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1 Introduction and problem set up

Extended finite element methods (XFEMs) represent a vivid subject of research in 
the field of computational mechanics [13,21]. The aim of XFEMs is to enable the 
accurate approximation of problems whose solutions involve jumps, kinks, 
singularities and other locally non-smooth features within elements. This is achieved 
by enriching the polynomial approximation space of the classical finite element 
method with non-smooth functions that resemble the true solution near interfaces. 
Such methods have shown their potential in several applications of solid mechanics, 
such as the finite element analysis of cracks, shear bands, dislocations, solidification, 
and multi-field problems.

Recently, XFEM has been applied to flow problems with moving interfaces, such 
as the numerical simulation of flows involving immiscible fluids, see for example 
[15] for a broad introduction or [23] more specific applications. In this context, 
different types of enrichment strategies for the finite element approximation spaces 
have been proposed. The method originally proposed in [16] for the approximation 
of the Laplace equation with contrast coefficients is particularly effective, see also 
[1,27], owing to the good approximation properties and the simplicity of 
implementation. Indeed, it has been successfully extended to the approximation of 
saddle point problems in [2,3, 8,17]. The main drawback of the method consists in 
the lack of robustness when the interface cuts the mesh in a way that very small sub-
elements are created. Stabilization methods based on the interior penalty approach 
have been proposed to override this issue [3,9]. As it will be confirmed by the 
numerical experiments reported below, for saddle point problems additional 
instabilities arise because the enrichment of the Lagrange multiplier space (the 
pressure) affects the satisfaction of the inf-sup condition [5]. There are two possible 
solutions of this issue. On one hand, the enrichment method could be modified. This 
strategy has been investigated in a series of works [2,10,24]. It seems to be a 
promising method. However, a complete stability analysis of the proposed 
approximation spaces is not available yet. On the other hand, the stabilization 
methods developed to cure the instabilities with respect to small cut-elements may 
also help to stabilize the pressure. This is the approach successfully adopted in 
[3,17].

We aim to investigate the application of XFEMs, in particular of the method pro-
posed in [16], to the approximation of saddle point problems. This method combines 
weak enforcement of interface conditions using Nitsche’s method with XFEM approx-
imation spaces.
From now on, we will refer to this family of methods as the Nitsche-XFEM schemes, as 
proposed in [15]. In particular, we focus our attention on Stokes equations and the



related applications. Given a bounded domain Ω ⊂ R
2 crossed by an interface Γ

dividing Ω into two open sets Ω1 and Ω2 we solve:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∇ · (μi∇u) + ∇ p = f in Ωi ,

∇ · u = 0 in Ωi ,

u = 0 on ∂Ω,

[[u]] = 0 on Γ,

[[pn − μ∇u · n]] = 0 on Γ.

(1)

The parameter μi plays the role of fluid viscosity and is constant in each subdomain
�i . Here, since μ1 �= μ2, the continuity of stresses across Γ induces a kink on the
velocity field and a strong discontinuity on pressure (also called jump discontinuity).
This is a consequence of the interface conditions (1)d,e where [[v]] = v|Ω1 − v|Ω2

denotes the jump across Γ . Accordingly, n is the unit normal vector on Γ pointing
from Ω1 to Ω2. The equilibrium condition between the normal component of the
stresses may be generalized to include surface tension as follows:

[[pn − μ∇u · n]] = τκn on Γ,

where κ is the curvature of Γ and τ is the surface tension coefficient [15]. This
more general condition can be naturally embedded into the numerical method that
we will develop, giving rise to an additional right hand side proportional to τκn.
Surface tension introduces a jump discontinuity across the interface in the pressure
field, which can be accurately captured by the scheme. As a consequence, most of the
results that we will present remain valid when surface tension is accounted for. Only
the error analysis (Theorem 2) should be carefully reviewed, because the additional
term decreaes the regularity that can be assumed for the exact solution of problem [22].

An approach based on finite elements where the computational mesh does not fit to
the interface is not suitable for these kind of problems, because it does not satisfy opti-
mal approximation properties. To preserve accuracy, the strong orweak discontinuities
in the solution must coincide with mesh edges. However, for many time-dependent
problems such as two-phase flows or fluid-structure interaction, non-matching grid
formulations become an interesting option because they avoid remeshing [23,25,26].

