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1. Introduction

Fiber reinforced bio-materials show strongly nonlinear and anisotropic responses (Destrade et al., 2009; Merodio and Og-
den, 2005). Many biological tissues, in particular, are characterized by a functional micro-architecture of collagen fibers and
are modeled conveniently as an underlying isotropic matrix embedded with one or more sets of fibers (Fereidoonnezhad
et al., 2013). At small strains the dominant response is provided by the isotropic component, while for larger strains the col-
lagen fibers, initially crimped, gradually unfurl and begin bearing some loading (Roach and Burton, 1957). The contribution
of the uncrimped fibers becomes dominant for large strains.

Most of material models commonly used in applications assume that the contribution of fibers, although marginally,
manifests even at low strains (Gasser et al., 2006; Holzapfel et al., 2000; Pandolfi and Vasta, 2012). There are experimental
examples, though, of activation of the fibers at a particular, finite, strain threshold. Abrupt fiber recruitment has been con-
sidered in material modeling (Li and Robertson, 2009; Watton et al., 2012; Wulandana and Robertson, 2005), but the direct
measurement of the process has been posing challenges to experimentalists. Recent studies proposed to use multi-photon
microscopy (MPM) combined with biomechanical devices to visualize the collagen structure in segments of biological tissue
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at different strains (Megens et al., 2007; Zoumi et al., 2004). An accurate experimental program on carotid arteries where non
destructive uniaxial tests joined with MPM provided a good collection of stretched collagen fiber and elastin images has been
recently discussed in Hill et al. (2012).

As far as the theoretical aspects are concerned, several years ago Lanir (1979, 1983) formulated a three-dimensional
structural model of planar collagenous tissues—e.g. skin—accounting for the distribution of collagen fiber orientation and
for fiber recruitment. Subsequently, Sacks (2000) incorporated directly in Lanir’s model the distribution of the fiber orienta-
tion obtained from small angle light scattering, and characterized the recruitment probability distribution function (PDF)
with parameters obtained from a least-squares fit of experimental data. More recently collagen fiber recruitment defined
by a PDF, but assumed to initiate at an infinitesimal strain, has been quantified in rabbit carotid arteries using staining
and fixation with confocal microscopy (Roy et al., 2010).

On the basis of their own experimental results, to describe gradual recruitment at finite strains Hill et al. (2012) proposed
an alternative form of the strain energy function, characterized by stretches defined on a PDF. The mechanical parameters
feeding the material model were identified directly from experimental measurements.

Some biological tissues show a relatively thin two-dimensional structure, resulting from the particular interlacing archi-
tecture of reinforcing collagen fibers. Recently, the mathematical characterization of such tissues has seen important ad-
vances (Soldatos, 2009). Among others, we can mention the spatial distribution of the fiber orientation (Alastrué et al.,
2006; Federico and Gasser, 2010; Gasser et al., 2006; Kroon and Holzapfel, 2008; Pandolfi and Vasta, 2012; Pinsky et al.,
2005; Raghupathy and Barocas, 2009; Roy et al., 2010; Vasta et al., 2013; Wang et al., 2012).

In the present contribution we consider a class of material models characterized by a spatial distribution of the orienta-
tion of the fibers, adopting an approximated formulation of the strain energy density. We start from the Taylor expansion of
the strain energy about the average fourth invariant I�4 of the distribution (Pandolfi and Vasta, 2012), truncated at the qua-
dratic terms. Then, the stochastic material model, referred to as second order, or variance, approximation, is enriched with a
collagen recruitment mechanism (Hill et al., 2012), described with a recruitment function likewise expanded about I�4 up to
the quadratic terms. We derive the explicit expressions of the stress and elasticity tensors of the proposed material model.
The new stochastic model is compared with previous material models and validated against experimental results.

We show that the highly nonlinear behavior of the recruitment model is well described by the proposed second order for-
mulation of a strain energy with a von Mises distribution of the fiber orientation. Numerical simulations of uniaxial tests show
that the approximation provided by the second order or variance approach is more accurate than the approximation based on
the first order, or mean, formulation. Upon experimental data set tuning, the present theoretical formulation allows for the
parametric characterization of the mean and variance contributions to the average stress and tangent stiffness tensors.

