysis is performed manually by the designer.

When considering the example in Fig. 2, the processor within
the architecture is modeled with an Instruction Set Simulator
(ISS); therefore, this functional model will contain only the regis-
ters specified in the processor Instruction Set Architecture, or ISA
(e.g., the program counter, the register bank, the status register).
We can thus directly represent faults in these registers as bit-flips,
while we represent faults in the other RTL memory elements (e.g.,
the pipeline registers) as the effects of the propagation of the errors
on the ISA registers (as done also in [38]). Furthermore, we can also
inject faults directly in each memory cell, while faults in the bus
and in the memory controller can be modeled by corrupting the
transactions between connected TLM ports (we neglect the fault
modeling in the transmission peripheral since we are not inter-
ested in injecting in that component). Finally, according to the
facilities provided by ReSP, the set of available observation points
includes the ISA registers, the memory cells and the components’
TLM ports.

3.3. Golden model characterization

Once the static analysis of the system has been carried out, the
subsequent step consists in the characterization of a plain execu-
tion of the system to be used as a golden model during the fault
injection experiments. During this phase, two different types of
data are extracted: (i) the golden architecture-level characteriza-
tion, and (ii) the golden application-level characterization.

In the literature, the golden model is defined by collecting the
final outputs of the system or the traces of the internal memory
elements considered as relevant of the comparison in a faulty sce-
nario. We call this activity golden architecture-level characterization;
in particular, the methodology collects the traces of a subset of the
observation points specified by the designer. This characterization
is carried out by means of a specific tool within ReSP, that collects
all the values assumed by the internal status of the components
and the TLM ports during a single simulation; these observation
points are accessed by means of the interfaces shown in Fig. 3.

In addition to this classical golden model, we introduce here a
golden application-level characterization in which the collected
architectural raw data are abstracted to the level of abstraction
of function execution. The purpose is to build a model called execu-
tion flow graph (EFG) which described the golden system execution
from an application point of view. The EFG is a direct acyclic graph
which describes the flow of execution of the various functions
within the application and specifies for each of them the timing
information and the actual input/output values. The nodes of the
graph represents three different events:

� function enter which occurs upon a function call;
� function exit which occurs when returning from the function;
� function re-enter occurring immediately after a function exit.



Similarly to the behavior of a software debugger, such events
are identified during the execution by continuously monitoring
the assembler instruction issued by each processor, and comparing
the instruction address in the memory against the memory bounds
listed in the functions table. In this way, it is possible to determine
when a function is entered or exited. Moreover, if the invocation to
a hardware accelerator is not modeled as discussed above with a
function call, the framework will need to monitor the accelerator
to detect when a start command is issued in the control register.

When an event occurs, the actual parameters can be retrieved
by accessing the locations specified in the functions table. It is
worth noting that for each parameter passed by reference, the
identified position will contain a pointer, i.e., the address, to the
actual data; therefore to access the data it is necessary to derefer-
ence the pointer. On function return, all the parameters passed by
address are retrieved again since they represent the outputs of the
function. Each event is thus annotated with the retrieved actual
parameters, together with the time instant the event occurred,
and the identifier of the processing unit (it may be a processor or
a hardware accelerator) on which the event occurred. This moni-
toring and interpretation activity has been automated within ReSP
by means of a specific tool, called application-level interpreter, con-
nected to the debugging interface of the processors during the
golden simulation.

In the EFG, nodes are organized in chains representing the
sequence of function calls in the application execution; moreover,
since the consider parallel applications, a node may fork in two dif-
ferent successors on the event of thread creation and may join two
different predecessors in case of thread join. As an example, Fig. 5
presents a fragment of the EFG of the considered edge detector
application.

Do note in case of complex applications, the EFG may became of
that considerable size. For this reason, given the hierarchical orga-
nization of the function calls, we filter the EFG to consider only the
‘‘main’’ application tasks and ignore other lower-level functions
Fig. 5. A fragment of EFG for the image processing application in Fig. 2.
and system calls. For instance, in the example depicted in Fig. 2,
the edgeDetection function may call the abs library function
many times for each pixel in the processed image; since we are
not interested in it, we can remove the related events from the
graph.