Mixed finite elements are a typical choice of approximation spaces for the discrete
formulation of a saddle point problem without interface. It would be natural to expect
that the same finite element spaces would be adequate to solve the interface prob-
lem using the Nitsche-XFEM formulation. The numerical experiment shown in Fig. 1
reveals that XFEM spaces do not inherit the inf-sup stability of the underlying FEM
approximation. More precisely, Fig. 1 suggests that pressure oscillations, resembling
to the checkerboard instability, appear in the neighborhood of the interface. In this case,
the Nitsche-XFEM formulation is applied to solve problem (1) on a quasi uniform
mesh cut by a circular interface separating two regions characterized by heterogeneous
viscosities. Following the approach already adopted in [3,17], we investigate how to
avoid these oscillations by the choice of suitable enriched finite element spaces and
stabilization terms. However, instead of stabilization techniques based on the interior
penalty technique, we study the behavior of the well known Brezzi–Pitkaranta stabi-



Fig. 1 For the test case #3 reported in Sect. 4, we show the typical checkerboard pattern of instabilities for 
the pressure in the cut region (b), while velocity approximation is not affected by instabilities, as confirmed 
by the visualization of the velocity field magnitude (a). In picture (c), a zoom on the pressure instabilities 
and in picture (d) the mesh that has been used for testing the conditioning of the problem, which results are 
also reported in Sect. 4

lization technique [6] applied to this new context. Finally, we address the properties of 
the algebraic system of equations arising from the proposed discretization method. In 
particular, we study the spectrum of the Schur complement matrix, showing that the 
stabilization method is essential to ensure that the conditioning of the system does not 
depend on the diameter of cut-elements. This result has an important consequence. It 
confirms that the classical solution methods for algebraic saddle point problems, such 
as the Uzawa method, can be successfully combined with this approximation scheme. 

A recent result on the stabilization of Stokes problem with interfaces in the context 
of fictitious domain method has been presented in [19]. Here, pressure is stabilized



by the addition of penalty terms for the jumps in the normal velocity and pressure
gradients in the vicinity of the interface.

2 Finite element formulation

We solve (1) on a conforming triangulation Th of Ω which is independent of the
location of the interface Γ . However, we need to make some assumptions concerning
the intersection between Γ and the mesh. Let us define the subset of cut elements
Gh = {K ∈ Th such that K ∩� �= ∅}, see Fig. 2a. In the following, we call this subset
of elements cut region. Moreover, let us define the triangulated restricted and extended
sub-domains, Ω−

i ,Ω+
i respectively, as follows

Ω+
i = {x ∈ K ,∀K such that K ∩ Ωi �= ∅}, Ω−

i = {x ∈ K ,∀K such that K ⊂ Ωi }.

We observe that Ω−
i ⊂ Ω+

i and

Ω = Ω−
1

⋃
Ω−

2

⋃
Gh, Ω+

i = Ω−
i

⋃
Gh .

We make the following assumptions:

– AssumptionA1For any element K in the cut region and i = 1, 2 there exists a patch
formed by the union of the element K with some of the elements of Ω−

i sharing
with it an edge (see Fig. 2a). This collection of elements is called a macro-element
of K and it is denoted with MK ,i . Furthermore, we assume that the restriction
of each macro-element to Ω−

i is not empty, namely M−
K ,i := MK ,i ∩ Ω−

i �= ∅.
Finally, we observe that M−

K ,i contains at least one element of Th , such that the

ratio |MK ,i |/|M−
K ,i | is always upper bounded, where the symbol | · | represents the

measure of a subset in R2.
– Assumption A2 Γ intersects each element boundary ∂K exactly twice, and each
(open) edge at most once, see Fig. 3.

– Assumption A3 The interface is defined by the zero isoline of a level set function;
the level set function is then approximated by linear interpolation on the computa-
tional mesh. The interface is thus represented by a chain of straight segments. We
assume that the straight line segment ΓK ,h connecting the points of intersection
between Γ and ∂K is a good approximation of ΓK = Γ ∩ K in a sense that is
detailed in [16], Assumption 3. This construction can be generalized to three space
dimensions.

Thefirst assumption is satisfied if themesh is uniform, at least in the region neighboring
the interface Γ . The last two hypotheses imply that the discrete approximation of the
interface subdivides elements into simple shapes (a triangle and a quadrilateral or a
couple of triangles).

We can nowdefine the extended cut region Sh as the union ofGh and all the elements
K ∈ Th sharing an edge with at least one cut element (see Fig. 2b). This is equivalent
to define Sh as the set of all the elements contained in at least one macro-element for
all K ∈ Gh (Fig. 2):



(a) (b)

Fig. 2 a Filled with the diagonal line pattern, a macro-element for an element K ∈ Gh (in light blue). This
macro-pattern is composed by K and its adjacent element that shares an edge with it. b Definition of Ω+

i ,
in light blue the set Gh and filled with the diagonal line pattern the extended cut region Sh . As we can see,
the extended region contains all the elements near to the cut region, meaning that they share an edge with
at least one cut element (color figure online)

(a) (b)

Fig. 3 Second (a) and third (b) assumption about the intersection between Γ and Th are not satisfied

Sh :=
⋃

K∈Gh

⋃

i=1,2

MK ,i .