It is important to emphasize that the present approach is slightly different from others currently discussed in the liter-
ature. In particular, we note that the expression second order used here to denote the approximation of a statistical distribu-
tion of fibers should not be confused with the second order terms of the Landau and Lifshitz expansion of isotropic strain
energy densities (Landau and Lifshitz, 1986) described, e. g., in Destrade et al. (2010). Additionally, we remark that the fiber
families here considered are characterized by a distribution of the spatial—or planar—orientation and they do not fall in the
class of transversally isotropic materials, except for the case of fully aligned fibers. However, for the latter case, it is not worth
to use the present model. According to Spencer, transversally isotropic hyperelastic fiber reinforced materials must be de-
scribed in terms of the Cauchy strain invariants I1 and I2 and of two pseudo invariants I4 and I5 that include the orientation
of the fiber. Recently, it has been pointed out that the description of fiber reinforced transversally isotropic materials cannot
be done in terms of only a pair of strain invariants (e. g., I1 and I4). In fact, this assumption introduces a kinematic constraint
between the stretch components that cannot be satisfied in simple tension tests (Destrade et al., 2013; Murphy, 2013; Pucci
and Saccomandi, 2014). Our approach, though, does not face this issue, since the description of the isotropic part of the
hyperelastic strain energy is done in terms of a Mooney–Rivlin model, which depends on both I1 and I2, while the anisotropic
part accounts for a distributed, not aligned, set of fibers that is described by means of average and variance measures.

The outline of the paper is as follows. In Section 2 we introduce the general hyperelastic formulation and the statistical
distribution of fibers in terms of both first and second order approximations. In Section 3 we specialize the general three-
dimensional formulation to a planar fiber distribution. In Section 4 we introduce material models able to describe the fiber
recruitment process. The numerical response and parameter tuning upon experimental uniaxial tests are reported in Sec-
tion 5, whereas conclusions and future perspectives are drawn in Section 6.
2. Fully three-dimensional fiber orientation distribution

We are concerned with a fully hyperelastic approach, and introduce a strain energy function that describes the reversible
behavior of a fibrous material characterized by reinforcing fibers embedded in an isotropic matrix. We make the assumption
that the strain energy density splits into the sum of volumetric, matrix, and fiber contributions in the standard form:
WðC; aÞ ¼ Wvolumetricð JÞ þWmatrixðCÞ þWfiberðC;aÞ;
where C ¼ J�2=3C is the isochoric part of the Cauchy–Green deformation tensor C ¼ FT F; F the deformation gradient,
J ¼ detðFÞ the volumetric deformation, and a a unit vector describing the orientation of the fiber distribution in the stress
free state. The expressions of WvolumetricðJÞ and WmatrixðCÞ will be specified later in the application section, since we are



focusing in the anisotropic contribution due to the fibers. Within the unit sphere x, the generic unit vector a is defined in
terms of the two Eulerian angles H 2 ½0;p� and U 2 ½0;2p� as
Fig. 1.
(e2; e3)
aðH;UÞ ¼ sin H cos Ue1 þ sin H sin Ue2 þ cos He3;
see Fig. 1(left). It follows that also the directional structure tensor A ¼ a� a is defined in terms of Eulerian angles.
In a material with statistical distribution of the fibers, the spatial orientation of the fibers is described by a density func-

tion �q of the unit vector a. We assume the symmetry property �qðaÞ � �qð�aÞ and the normalization property
Z
x

�qðaÞdx ¼
Z p

0

Z 2p

0
�qðaÞ sin HdUdH ¼ 4p; ð1Þ
where the expression �qðaÞ sin HdHdU represents the amount of fibers whose orientation falls in the range
½ðH;Hþ dHÞ; ðU;Uþ dUÞ�. For an assigned distribution �qðaÞ of the fiber orientation, the operator hf i returns the average over
the unit sphere of the function f ðaÞ :
hf i ¼ 1
4p

Z
x

�qðaÞ f ðaÞdx: ð2Þ
The strain energy density WfiberðC; aÞ of a small portion of fibers oriented in the direction a can take different functional
forms. Explicit expressions of the stress and stiffness tensors can be obtained only if the analytical form of WfiberðC; aÞ is spec-
ified. In the following we consider a classic exponential expression often used in the literature (Gasser et al., 2006; Pandolfi
and Vasta, 2012):
WfiberðC;aÞ ¼ WfiberðI4Þ ¼ Wfiber þW0
fiber ¼

k1

2k2
exp k2ðI4 � 1Þ2

h i
� k1

2k2
; ð3Þ
where I4 ¼ A : C is the directional fourth pseudo-invariant of C. The expression (3) holds only for fibers in tension, i. e., for
I4 > 1. For later perusal, we recall the derivatives:
@Wfiber