Finally, the golden model may depend on the working scenario,
and in particular, on the set of inputs used to stimulate the system.
In fact, the output of each function, annotated on the EFG, and the
dimensions of the various arrays specified in the functions table
may change in relation to the provided inputs. Moreover, when
the application implements an algorithm whose execution flow is
data dependent, the structure of the EFG will change too. For this
reason, the methodology requires to perform a golden model char-
acterization for each workload that the designer aims at consider-
ing during the subsequent definition of the fault list and in the
injection campaigns.

3.4. Definition of the fault list for the experimental campaign

The definition of the fault list to be used in the experimental
campaign is a relevant activity that, as highlighted in the literature
[39,40], highly affects the quality of the obtained results. In fact,
the exhaustive stimulation with all possible faults (i.e., each mem-
ory bit corruption in each instant of time) is unmanageable due to
the huge number of faults. At the same time, the classically-
adopted blind random generation of the fault list may contain a
known number of insignificant faults, such as the corruption of a
‘‘dead’’ register, i.e., which contains a value that will not be
used in the future, and redundant ones, such as the repeated
identical corruption of the same memory location containing the
same value in subsequent instants of time. Since the issues related
to this activity have been widely investigated in the literature,
this step has been defined also by integrating some existing
approaches.

First, as in [40], the proposed methodology adopts a pruning
strategy based on the analysis of the register liveness for generat-
ing a more significant fault list. The aim of this analysis is to iden-
tify for each memory element and register within the system all
the time windows in which the considered location contains a
valid data, i.e., a value that is later used in the execution. The live-
ness time windows are computed by analyzing the log of the read
and write access of each memory element generated during the
preliminary golden simulation. As shown in Fig. 6, each time win-
dow starts on a write operation and ends on the last read operation
before the subsequent write one. Moreover, in order to not to be
redundant, two faults corrupting the same location with the same
corruption mask must be separated by a read action. It is worth
mentioning that, the injection in the TLM ports does not require
such analysis since communications are corrupted only during
the execution of a transaction. Finally, more advanced rules, aware
of the various functionalities (as the ones proposed in [39,40]), can
be adopted for a more accurate pruning.

A second relevant aspect the methodology considers during the
generation of the fault list is the extracted application-level infor-
mation stored in the EFG. In past works [5,3] at most the architec-
tural characterization is used to determine which component
is affected by each generated fault; therefore, the performed
fault injection campaign reported at most the statistics on the
vulnerability of the various parts of the architecture. Here, the
Fig. 6. Example of liveness time windows.



methodology exploits the EDF information, and in particular the
timing and mapping data stored in each node, to classify the gen-
erated faults also in terms of the affected task. In this way, the final
report will present also statistics in terms of the criticality and the
vulnerability of the various tasks composing the application. Fur-
thermore, when the aim is to evaluate specific reliability-oriented
mechanisms implemented in specific functionalities, the EDF infor-
mation can be used to generate faults focused only on the execu-
tion of the related function and, in case, to generate specific
application-level errors in its execution and its input/output
parameters. A final consideration is related to the necessity to
provide a statistical representativeness of the experimental results,
in particular, with respect to the number of injected faults. Specific
techniques (e.g., [41]) can be integrated in the framework to
support the definition of the fault list for each specific type of
fault.

Apart from the support to the generation of a more efficient
fault list, the liveness analysis is particularly interesting since it
offers the opportunity to integrate into the methodology prelimin-
ary indexes that, similar to the Program Vulnerability Factor (PVF,
[28]), state the vulnerability of the various memory locations of the
system and of the various executed functions. The simple consider-
ation is that the potential susceptibility of a register to a fault is
directly proportional to the overall length of its liveness time win-
dows. Later, in the last steps of the methodology, these percentage
indexes may be used also to weight the statistical results obtained
by the fault injection campaigns.

3.5. Definition of the monitoring and classification strategy

The core activity of the methodology consists in the definition
of the monitoring and classification strategy. In fact, as discussed
in the introduction, the methodology does not perform a straight-
forward comparison of the traces of the registers’ values during the
simulation against the golden counterpart, but an accurate analysis
customized according to the specific system’s properties and func-
tionalities the designer aims at testing. For instance, the designer
may be interested in assessing if an adopted hardening technique
is able to handle the occurrence of faults, and, in case of a failure,
s/he desires to identify the causes. The analysis strategy is based
on a set of custom conditions expressed by the designer to monitor
and analyze the status of the system with respect to the golden
model at both architecture and application levels.