TheproposedXFEMmethoddoubles the degrees of freedom in the elements that are
crossed by the discontinuity interface, as shown in Fig. 4. This is achieved by a suitable
definition of the approximation spaces. Let T +

h,i be conforming triangulations of Ω+
i

such that the union of T +
h,1 and T +

h,2 gives Th and for every triangle K ∈ T +
h,1 ∩ T +

h,2

we have K ∩ � �= ∅. Moreover, we define T −
h,i = T +

h,i \ Gh .



Fig. 4 Linear basis function in an element crossed by Γ . The local basis functions φ on a cut element K

must be discontinuous across Γ : φ =
{

φ1 in K1 = K ∩ �1
φ2 in K2 = K ∩ �2

. Since φ1 and φ2 must be independent, we

need to double the degrees of freedom on K so that φ1 can be represented in K1 by its nodal values and
the same holds for φ

Let us define the following couple of inf-sup stable spaces on Ω ,

V (�) := [{φh ∈ C0(Ω), such that φh |K ∈ P
1,∀K ∈ Th} ∩ H1

0 (Ω) ⊕ B]2,
Q(Ω) := {φh ∈ C0(Ω), such that φh |K ∈ P

1,∀K ∈ Th},

where B = {b such that b|K ∈ P
3 ∩ H1

0 (K ),∀K ∈ Th}.
In alternative, we may use the plain P1 − P

1 elements,

V (Ω) := [{φh ∈ C0(Ω), such that φh |K ∈ P
1,∀K ∈ Th}]2,

Q(Ω) := {φh ∈ C0(Ω), such that φh |K ∈ P
1,∀K ∈ Th},

that will be combined with a stabilization term defined below. We now introduce the
couple of inf-sup stable spaces on the restricted sub-domains Ω−

i ,

V−
h,i := {φh ∈ V (Ω−

i ), such that φh = 0 on Γ },
Q−

h,i := Q(Ω−
i ).

Let IΓ = {1, . . . , n} be the set of all vertexes in the cut region Gh and let

Wh = {φh ∈ C0(Ω), such that φh |K ∈ P
1,∀K ∈ Th} ∩ H1

0 (Ω)

be a standard linear finite element space on the triangulation Th of the domain Ω and
let {φ j

h } be the Lagrangian basis of Wh . We can now define a couple of finite element
spaces on the cut region:

V cut
h := [span{φ j

h ∈ Wh} j∈IΓ
]2, Qcut

h := span{φ j
h ∈ Wh} j∈IΓ

.

The definition of the finite element spaces for the approximation of (1) follows:

Vh,i := V−
h,i ⊕ V cut

h , Qh,i := Q−
h,i ⊕ Qcut

h .



The enrichment of the cut region is obtained by overlapping the spaces Vh,i and
Qh,i in Gh which entails that the degrees of freedom of the elements K ∈ Gh are
doubled. We seek (uh,i , ph,i ) ∈ Vh,i × Qh,i , i = 1, 2 such that uh = (uh,1,uh,2) and
ph = (ph,1, ph,2) satisfy:

Bh[(uh, ph), (vh, qh)] + sh(ph, qh) = (f, vh)Ω,∀(vh, qh) ∈ Vh × Qh, (2)

where Vh = Vh,1 × Vh,2, Qh = Qh,1 × Qh,2 and

Bh[(uh, ph), (vh, qh)] := ah(uh, vh) + bh(ph, vh) − bh(qh,uh)

ah(uh, vh) :=
∑

i=1,2

∫

�i

μi∇uh,i · ∇vh,i dx −
∫

�

{{μ∇uh · n}} [[vh]]ds

−
∫

�

{{μ∇vh · n}} [[uh]]ds +
∑

K∈Gh

∫

�K

γuh
−1
K μmax [[uh]][[vh]]ds

bh(ph, vh) := −
∑

i=1,2

∫

�i

ph,i∇ · vh,i dx +
∫

�

{{ph}} [[vh · n]]ds.