@I4
¼ 2k2ðI4 � 1ÞWfiber ¼ MðI4ÞWfiber ¼MðI4Þ; ð4Þ

@2Wfiber

@I4@I4
¼ 2k2 2k2ðI4 � 1Þ2 þ 1

h i
Wfiber ¼ 2KðI4ÞWfiber ¼ KðI4Þ: ð5Þ
The second Piola–Kirchhoff stress tensor for the small portion of fibers SfiberðI4Þ follows as
SfiberðI4Þ ¼ 2
@WfiberðI4Þ

@C
¼ 2MðI4ÞA; ð6Þ
and the isochoric material stiffness tangent for the small portion of fibers CfiberðI4Þ follows as
CfiberðI4Þ ¼ 4J�4=3 @
2WfiberðI4Þ
@C@C

¼ 4J�4=3KðI4ÞA� A:
For the full expression of the second Piola–Kirchhoff stress tensor and tangent stiffness tensor see, e.g., Gasser et al. (2006)
and Pandolfi and Vasta (2012)). Since the isochoric deformation tensor C is independent of the Eulerian angles, the average
pseudo-invariant I�4 can be computed straightforwardly as
Orientation of the generic unit vector aligned with a set of fibers in spherical (left) and cylindrical (right) coordinates for a planar distribution in the
plane with U ¼ p=2.



I�4 ¼ hI4i ¼
1

4p

Z
x

�qðaÞ I4ðaÞdx ¼
1

4p

Z
x

�qðaÞAdx : C ¼ H : C; ð7Þ
where H ¼ hAi is a second order generalized structure tensor (GST). As first observed in Cortes et al. (2010), in the definition
of I�4 the eventual portion of fibers under compression cannot be excluded. Therefore, if one of the eigenvalues of C is inferior
to the unit, a fraction of compressed fibers will be included in the average of the invariant. Accordingly, the average strain
energy density over the unit sphere is defined as
W�fiber ¼ hWfiberi ¼
1

4p

Z
x

�qðaÞWfiberðI4Þdx: ð8Þ
In general, for different expressions of the strain energy WfiberðC; aÞ, no close forms of (8) are available, and the hyperelastic
approach loses his computational appeal since the stress tensor S�fiber cannot be derived analytically, but only through the
average definition
S�fiber ¼ hSfiberi ¼
1

4p

Z
x

�qðaÞSfiberðI4Þdx: ð9Þ
Also the tangent stiffness C�fiber can be only computed numerically as
C�fiber ¼ hCfiberi ¼
1

4p

Z
x

�qðaÞCfiberðI4Þdx: ð10Þ
To alleviate the difficulties related to the evaluation of the expressions (8) and (9), alternative, simplified forms of the
strain energy density have been proposed. An example is given by transversally isotropic distributions (Gasser et al.,
2006) derived from the assumption of rotational symmetry of the fiber orientation distribution about a specific referential
direction a0. Indeed this situation is important in biomechanical applications where transversally isotropy is observed (Ni
Annaidh et al., 2012). In particular, the approach described in Gasser et al. (2006) leads to the definition of an approximated
strain energy density WGST

fiber defined in terms of the tensor H above introduced. As discussed in Pandolfi and Vasta (2012), the
GST model can be interpreted as a linearization of the strain energy density WfiberðI4Þ about the average invariant I�4 :
WGST
fiber � WfiberðI�4Þ þ

@Wfiber

@I4

����
I4¼I�4

hI4 � I�4i ¼ W�fiber þW0
fiber; ð11Þ
since, by definition of average, hI4 � I�4i ¼ 0. The approximation (11) allows for the analytical calculation of the average stress
tensor in the straightforward form as
SGST
fiber ¼ 2MðI�4ÞH; ð12Þ
and of the average tangent stiffness tensor as
CGST
fiber ¼ 4J�4=3K I�4