The architecture-level conditions aim at directly observing the
status and the activity of the various architectural components.
In particular, the designer may request to monitor either (i) a
straightforward difference between the observed registers’ values
and the golden counterpart, or (ii) that architectural values satisfy
a more complex condition ensuring the correct behavior of the
Fig. 7. The monitoring and classifica
system. For instance, the designer may need to assess that during
the execution of each function, the processor does not perform
any erroneous access to the bus, to avoid that, if affected by a fault,
it corrupts data concurrently elaborated by other units. For this
purpose, the designer will specify a set of conditions that, during
the execution of each function, will evaluate whether the accessed
addresses are within the range of values computed during the
golden model characterization or not. It may be noticed that
application level information, such as the scheduling and execution
times of the functions, may be used for expressing such condition.

The second kind of conditions is called application-level condi-
tions. In particular, according to the data provided by the applica-
tion-level interpreter, the designer can express conditions for
analyzing if the flow of executed functions is the expected one
and the produced/exchanged data are correct. More precisely, a
subset of events contained in the EFG can be considered as a sort
of checkpoints which a condition is associated to. When consider-
ing the example in Fig. 2, a condition may be expressed on the exit
of RGBtoGray function to check whether the produced image is
correct with a tolerance of the 5% of wrong pixels or not.

The set of defined conditions needs to be implemented in a spe-
cific monitoring and classification module integrated in ReSP (shown
in Fig. 7) that performs a ‘‘smart’’ monitoring of the error occur-
rence and propagation in the system: during the simulation, it will
continue analyzing the status of the system exploiting the moni-
toring interfaces described in Section 3 to identify situations in
which some conditions are violated. When a violation occurs, all
relevant data are logged (e.g., the erroneous value, the processing
unit experiencing the error, or the instant of time the event
occurred). In this way, a detailed report on the error propagation
is produced at the end of the simulation, describing the cause/
effect relationship for the occurred faults and how the errors
evolved among the architectural components and the application
tasks.

The classification strategy supported by the methodology pre-
sents two peculiarities: (i) it can be customized by the designer
according to the system’s properties to be tested, and (ii) it is
intended as a continuous activity providing a (partial) response
during the overall simulation. To this purpose the set of classes
to be used are customizable by the designer and are based on
the application-level and architecture-level conditions defined
above. Moreover, these classes are divided in final classification
and intermediate classification. The former set describes the final
status of the system at the end of the simulation, as usually done
in the literature. Possible examples of classifications are shown
in Fig. 8:

(a) silentjobserved, to assess if faults activated any error visible
on the results;
tion module integrated in ReSP.



(a) (b)

(c) (d)

Fig. 8. Examples of classification.

Fig. 9. Classifier for the edge detector.
(b) silentjdetectedjfailure, to assess reliability mechanisms
implemented into the system;

(c) no-effectjcriticaljnot critical, used for both observable and
silent faults, to distinguish the actual impact of the fault on
the overall system behavior and output, and discriminating
those faults for which mitigation strategies should be
adopted;

(d) no-effectjsafejdangerous, used by FMEA in compliance
with EN/IEC 61508, to evaluate the properties of the system
with respect to functional safety.

Differently from the classical state-of-the-art approaches which
uses at most the latent class, the methodology supports also the
definition of classes for an accurate intermediate classification dur-
ing the overall simulation. For instance, two intuitive but interest-
ing intermediate classes involving the application-level analysis
are the data error, when some function produces a wrong result,
and the control error, when an unexpected event occurs in the
execution flow graph. This set can be further specialized according
to the properties of the system, and, in particular, the structure of
the EFG. As shown in the examples in Fig. 8, intermediate and final
classes are organized in a state diagram. Moreover classes are con-
nected by transition edges specifying the possible evolution in the
classification; transitions are fired according to the specified condi-
tions. The monitoring and classification module within ReSP sup-
ports the specification of the classification strategy in order to
automate such activity. During the simulation the module will
exploit the monitoring data to decide the intermediate classifica-
tion status, and at the end the final one.

As a conclusion, Fig. 9 shows the classification state diagram
defined for the edge detector example in Fig. 2, omitting transition
conditions for the sake of clarity. Do note that all the classes are
final except for the control-flow error, which evolves into another
class before the end of the simulation.