where hK is the diameter of the generic element K . We fix μmax = maxΩ μ and we
define the average operator as {{v}}Γ = k1v|Ω1 + k2v|Ω2 . For each element K ∈ Gh ,
it must hold k1 + k2 = 1. For this scheme it is important that the weights depend of
the measure of cut elements, for example ki = |K ∩ Ωi |/|K |. In particular, we use
the following definition proposed in [1]:

ki := |K ∩ Ωi |/μi

|K ∩ Ω1|/μ1 + |K ∩ Ω2|/μ2
. (3)

We remark that in the case μ1 = μ2 the last two definitions coincide.
The term sh(ph, qh) is the stabilization operator defined on the cut region. We are

interested in analyzing the properties of the Brezzi–Pitkaranta stabilization technique
[6] applied to this new context. For this reason, we consider the following operator
acting on the pressure approximation near the interface:

sh(ph, qh) :=
∑

i=1,2

∑

K∈Sh

γsμ
−1
i h2K

∫

K

∇ ph,i · ∇qh,i dx, (4)

where Sh is the extended cut region previously defined. We remark that the integral 
in (4) is on the entire element K . This is crucial to prevent a bad conditioning of
the algebraic problem. As we have already pointed out, our choice of spaces Vh

−
,i

and Qh
−
,i is inf-sup stable on the restricted sub-domains. In the case of equal-order 

stabilized velocity/pressure formulation we add to the discrete problem formulation
the additional stabilization term ch( ph, qh). Although ch( ph, qh) can be chosen among 
the family of symmetric stabilization operators, the most natural choice in our case is 
the Brezzi–Pitkaranta stabilization:



ch(ph, qh) :=
∑

i=1,2

ch,i (ph, qh), where

ch,i (ph, qh) :=
∑

K∈T −
h,i

γsμ
−1
i h2K

∫

K

∇ ph,i · ∇qh,i dx .

In this case, we aim to find uh = (uh,1,uh,2) ∈ Vh and ph = (ph,1, ph,2) ∈ Qh such
that

Bh[(uh, ph), (vh, qh)] + ch(ph, qh) + sh(ph, qh) = (f, vh)Ω , ∀(vh, qh) ∈ Vh × Qh .

(5)
In the forthcoming sections, we will analyze the two proposed variants of the Nitsche-
XFEM scheme.

A final remark concerns mass conservation. It is well known that stabilization tech-
niques ofBrezzi–Pitkaranta type introduce a consistency error in themass conservation
equation which is, in the classical setting, of order h2. We wish to point out that in our
proposed technique for P1

b − P
1 elements, the stabilization term is activated only in

the subset Sh of elements adjacent to the interface Γ . Since the number of elements
in Sh scales like h−1 (and not h−2 as the total number of mesh elements), the error
in mass conservation introduced by our proposed method is of order h3. Thus, in our
opinion, it is acceptable in practice.

3 Analysis of the scheme

First of all, let us define the following norms on the trace of a function on Γ :

‖v‖21/2,h,Γ :=
∑

K∈Gh

h−1
K ‖v‖20,ΓK

, ‖v‖2−1/2,h,Γ :=
∑

K∈Gh

hK ‖v‖20,ΓK
.

Then, we introduce the following broken Sobolev spaces: Hk
b = {v : v|Ωi ∈

Hk(Ωi ), i = 1, 2} with the corresponding norms

‖v‖2k,Ω :=
∑

i=1,2

‖v‖2k,Ωi
, ‖v‖2k,Ω,μ :=

∑

i=1,2

‖μ1/2
i v‖2k,Ωi

,

‖q‖2k,Ω±,μ
:=

∑

i=1,2

‖μ−1/2
i q‖2

k,Ω±
i
,

|||v|||2 := ‖v‖21,Ω,μ + ‖μ1/2
max [[v]]‖21/2,h,Γ + ‖μ−1/2

max {{μ∇nv}}‖2−1/2,h,Γ ,

‖(v, q)‖2
Ω+ := |||v|||2 + ‖q‖20,Ω+,μ

+ ‖μ−1/2
max {{q}}‖2−1/2,h,Γ .

Let us define bh,i (ph, qh) as the restrictions of bh(ph, qh) on the domains Ωi ,

bh,i (ph, qh) := −
∫

Ωi

ph,i∇ · vh,i dx,



and let us introduce the discrete trace inequality

hK ‖v‖20,ΓK
≤ C‖v‖20,K , (6)

which will be necessary for the theoretical analysis, as in [17], and proved thanks to
[4] and [16]. Thanks to this inequality, taking qh ∈ Qh , we have,

‖μ−1/2
max {{q}}‖2−1/2,h,Γ ≤ ‖

{{
μ−1/2qh

}}
‖2−1/2,h,Γ =

∑

K∈Gh

hK ‖
{{

μ−1/2qh
}}

‖20,ΓK

≤
∑

K∈Gh

hK
(
‖μ−1/2

1 k1qh,1‖20,ΓK
+ ‖μ−1/2

2 k2qh,2‖20,ΓK

)

≤ C
∑

i=1,2

∑

K∈Gh

‖μ−1/2
i ki qh,i‖20,K

≤ C
∑

i=1,2

∑

K∈Gh

‖μ−1/2
i qh,i‖20,K

≤ C
∑

i=1,2

∑

K∈T +
h,i

‖μ−1/2
i qh,i‖20,K = C‖qh‖20,Ω+,μ

.