� �
H�H: ð13Þ
Regrettably, for very dispersed fiber distributions the approximation (12), (13) is affected by large errors (Cortes et al., 2010).
A better approximation is obtained by accounting for the second order terms (or variance, V) of the Taylor expansion of Wfiber

about I�4 (Pandolfi and Vasta, 2012):
WV
fiber � WfiberðI�4Þ þ

1
2
@2Wfiber

@I2
4

�����
I4¼I�

4

hðI4 � I�4Þ
2i ¼ W�fiber 1þ K�r2

I4

� �
þW0

fiber;
where, according to (5), we denote
K� ¼ K I�4
� �
and
r2
I4
¼ C : H : C� ðH : CÞ2; H ¼ hA� Ai:
The components of the forth order tensor H can be found in Vasta et al. (2013). The second Piola–Kirchhoff stress is obtained
analytically as
SV
fiber ¼ aM þ r2

I4
aV

� �
Hþ bH : C: ð14Þ
where
aM ¼ W�fiber

X3

j¼0

aM
j I�4

j
; aV ¼ W�fiber

X3

j¼0

aV
j I�4

j
; b ¼ W�fiber

X2

j¼0

bjI�4
j
:
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The tangent stiffness reads as
Table 1
Coeffici

Coef

aM

aV

b

cM

cV

d

CV
fiber ¼ 4J�4=3 cM þ r2

I4
cV

� �
H�Hþ dH�H : Cþ 2bH

h i
; ð15Þ
where
cM ¼ W�fiber

X4

j¼0

cM
j I�4

j
; cV ¼ W�fiber

X4

j¼0

cV
j I�4

j
; d ¼ W�fiber

X3

j¼0

djI�4
j
:

The coefficients aM
j ; a

V
j ; bj; cM

j ; c
V
j ; dj are listed in Table 1.

3. Planar distribution of fibers

A planar formulation may be obtained by specializing the distribution density �qðaÞ, see, e.g., Wang et al. (2012) and Vasta
et al. (2013). We recall that, even for a planar distribution of the fibers, the derived structural tensor is a three-dimensional
tensor, as well as the stress and stiffness tensors. We refer to a planar distribution lying on the plane normal to the direction
e1 where we express the independence of the angle U by assuming
�qðaÞ ¼ qðHÞ; ð16Þ
with H 2 ½�p=2;p=2�. The normalization condition (1) and the average definition (2) of a function f ðaÞ ¼ f ðHÞ in a planar
setting become, respectively
1
p

Z p=2

�p=2
qðHÞdH ¼ 1; h f i ¼ 1

p

Z p=2

�p=2
qðHÞf ðHÞdH: ð17Þ
With no loss of generality, we account for a p-periodic distribution that depends only on the angle H and assume that the
mean orientation of the fibers is in the direction a0 ¼ e3. Thus, it is possible to derive the average structure tensor Hpl for the
planar distribution case (Vasta et al., 2013) as
Hpl ¼
0 0 0
0 jpl 0
0 0 1� jpl

264
375;
where
jpl ¼ 1
p

Z p=2

�p=2
qðHÞ sin2 HdH; ð18Þ

ĵpl ¼ 1
p

Z p=2

�p=2
qðHÞ sin4 HdH ð19Þ
and the non-zero terms of the average fourth order tensor Hpl are
Hpl
2222 ¼ ĵpl;

Hpl
3322 ¼ Hpl

2233 ¼ Hpl
3232 ¼ Hpl

2323 ¼ Hpl
3223 ¼ Hpl

2332 ¼ jpl � ĵpl;

Hpl
3333 ¼ 1� 2jpl þ ĵpl:
In order to perform numerical experiments described in the following, we select qðHÞ as the p-periodic normalized von
Mises distribution centered at H ¼ 0 and given by
q Hð Þ ¼ 1
pI0 exp b cos 2Hð Þ;
ents of the stress and tangent stiffness tensors in the second order or variance approximation.

f. j ¼ 0 j ¼ 1 j ¼ 2 j ¼ 3 j ¼ 4

�4k2 �8k2
2 16k2

2 �8k2
2

–

�8k3
2 � 12k2

2 24k3
2 þ 12k2

2 �24k3
2 8k3

2
–

8k2
2 þ 4k2 �16k2

2 8k2
2

– –

– 64k3
2 þ 96k2

2 �192k3
2 � 96k2

2 1928k3
2 �64k3

2

32k4
2 þ 96k3

2 þ 24k2
2 �128k4

2 � 192k3
2 192k4

2 þ 96k3
2 �128k4

2 328k4
2

64k3
2 � 96k2

2 192k3
2 þ 96k2

2 �192k3
2 64k3

2
–



with
Fig. 2.
Eq. (18
I0 ¼ 1
p

Z p=2

�p=2
exp b cos 2Hð ÞdH:
The proposed choice is in line with several previous works addressing stochastic distributions of fibers in continuum media
both for three- and two-dimensional material models (Gasser et al., 2006; Pandolfi and Vasta, 2012; Vasta et al., 2013). The
von Mises distribution for several values of the concentration parameter b is visualized in Fig. 2(left). Fig. 2(right) shows the
dependence of the coefficients jpl and bjpl on the concentration parameter b. (see Fig. 3)