3.6. Statistical campaign and results’ analysis

Once the set-up of the experiments has been performed, the
fault injection campaign can be executed. The approach consists
in a first execution of the experiments to collect statistical informa-
tion on the dependability of the system from both the architectural
and application points of view. During the subsequent post-pro-
cessing step, the logs of the events of each experiment can be
examined to mine further details on the cause/effect relationship
of the occurred events. For instance, it may be noted how in the
considered image processing example, a control flow error is more
prone to cause a processor exception. Furthermore, experiments
presenting interesting situations can be further analyzed with a
more accurate simulation by means of more specific monitoring
conditions to determine step-by-step the actual evolution and
propagation of the errors in the system, and by specifying more
focused fault lists for stimulating the system.

Since the definition of an accurate classification strategy can be
a complex activity, the designer can also exploit the possibility to
re-execute the experiment execution phase and the previous set-
up phase to perform iterative refinements on that strategy. In par-
ticular, in the first iterations a preliminary classification diagram is
considered and the focus is devoted on the error propagation anal-
ysis. Based on the outcomes on the error propagation, the designer
can accurately refine the classification diagram to be used during
the re-execution of the experiments to produce an accurate report
on the causes of the failures.
4. Case studies

The proposed methodology has been employed in two case
studies considering a hardened version of the image processing
system used in the paper as a running example and an automotive
anti-lock braking system (ABS). For sake of simplicity, the two case
studies have a limited complexity to give the opportunity to dis-



cuss in details the results and the outcomes of the application of
the methodology; for this same reason the multiprocessor
architecture has been used only to execute replicated threads. Nev-
ertheless the methodology is effective also in more complex sce-
narios considering multi-threaded applications.

4.1. Case study 1: The edge detector system

In the first case study we consider the image processing appli-
cation. The architectural platform is based on an ARM multiproces-
sor connected through a bus with a shared memory and to an
input/output peripheral. The static architectural analysis is
performed to retrieve the list of observation points and injection
ones. The first list contains the debugging interface of the various
processors and the probes on the interconnection with the bus;
the last ones are used also for monitoring the activities of the
shared memory. The list of injection points includes the register
bank of the ARM processor (containing also the status registers)
and the memory cells. We also model faults on the memory
controller, the bus and the processor interfaces in terms of
corruptions of the transactions by means of sabouters. All fault
lists considered during the experiments are generated starting
from the liveness analysis.

In the preliminary proposal of the analysis framework [34], we
investigated the vulnerability of the various processor’s registers
and application’s functions. In this case study, we assume that a
designer decides to harden the considered system by means of
the Triple Modular Redundancy (TMR) applied at the software level
and using an architecture with 3 different processors, as shown in
Fig. 10; the leftmost processor executes the main function, one of
the replicas and the voter function, while the other two
processors execute the secondary thread replicas. We investigate
Fig. 10. The hardened version of the edge detector system.
the reliability of such a solution in particular focusing on the
robustness of using three replicas.

In a first experimental campaign we aim at analyzing the final
outputs of the system (as generally done in the literature), and
we consequently specify a classification strategy using only final
classes and no monitoring strategy. We perform a campaign with
10,000 injected in the shared memory and other 10,000 in the pro-
cessors’ registers. It is worth noting that in this case study (and also
in the following one) the fault list a simple fault list is generated for
demonstrating the capabilities of the approach to provide an accu-
rate analysis fault/error relationship and to identify possible limi-
tations in the adopted hardening mechanisms, without aiming at
generating a statistically representative fault list.

The obtained results are presented in Table 2. RB0 to RB3 are
the registers used for transmitting the parameters and for perform-
ing most of the elaborations, while the Link Register, the Program
Counter (PC) and the Stack Pointer are the three main control reg-
isters. Do note that some of the registers are omitted for sake of
space; moreover, results of the same registers of different proces-
sors are aggregated since they almost presented a similar trend.
The table shows that the processors’ registers are more critical
than the shared memory. In fact, when corrupting the memory,
only in the 2% of the experiments an erroneous image is produced,
and in the 5.3% an exception is risen or a timeout expired (we set a
maximum execution time within the system has to generate the
result). Do note that the exception handler is programmed to reset
the system; as a consequence, exceptions cause a timeout. On the
other side, the processors’ registers present a higher percentage of
cases in which the final image is corrupted or an exception is
thrown, especially when considering control registers such as the
program counter.