In particular, the following equivalence of discrete norms holds true,

|||v|||2 + ‖qh‖20,Ω+,μ
≤ ‖(v, qh)‖2Ω+ ≤ |||v|||2 + (1 + C)‖qh‖20,Ω+,μ

. (7)

3.1 Stability analysis

The first part of our theoretical analysis focuses on the stability of the scheme.

Theorem 1 We assume that there exist constants Cp1 and Cp2, independent of the
mesh size, such that ∀ph,i ∈ Qh,i there exists vph,i ∈ Vh,i : vph,i |Gh = 0 such that

‖vph,i ‖1,Ω−
i ,μ ≤ Cp1‖ph,i‖0,Ω−

i ,μ, (8)

Cp2‖ph,i‖0,Ω−
i ,μ ≤ bh,i (ph,i , vph,i ) + ch,i (ph,i , ph,i ). (9)

These are sufficient conditions for the stability of the approximation on the subregion
Ω−

i , see [12]. Under this assumption, there exists a positive constant Cs, independent
of the mesh characteristic size such that, for any (uh, ph) ∈ Vh × Qh it holds:

Cs‖(uh, ph)‖Ω+ ≤ sup
(vh ,qh)∈Vh×Qh

Bh[(uh, ph), (vh, qh)] + ch(ph, qh) + sh(ph, qh)

‖(vh, qh)‖Ω+
.

(10)

We remark that (8) implies

‖vph,i ‖1,Ω−
i ,μ ≤ Cp1‖ph,i‖0,Ω+

i ,μ.



To prove (10), we start showing some properties of the bilinear forms ah(uh, vh),
bh(vh, ph), ch(ph, qh) and sh(ph, qh).

Lemma 1 The bilinear discrete form ah(uh, vh) is continuous on Vh and coercive,
provided γu is chosen sufficiently large. That is, there exist two constants Cm and Ca,
independent of the mesh size such that

ah(uh, vh) ≤ Cm |||uh ||| |||vh |||, ∀vh ∈ Vh, (11)

ah(vh, vh) ≥ Ca |||vh |||2, ∀vh ∈ Vh . (12)

Let vh ∈ Vh, ph ∈ Qh and qh ∈ Qh. There exist three constants Cb, Cs1 and Cs2,
independent of the mesh size, such that

bh(vh, ph) ≤ Cb|||vh |||(‖ph‖0,Ω+,μ + ‖μ−1/2
max {{ph}}‖−1/2,h,Γ ), (13)

ch(ph, qh) ≤ Cs1‖ph‖0,Ω+,μ‖qh‖0,Ω+,μ, (14)

sh(ph, qh) ≤ Cs2‖ph‖0,Ω+,μ‖qh‖0,Ω+,μ. (15)

Furthermore, owing to (11) and (13), the bilinear discrete formBh[(uh, ph), (vh, qh)]
is continuous on Vh × Qh,

Bh[(uh, ph), (vh, qh)] ≤ CB‖(uh, ph)‖Ω+‖(vh, qh)‖Ω+ . (16)

Proof To prove (11), we first prove the following generalized inverse estimate,

‖{{μ∇nvh}}‖2−1/2,h,Γ ≤ CIμmax‖vh‖21,Ω,μ, (17)

where ∇nvh = (∇vh)n. This estimate holds true when linear finite elements and the
weights ki defined in (3) are used. In this particular case the constant CI is such that
CI ≤ 2. For the proof of (17) we observe that, since vh is linear in Gh , for every
K ∈ Gh we have,