4. Fiber recruitment

The multiplicative decomposition of the deformation gradient fosters several advantages in the solution of nonlinear
problems (Lubarda, 2004). The deformation gradient is assumed to split into an elastic part Fe, related to the stress, and
an inelastic part Fa, that describes stress free kinematics:
F ¼ FeFa: ð20Þ
In keeping with the description provided in Hill et al. (2012), in the present study the inelastic part of the deformation gra-
dient is assumed to provide a threshold for the onset of fiber recruitment. The threshold must be tuned against experimental
measurements.

The approach considers three different configurations: (i) X0, material (or stress free) configuration, where the lengths are
denoted with L0; (ii) X, spatial (or current) configuration were the lengths are denoted with l; (iii) Xa, intermediate config-
uration where the fibers are recruited and the lengths are denoted with La. The activation stretch ka, the elastic stretch ke, and
the total stretch k are defined as
ka ¼
dLa

dL0
; ke ¼

dl
dLa

; k ¼ dl
dL0

: ð21Þ
In terms of stretches the multiplicative decomposition (20) becomes
k ¼ ke ka: ð22Þ
Note that the total stretch is related to the directional invariant I4
I4 � k2 ¼ A : C: ð23Þ
As customary within the multiplicative decomposition approach, the mechanical response is shifted to the configuration Xa

(Hill et al., 2012).
In the following, we will make use of the Leibniz’s integral rule for functional differentiation under the integral sign, that

we recall here for the sake of completeness. For a function f ðx;xÞ continuous with its partial derivative @f ðx;xÞ=@x, it holds:
@

@x

Z vðxÞ

uðxÞ
f ðx;xÞdx ¼

Z vðxÞ

uðxÞ

@f ðx;xÞ
@x

dxþ f vðxÞ;xð Þ @vðxÞ
@x

� f uðxÞ;xð Þ @uðxÞ
@x

: ð24Þ
By restricting our investigation to a planar distribution of the fiber orientation, we begin by considering an invariant based,
integral formulation of the recruitment strain energy density WR

fiber in the form
WR
fiber ¼

1
2p

Z p=2

�p=2
AðI4ÞqðHÞdH;
b b

(Left) Normalized von Mises distribution for five values of the concentration parameter b. (Right) Dependence of the concentration parameters jpl,
), and bjpl, Eq. (19), on the concentration parameter b.



Fig. 3. Schematic representation of the multiplicative decomposition of the deformation deformation gradient tensor (20) in presence of fibers recruitment.
where AðI4Þ is a recruitment function dependent on the normalized probability distribution function (PDF) of fiber recruit-
ment d1ðkaÞ:
Table 2
Materia
et al. (2

Case

Opti
Abru
AðI4Þ ¼
Z ffiffiffi

I4

p

1
d1ðkaÞWfiberðI4; kaÞdka;

Z 1

1
d1ðkaÞdka ¼ 1: ð25Þ
The functional form of Eq. (25) is taken from Hill et al. (2012). The amount d1ðkaÞdka represents the portion of fibers lying in
direction H (the angle H is tacitly included in I4) that uncrimps at the stretch ka, and d1ðkaÞWfiberðI4; kaÞdka is the correspond-
ing contribution to the strain energy. It is natural to assume that recruitment occurs only when the stretch ka exceeds an
activation threshold value kT

a in extension, i. e., for Dk ¼ ka � kT
a P 0, according to
d1ðkaÞ ¼
0 if Dk < 0
Dka�1e�Dk=b

baCðaÞ ; ða > 0;b > 0Þ if Dk P 0;

(
ð26Þ
where Cð:Þ is the Gamma function. For the two sets of parameters listed in Table 2, Fig. 4 visualizes the recruitment activa-
tion function d1ðkaÞ versus the activation stretch ka and the cumulated function D1ðkaÞ, Eq. (25)2, versus the total stretch k,
respectively.