A second in-depth experimental campaign is performed to
investigate the causes of the two problematic situations high-
lighted during the previous run: the generation of an erroneous
image and the high number of timeouts (and exceptions). To this
purpose, two basic conditions on the processors are defined for
the monitoring and classification strategy: on each enter and exit
event, we check that (i) the partial EFG is equal to the golden
one, and (ii) the data transmitted on each event are correct. More-
over, probes are inserted on the processors’ ports to monitor the
accessed memory addresses; to this purpose the golden model
characterization is executed again to collect the range of addresses
accessed by each function. In case of a mismatch, the monitoring
and classification module is programmed to log the wrong status.

When we re-execute the relevant experiments for the first crit-
ical situation with the new conditions, we note that on the exit
events subsequent the injection of the fault two replicas of the
image were corrupted, and several cases also the register contain-
ing one of the pointers to the input/output images (for the consid-
ered functions RB0 and RB1 in the register bank) contained a
wrong value. As a final confirm, the data provided by the monitor-
ing probes show that the TMR strategy failed because one of the
thread replicas started writing on the memory space of another
thread.

In order to refine the classification of the collected results, we
re-performed all the experimental campaign by using the
described monitoring conditions, and we noted that the 34.6% of
the faults causing an error propagated to the registers RB0 and
RB1 causes an exception as a consequence of a wrong access to
the memory. These results demonstrate that to avoid TMR failures
it is necessary to isolate the memory spaces accessed by the three
thread replicas. For sake of completeness, we report in Fig. 11 the
overall error propagation diagram for the data error, generated on
the basis of the logged information; some of the details (such as
the transition conditions and the event on which the condition
has been violated) have not been displayed for readability reasons.



Table 2
Statistical results on the final effects of the faults injected in the memory and in the registers for the edge detector case study.

Class Memory (%) RB0–RB1 (%) RB2–RB3 (%) Link Reg. (%) SP Reg. (%) PC Reg. (%)

No effect 92.7 35.2 79.9 22.0 30.6 22.5
Errors 2.0 30.2 7.7 0 1.4 2
Exc./T.O. 5.3 34.6 12.4 78 68 75.5

Fig. 11. The possible propagations of a data error.
When analyzing the experiments reporting an exception or a
timeout, the monitoring of the sequences of function enter/exit
events show that the cause of the timeout is mainly derived by a
thread synchronization; in fact, when a secondary thread raises
an exception, the processor is reset and the primary thread (the
one executing the main function) is stuck on the join function
call. Fig. 12 displays the propagation of control errors generated
by injecting faults in the PC register of the processors running sec-
ondary threads. Experimental results show that in very few cases,
the control error causes a short jump backward (re-executing few
instructions), whose effect is a short delay, or the jump forward
(skipping few instruction), whose effect is a data error mitigated
by the voter. Instead, in most cases, the control error causes an
exception and consequently a timeout. Finally, the few cases gen-
erating a corrupted image are caused by a jump forward to the end
of the main function or in the voter one. In order to overcome this
limitation, it is necessary to decouple the call of the voter from the
end of the thread replicas. In particular, the voter should be
invoked at the expiration of a timeout, so that its call is not strictly
dependent on the correct termination of the secondary threads.

We also perform a fault injection campaign focused on the
voter; we note that also that function presented a similar vulnera-
bility to the other functions (9% of cases presenting a corrupted
image and 40% of cases raising an exception or a timeout); there-
fore, we find out that the voter has to be executed by a specific
hardened hardware module. In conclusion, the dependability
Fig. 12. The possible propagations of a control error caused
analysis presented in this case study offers the possibility to iden-
tify the pitfalls of the TMR implemented in software and the
related causes; according to these results, the hardening mecha-
nism can be improved.

4.2. Case study 2: The anti-lock braking system

In the second case study we consider an automotive anti-lock
braking system (ABS) executed on the multiprocessor architecture
shown in Fig. 13. During an emergency brake, the system aims at
controlling the braking activity until the vehicle is halted; there-
fore the algorithm is based on a loop of three main tasks: acquisi-
tion of the vehicle’ and wheels’ speeds from specific sensors,
computation of the braking strength and actuation of the brake.
The system is hardened (i) by duplicating the sensors and data pro-
cessing tasks triggering a re-execution in case of detected error,
and (ii) by using a control-flow signature checking schema [42].
Moreover, when an error is detected, a safety routine is called to
reset the application and restore the system in safe state. Do note
that in the figure, dashed arrows representing the mapping of fork,
join and checking tasks have not been drawn for the sake of clear-
ness in the picture; these tasks are mapped on the same processor
that executed the main function.