‖{{μ∇nvh}}‖2−1/2,h,ΓK
= hK |ΓK | (k1μ1∇nvh,1 + k2μ2∇nvh,2

)2

≤ hK
∑

i=1,2

|ΓK |
|K ∩ Ωi |k

2
i μ

2
i ‖∇vh,i‖20,K∩Ωi

= hK
∑

i=1,2

|ΓK |
|K ∩ Ωi |

|K ∩ Ωi |2/μ2
i

(∑

j=1,2
|K ∩ Ω j |/μ j

)2μ2
i ‖∇vh,i‖20,K∩Ωi

= hK |ΓK | 1
(∑

j=1,2
|K ∩ Ω j |/μ j

)2

∑

i=1,2

|K ∩ Ωi |
μi

‖μ1/2
i ∇vh,i‖20,K∩Ωi

≤ hK |ΓK | 1

|K ∩ Ω1|/μ1 + |K ∩ Ω2|/μ2

∑

i=1,2

‖∇vh,i‖20,K∩Ωi ,μ



≤ hK |ΓK |
|K | μmax‖∇vh‖20,K ,μ

= CI,Kμmax‖∇vh‖20,K ,μ.

We point out that, under the assumption of shape-regular mesh, the constant CI,K is
bounded independently of the mesh size and the location of the interface Γ . Indeed it
is simple to prove that CI,K ≤ 2.

Summing over all the elements K ∈ Gh and setting CI = max
K

CI,K ≤ 2 we have

‖{{μ∇nvh}}‖2−1/2,h,Γ ≤
∑

K∈Gh

CI,Kμmax‖∇vh‖20,K ,μ

≤ CIμmax

∑

K∈Th
‖∇vh‖20,K ,μ

= CIμmax‖∇vh‖20,Ω,μ.

We are now ready to prove coercivity.

ah(vh, vh) =
∑

i=1,2

∫

Ω

μi (∇vh,i )
2dx − 2

∫

Γ

[[vh]] {{μ∇nvh}} ds

+
∫

Γ

γuμmaxh
−1
K ([[vh]])2ds ≥ ‖vh‖21,Ω,μ + γu‖μ1/2

max [[vh]]‖21/2,h,Γ

−2‖μ1/2
max [[vh]]‖1/2,h,Γ ‖μ−1/2

max {{μ∇nvh}}‖−1/2,h,Γ

≥ ‖vh‖21,Ω,μ + (γu − ε) ‖μ1/2
max [[vh]]‖21/2,h,Γ − 1

ε
‖μ−1/2

max {{μ∇nvh}}‖2−1/2,h,Γ .

Then, it follows form (17) that

ah(vh, vh) ≥ 1

2
‖vh‖21,Ω,μ +

(
1

2
− 2CI

ε

)

‖vh‖21,Ω,μ

+1

ε
‖μ−1/2

max {{μ∇nvh}}‖2−1/2,h,Γ + (γu − ε) ‖μ1/2
max [[vh]]‖21/2,h,Γ .

Taking ε = 4CI and choosing γu > 4CI the coercivity of ah(uh, vh) follows, since

ah(vh, vh) ≥ min

{
1

2
,Cγu ,

1

4CI

}

(‖vh‖21,Ω,μ

+‖μ1/2
max [[vh]]‖21/2,h,Γ + ‖μ−1/2

max {{μ∇nvh}}‖2−1/2,h,Γ ),

where Cγu = (γu − 4C I ). This completes the proof. Continuity of the discrete 
form ah(uh, vh) follows directly from its definition, while to prove the continuity 
of bh( ph, vh) we proceed as follows,



bh(ph, vh) = −
∑

i=1,2

∫

Ωi

ph,i∇ · vh,i dx +
∫

Γ

{{ph}} [[vh · n]]ds

≤ ‖ph‖0,Ω+,μ‖vh‖1,Ω,μ + ‖μ−1/2
max {{ph}}‖−1/2,h,Γ ‖μ1/2

max [[vh · n]]‖1/2,h,Γ

≤ Cb|||vh |||(‖ph‖0,Ω+,μ + ‖μ−1/2
max {{ph}}‖−1/2,h,Γ ).

Continuity of the stabilization operator ch(ph, qh) is proved as follows,

ch(ph, qh) =
∑

i=1,2

∑

K∈T −
h,i

γsμ
−1
i h2K

∫

K

∇ ph,i · ∇qh,i dx

≤
∑

i=1,2

∑

K∈T −
h,i

γsh
2
K h

−2
K ‖μ−1/2

i ph‖0,K ‖μ−1/2
i qh‖0,K

≤ Cs1‖ph‖0,Ω+,μ‖qh‖0,Ω+,μ.

Here the first inequality follows from the inverse inequality. The continuity of
sh(ph, qh) is actually obtained in the same way. Summing estimates (11) and (13)
and using the definition of the norm ‖(·, ·)‖Ω+ yield the result (16). �
To prove the inf-sup condition, we first consider a stability estimate for a projection
operator.