Since our goal is a second order approximation of the recruitment strain energy density in the spirit of Pandolfi and Vasta
(2012), we need to consider the Taylor expansion up to quadratic terms of AðI4Þ about the average pseudo-invariant I�4 :
AðI4Þ ’ A� þ @A�

@I4
DI þ 1

2
@2A�

@I4@I4
DI2; ð27Þ
where DI ¼ I4 � I�4 and the symbol ⁄means evaluation of the term in I�4. The coefficients of (27) are obtained by using Eq. (24)
and the condition Wfiberð1; kaÞ ¼ 0:
A� ¼
Z ffiffiffi

I�
4

p
1

d1ðkaÞWfiberðI�4; kaÞdka;

@A�

@I4
¼
Z ffiffiffi

I�4

p
1

d1ðkaÞW0fiber I�4; ka
� �

dka; ð28Þ

@2A�

@I4@I4
¼
Z ffiffiffi

I�4

p
1

d1ðkaÞW00fiber I�4; ka
� �

dka þ d1

ffiffiffiffi
I�4

q� 	
W0fiberð1; kaÞ

2
ffiffiffiffi
I�4

q : ð29Þ
l parameters for the second order approximation fiber recruitment model used in the numerical simulation of the uniaxial tests documented in Hill
012). The ‘Optimal’ set is calibrated on experimental results; the ‘Abrupt’ set is selected to model an instantaneous activation of all the fibers.

K l1 k1 k2 b kT
a

a b

[MPa] [MPa] [MPa] – – – – –

mal 0 0.11 3.15 0.02 10 1.35 4.4 0.065
pt 0 0.11 0.015 0.55 10 1 1.4 0.015



Fig. 4. (a,c): Activation recruitment function d1ðkaÞ, Eq. (26), versus the activation stretch ka (left). (b,d): Cumulated activation function D1ðkaÞ, Eq. (25)2,
versus the total stretch k, for five different values of the concentration parameter b. (a,b): Optimal or delayed activation. (c,d): Abrupt or instantaneous
activation of all the fibers. Material parameters are listed in Table 2.
In (28) and (29) we set:
W0fiber I�4; ka
� �

¼ @WfiberðI4; kaÞ
@I4

�����
I4¼I�

4

; W00fiber I�4; ka
� �

¼ @
2WfiberðI4; kaÞ
@I4@I4

�����
I4¼I�

4

:

The second order approximation of the recruitment energy density (25) follows from (17)2:
WR
fiber � A� þ 1

2
@2A�

@I4@I4
r2

I4
:

In order to obtain the explicit expression of the stress and tangent stiffness tensors, we need to specify the functional form of
WfiberðI4; kaÞ. By defining the elastic pseudo-invariant Ie

4 as
Ie
4 ¼

I4

k2
a

;

we introduce a slight modification of the exponential fiber orientation energy density (3) as
WfiberðI4; kaÞ ¼ Wfiber Ie
4

� �
þW0

fiber ¼
k1

2k2
exp k2 Ie

4 � 1
� �2

h i
� k1

2k2
: ð30Þ
The exponential form (30) satisfies the normalization condition Wfiberð1; kaÞ ¼ 0 and additionally possesses the useful prop-
erty W0fiberð1; kaÞ ¼ 0. The second order energy recruitment integral acquires an explicit form
WR
fiber ¼

Z ffiffiffi
I�4

p
1

d1ðkaÞWe�
fiber 1þ Ke�

k4
a

r2
I4

 !
dka; ð31Þ
where we set



We�
fiber ¼ Wfiber Ie�

4 ; ka
� �

; Ke� ¼ KðIe�
4 Þ; Ie�

4 ¼
I�4
k2

a

:

In contrast with other recruitment models proposed in the literature (Hill et al., 2012), the strain energy density (31) leads to
the explicit expression of the second Piola–Kirchhoff stress, characterized by the presence of the variance r2

I4
in additive form
SR
fiber ¼ aM

R þ r2
I4
aV

R

� �
Hþ bR H : C; ð32Þ
where the coefficients are
aM
R ¼

Z ffiffiffi
I�
4

p
1

d1ðkaÞaM
a dka; aM

a ¼ We�
fiber

X3

j¼0

aM
j

k2
a

Ie�
4

j
;

aV
R ¼

Z ffiffiffi
I�4

p
1

d1ðkaÞaV
a dka þ D; aV

a ¼ We�
fiber

X3

j¼0

aV
j

k6
a

Ie�
4

j
;

bR ¼
Z ffiffiffi

I�4

p
1

d1ðkaÞba dka; ba ¼ We�
fiber

X2

j¼0

bj

k4
a

Ie�
4

j
:

ð33Þ
Notably, the two stresses (14) and (32) have the same functional form, and the recruitment activity in (32) is fully accounted
for by the three coefficients aM

R ;aV
R and bR. The variance coefficient aV

R shows a more complex structure with respect to aV,
because the use of (24) in the Taylor series approximation produces the additional term D, whose expression is reported in
Appendix.