The goal of the fault injection campaign is to establish whether
the ABS is able to halt the vehicle within a given deadline or not,
and in this second case, to investigate the causes of the failure.
by a fault in the PC register of a secondary processor.



Fig. 13. The hardened version of the anti-lock braking system.
The preliminary activities for the characterization of the system is
carried out similarly as discussed for the previous case study; in
particular, we consider similar fault models. Moreover, due to the
safety characteristics of the application, the final classification in
Fig. 8d is adopted, and the following list of monitoring conditions
are defined: (i) the sequence of enter/exit events must be equal
to the golden one, (ii) the data transmitted on each event must
be correct, (iii) if the safety function is called, an error must have
been previously detected, and (iv) if a data error is detected on
an event, the safety function must be subsequently called. Simi-
larly to the previous case, in case of a mismatch, the monitoring
and classification module is programmed to log the wrong status.

An experimental campaign is carried out by injecting 10,000
faults in the processors’ registers and other 10,000 in the memory.
Table 3 reports some aggregated statistics on the final effects. It is
possible to notice that the percentage of dangerous situations is
under the 10%; in fact, in the most of the cases, the fault generates
an error that is then correctly detected and managed by the safety
function. When analyzing the internal behavior of the system
logged by means of the monitoring conditions (graphs similar to
the ones in Figs. 11 and 12), we draw the following comments.

� Approximately in the 50% of the overall number of safe situa-
tions, the safety function is invoked by a processor exception,
especially when corrupting the control registers.
Table 3
Statistical results on the final effects of the faults injected in the memory and in the regis

Class Memory (%) RB0–RB1 (%)

No effect 37.7 16.4
Safe 57.7 82
Dangerous 4.6 1.6
� The task duplication and re-execution is able to handle the most
of the data errors occurred during the data acquisition and pro-
cessing; for instance, the 66.7% of errors affecting registers RB0
and RB1 are corrected by the technique while the left 15.3% are
managed by the call to the safety function.
� The control-flow signature checking schema is a valid strategy

to detect the few control errors not causing any exception.
� Errors affecting the actuation are directly mitigated by the algo-

rithm. In fact, such an error causes a wrong brake actuation for a
single iteration; therefore, during subsequent iterations the
algorithm will adjust the actuation according to the newly
sensed data.

When analyzing the dangerous situations, the main cause is
again related to a thread synchronization problem that also the
edge detector system suffers. For instance, in the 1.6% of dangerous
situations collected for the registers RB0 and RB1, the secondary
processor is affected during the execution of the replicated data
acquisition thread or processing one; in these situations the thread
does not return, thus causing the main thread to be stuck on the
join function. In other situations, when the PC register of the main
processor is affected, the fork function was skipped and conse-
quently the thread blocked on the subsequent join. In conclusion,
the vulnerabilities of the adopted fault management mechanisms
are related to thread synchronization errors. It can be solved by
ters for the ABS case study.

RB2–RB3 (%) Link Reg. (%) SP-PC Reg. (%)

67 3.2 6.8
33 91.7 85.6
0 5.1 7.6



enhancing the join function with a timeout mechanism that
forces the exit from the blocking call and the call to the safety
routine.

As a final note, the execution of the 20,000 simulations required
altogether 60 h for the first case study and 32 h for the second one
on a 3.15 GHz Intel core 2 duo running Ubuntu. This performance
is specifically related to the adopted simulator rather than to
the amount of data collected and analyzed. To improve perfor-
mance it is possible to port the proposed analysis framework in a
more efficient simulation environment or in an emulation-based
fault injector, an operation that will be taken into account in future
work.
5. Conclusions

This paper has presented a methodology for the system-level
dependability analysis of multiprocessor embedded systems. The
methodology is based on fault injection and features an error
analysis approach offering to the designer the possibility to specify
custom monitoring and classification conditions at both applica-
tion and architecture levels. A companion framework has been
implemented within ReSP, a state-of-the-art SystemC/TLM simula-
tion platform, for multiprocessor specifications featuring fault
injection facilities. A debug-like mechanism offers the possibility
to interpret architectural raw data observed during the simulation
at application level with a function call/return granularity, thus
offering the possibility to analyze the propagation of the errors in
the various functionalities of the executed application. The
experimental results in two case studies have demonstrated its
effectiveness in the production of an accurate dependability report
highlighting the criticalities in both the architecture and the
application of the system under design.
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