Lemma 2 The L2 projection operator on a macro-element MK ,i , namely Πh :
H1(MK ,i ) �→ P

1(MK ,i ), satisfies the following property:

‖ph,i‖20,Ω+
i ,μ

≤ C
(
‖ph,i‖20,Ω−

i ,μ
+ γh,i (ph,i , ph,i )

)
, (18)

where

γh,i (ph,i , qh,i ) :=
∑

K∈Gh

∫

MK ,i

γsμ
−1
i (1 − Πh)ph,i (1 − Πh)qh,i ,

γh(ph, qh) :=
∑

i=1,2

γh,i (ph,i , qh,i )

and C is a constant dependent on the total number of elements that can form a macro-
element MK ,i with a generic element K ∈ Gh.

Proof Since Πh ph,i is a linear function on a macro-element, it holds that:

‖Πh ph,i‖20,MK ,i
� |MK ,i |

|M−
K ,i |

‖Πh ph,i‖20,M−
K ,i

,

where we have introduced the notation x � y to represent the existence of a generic
constant c such that x ≤ cy. We represent ph,i |MK ,i as the sum of the linear part and
a residual: ph,i |MK ,i = Πh ph,i + rh,i . It follows that



‖ph,i‖20,MK ,i
= ‖Πh ph,i + rh,i‖20,MK ,i

= ‖Πh ph,i‖20,MK ,i
+ ‖rh,i‖20,MK ,i

� |MK ,i |
|M−

K ,i |
‖Πh ph,i‖20,M−

K ,i
+ ‖rh,i‖20,MK ,i

.

Owing to Assumption A1, the ratio between the measure of the entire macro-element
and that of its restriction is upper bounded. We now consider the second member of
the last inequality, where we identify β = |MK ,i |/|M−

K ,i | in order to simplify the
notation:

β‖Πh ph,i‖20,M−
K ,i

+ ‖rh,i‖20,MK ,i

= β‖Πh ph,i‖20,M−
K ,i

− β‖rh,i‖20,MK ,i
+ (1 + β)‖rh,i‖20,M−

K ,i

≤ β

∫

M−
K ,i

(Πh ph,i − rh,i )(Πh ph,i + rh,i ) + (1 + β)‖rh,i‖20,MK ,i

≤ βε

2
‖Πh ph,i − rh,i‖20,MK ,i

+ β

2ε
‖ph,i‖20,M−

K ,i
+ (1 + β)‖rh,i‖20,MK ,i

≤ βε

2
‖Πh ph,i‖20,MK ,i

+ βε

2
‖rh,i‖20,MK ,i

+ β

2ε
‖ph,i‖20,M−

K ,i

+(1 + β)‖rh,i‖20,MK ,i
.

Since

‖ph,i‖20,MK ,i
=

(

1 − βε

2

)

‖ph,i‖20,MK ,i
+ βε

2
‖Πh ph,i‖20,MK ,i

+ βε

2
‖rh,i‖20,MK ,i

,

we obtain

(

1 − βε

2

)

‖ph,i‖20,MK ,i
+ βε

2
‖Πh ph,i‖20,MK ,i

+ βε

2
‖rh,i‖20,MK ,i

� βε

2
‖Πh ph,i‖20,MK ,i

+ βε

2
‖rh,i‖20,MK ,i

+ β

2ε
‖ph,i‖20,M−

K ,i
+ (1 + β)‖rh,i‖20,MK ,i

,

from which it follows that

‖ph,i‖20,MK ,i
� 2β

2ε(2 − βε)
‖ph,i‖20,M−

K ,i
+ 2(1 + β)

2 − βε
‖rh,i‖20,MK ,i

. (19)

Choosing a suitable ε, for instance ε = β−1 we have

‖ph,i‖20,MK ,i
� ‖ph,i‖20,M−

K ,i
+ ‖rh,i‖20,MK ,i

,



and, because of the equivalence of the discrete norms,

‖μ−1/2 ph,i‖20,MK ,i
� ‖μ−/2 ph,i‖20,M−

K ,i
+ ‖μ−1/2rh,i‖20,MK ,i

.

To conclude, we sum over all elements of Ω+
i and rescale all norms using μ

−1/2
i , to

obtain

‖ph,i‖20,Ω+
i ,μ

= ‖ph,i‖20,Ω−
i ,μ

+
∑

K∈Gh

‖μ−1/2
i ph,i‖20,K

≤ ‖ph,i‖20,Ω−
i ,μ

+
∑

K∈Gh

‖μ−1/2
i ph,i‖20,MK ,i

� ‖ph,i‖20,Ω−
i ,μ

+
∑

K∈Gh

(

‖μ−1/2
i ph,i‖20,M−

K ,i
+ ‖μ−1/2

i rh,i‖20,MK ,i

)

� C(Th)
(
‖ph,i‖20,Ω−

i ,μ
+ γh,i (ph,i , ph,i )

)
.