The recruitment tangent stiffness shows an analytical structure formally identical to (15)
CR
fiber ¼ 4J�4=3 cM
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The expression of the coefficient @D=@I�4 can be found in Appendix.

5. Numerical tests

The second order fiber recruitment material model has been validated against uniaxial experimental data on carotid
arteries documented in Hill et al. (2012). For the sake of comparison, we selected the expressions of Wvolumetricð JÞ and
WmatrixðCÞ according to the choice described in Hill et al. (2012):
Wvolumetricð JÞ ¼ 0; WmatrixðCÞ ¼ l1ðI2 � 3Þ;
although this choice implies a kinematic drawback pointed out in the recent literature (Murphy, 2013; Destrade et al., 2013;
Pucci and Saccomandi, 2014). Through preliminary calculations on the average experimental results, we calibrated an opti-
mal set of material parameters to be used in the subsequent calculations. The material parameters are listed in Table 2.

Fig. 5 compares uniaxial numerical results with the average experimental curve. Fig. 5(a) and (c) visualize numerical
stress–strain curves in terms of first and second order approximation, respectively, for different values of the concentration
parameter b and compare them with the average data reported in Hill et al. (2012). The optimal fitting is recovered for b ¼ 10
in both approximations, reflecting the fact that the carotid samples tested in Hill et al. (2012) are characterized by a strong
fibers alignment.

Note that the material response is affected by the value of the concentration parameter b. The dependence of the material
response on b is further demonstrated in Fig. 5(b) and (d), where the Cauchy stress is plotted versus the parameter b for the
first and second order approximation, respectively, considering four different values of the stretch in direction a0 ¼ e3. For



the smallest value of the stretch considered, k ¼ 1:3, the recruitment process is not activated. In that case, in fact, k < kT
a and

the resulting stress is constant for all b in both first and second order models. For all the other curves instead k > kT
a , and, for

the second order approximation, at small values of b a local maximum in the stress response appears. The peak is observed at
the onset of the recruitment process for non negligible values of the k and k̂ parameters. Contrariwise, the peak is not ob-
served in the response of the mean approximation, confirming that the strong nonlinearity hidden in the recruitment model
cannot be captured by a first order approximation. Interestingly, the presence of a local peak in the stress explains the inter-
lacing of the stress–strain curves visible in Fig. 5(c) for the second order approximation, observed for small values of b and
relatively high stretches. Curves interlacing is not observed for the first order approximation, see Fig. 5(a).

The influence of the recruitment process on the mechanical response is visualized in Fig. 6. The plot shows the numerical
uniaxial curves obtained with a set of material parameters selected in order to model the experimental data in Hill et al.
(2012) assuming the instantaneous activation of the recruitment process, see the set ‘Abrupt’ listed in Table 2. The response
is compared with the one of the hyperelastic model with no recruitment described in Vasta et al. (2013). In general, when the
recruitment process is not considered, the mechanical response is stiffer. Interesting, for any value of b, the uniaxial curves
show a similar increasing trend for increasing k, with the maximum discrepancy between abrupt recruitment and no recruit-
ment at b ¼ 0, see Fig. 6(a). Conversely, the stress versus concentration parameter curves pinpoint the strong nonlinearity
introduced by the recruitment process, see Fig. 6(b). In the latter plot, the maximum discrepancy in the response is observed
in correspondence of the maximum stretch, i.e., k ¼ 0:8.

The relevance of the fiber recruitment process on the mechanical response is further demonstrated in Fig. 7, which shows
uniaxial curves computed with the ‘Optimal’ material properties listed in Table 2 and considering the hyperelastic model
with no recruitment described in Vasta et al. (2013). As expected, the response of the model with no recruitment is stiffer
than the response of the model with recruitment: for the actual choice of material parameters, the resulting stresses are two
order of magnitude larger, cf. Fig. 5(c) and (d). Additionally, another calculation, based on the hyperelastic model with no
recruitment described in Vasta et al. (2013) and adopting an alternative set of material parameters able to fit the experimen-
tal data in Hill et al. (2012), did not exhibit the localized peak in the stress response, diminishing sensibly the effects of the
variance term.
Fig. 5. Uniaxial tests in the direction a0 ¼ e3. (a,b) Cauchy stress versus total stretch for (a) the first order or mean and (c) the second order or variance
recruitment models. Black circles denote the average experimental curve on human carotid wall tissue documented in Hill et al. (2012). Curves refer to five
values of the von Mises concentration parameter b, and the solid line, obtained for b ¼ 10, shows the best agreement between model and experiment. (c,d)
Cauchy stress versus the concentration parameter b for the (b) first and (d) second order recruitment model, for four different values of the final stretch.
Material parameters (Optimal) are listed in Table 2.



(a) (b)
Fig. 7. Uniaxial tests in the direction a0 ¼ e3 with no recruitment activation. (a) Cauchy stress versus total stretch for the second order, or variance, model.
Curves refer to three values of the von Mises concentration parameter b. (b) Cauchy stress versus the concentration parameter b for four different values of
the final stretch. Material parameters (Optimal) are listed in Table 2.

Fig. 6. Uniaxial test in the direction a0 ¼ e3, comparison of the response with instantaneous recruitment and with no recruitment. Material parameters are
listed in Table 2 (Abrupt). (Left) Cauchy stress with recruitment (R) and with no recruitment (H) versus the total stretch, for five values of the von Mises
dispersion parameter b. (Right) Cauchy stress versus the dispersion parameter b for four different final stretches k.
6. Conclusions

Fiber recruitment is a fundamental process in media with spatially dispersed fibers, among which we can classify fiber-
reinforced biological tissues. In this contribution we depart from a well established hyperelastic model for fiber reinforced
tissues (Gasser et al., 2006), in an extended form that includes the quadratic terms of a Taylor expansion about the average
fourth pseudo-invariant I�4 (Pandolfi and Vasta, 2012; Vasta et al., 2013), and, through the conventional multiplicative
decomposition of the deformation gradient (Lubarda, 2004), we enrich the model by including a fiber recruitment function
(Hill et al., 2012). The resulting recruitment strain energy density is a function of the average and of the variance of the direc-
tional pseudo-invariant I4. The Piola–Kirchhoff stress tensor and the tangent stiffness tensor are explicitly derived by differ-
entiation of the strain energy density. In both stress and tangent stiffness tensors, the variance contribution can be pointed
out analytically by in additive form.

The effect of the variance term is evident in the material response under uniaxial tests. In the case of a von Mises distri-
bution of the fiber orientation, it is possible to observe that for an exponential expression of the fiber energy the mechanical
response is very sensitive to the concentration parameter b. For the von Mises distribution, we calibrated an optimal set of
material parameters able to fit the experimental data published in Hill et al. (2012): the average experimental uniaxial curve
is well captured for b ¼ 10. For the second order strain energy density in combination with the recruitment, we observe that
the stress versus the concentration parameter b is characterized by a peak in correspondence of rather small values of b; the
peak amplifies for relatively large stretches. The peak instead is not observed when the variance is not included in the strain
energy density. For both strain energies we ascertained the high sensitivity of exponential material models on the dispersion
parameters, and such behaviors pose a serious warning on the importance of calibrating the parameters against experimen-
tal data before numerical applications. A final comparison modeling the instantaneous activation of the recruitment process
with respect to the hyperelastic material without recruitment activation results in similar stress trends, although the vari-
ance effect is more evident when the recruitment process is considered.



The general formulation proposed here can be regarded with particular interest in view of multidisciplinary and multi-
physics applications. A first simple extension of the model will consider the presence of multiple set of fibers with a statis-
tical distribution, in applications concerning the human cornea (Sanchez et al., submitted for publication) or the human skin
(Ni Annaidh et al., 2012). In future studies, we foresee the combination of statistical recruitment and other biophysical phe-
nomena, such as swelling in polymers (Baek and Pence, 2009), in particulate composites (Kanaun et al., 2008) or in realistic
biomechanical tissue models (Gizzi et al., 2012) with microstructure (Ogden and Saccomandi, 2007; Ruiz-Baier et al., 2013).
This will call for further generalizations of the theoretical framework here presented in order to account for such complex
phenomena.
Appendix A

Functional coefficients for the Piola–Kirchhoff stress tensor Eq. (32):
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