We remark that, since we sum on the macro-elements of all K ∈ Gh , some elements
will be counted more than once. The mesh-dependent constant C(Th) that appear in
the proof takes into account this fact. �

This result gives origin to several families of stabilization methods. Notably, the ghost
penalty methods as well as the Brezzi–Pitkaranta stabilization can be seen as schemes
to control the local operator.

Lemma 3 The stabilization term

sh(ph, qh) =
∑

i=1,2

∑

K∈Sh

γsμ
−1
i h2K

∫

K

∇ ph,i · ∇qh,i dx

dominates on the local projection stabilization, that is

γh(qh, qh) � sh(qh, qh). (20)

Proof We use the following result [7,12]:

‖qh,i − Πhqh,i‖0,MK ,i ≤ Ch‖∇qh,i‖L2(MK ,i )
, ∀qh,i ∈ Qh,i ,



where the constant C is independent of the mesh size. We can now write,

γh(qh, qh) =
∑

i=1,2

∑

K∈Gh

γsμ
−1
i ‖(1 − Πh)qh,i‖20,MK ,i

≤
∑

i=1,2

∑

K∈Gh

Cγsμ
−1
i h2K ‖∇qh,i‖20,MK ,i

≤ C(Th)
∑

i=1,2

∑

K∈Sh

γsμ
−1
i h2K ‖∇qh,i‖20,K

� sh(qh, qh).

where C(Th) depends on the number of elements that form each macro-element. �
The following property is a consequence of Lemmas 2 and 3:

‖ph,i‖20,Ω+
i ,μ

� ‖ph,i‖20,Ω−
i ,μ

+ sh(ph,i , ph,i ). (21)

It shows that in the Nitsche-XFEM method the discrete pressure can be controlled
provided that an inf-sup stable velocity/pressure approximation is combined with the
Brezzi–Pitkaranta operator restricted to the neighborhood of the cut region. Using
standard arguments, see [3], we now prove that the scheme is stable in the sense
specified in Theorem 1.

Proof of Theorem 1 As a first step, we prove the inf-sup stability on the domain Ω ,
given the local stability estimates (on the restricted sub-domains):

b(ph, vph ) + ch(ph, ph) + sh(ph, ph) � Cp2‖ph‖20,Ω+,μ
. (22)

We take a vph = (vph,1 , vph,2) satisfying the assumptions of the theorem and, remind-
ing that vph,i are null on the cut region since their support is limited to the restricted
sub-domain Ω−

i , we can write:

b(ph, vph )=−
∑

i=1,2

∫

Ωi

ph,i∇ · vph,i dx+
∫

Γ

{{ph}} [[vph · n]]ds=
∑

i=1,2

bh,i (ph,i , vph,i )

∑

i=1,2

(
bh,i (ph,i , vph,i ) + ch,i (ph,i , qh,i )

) = bh(ph, vph ) + ch(ph, ph)

�
∑

i=1,2

Cp2‖ph,i‖0,Ω−
i ,μ.

Using inequality (21), we are now able to prove the global inf-sup stability (22):

bh(ph, vph ) + ch(ph, ph) + sh(ph, ph) ≥
∑

i=1,2

Cp2‖ph,i‖0,Ω−
i ,μ + sh(ph, ph)

� Cp2‖ph‖20,Ω+,μ
.



We are now ready to complete the proof. Using the test functions vh = uh +ηvph and
qh = ph , we obtain that

‖(vh, qh)‖Ω+ = ‖(uh + ηvph , ph)‖Ω+ ≤ ‖(uh, ph)‖Ω+ + ‖(ηvph , 0)‖Ω+

= ‖(uh, ph)‖Ω+ + |||ηvph ||| = ‖(uh, ph)‖Ω+ + ‖ηvph‖1,Ω,μ

and using (8) we get,

‖ηvph‖21,Ω,μ = η2‖vph‖21,Ω,μ ≤ η2
∑

i=1,2

C2
p1‖ph,i‖20,Ω−

i ,μ

≤ η2
∑

i=1,2

C2
p1‖ph,i‖20,Ω+

i ,μ
≤ η2C2

p1‖(uh, ph)‖2Ω+ ,

which allows us to write,

‖(vh, qh)‖Ω+ ≤ ‖(uh, ph)‖Ω+ + ηCp1‖(uh, ph)‖Ω+

= (1 + ηCp1)‖(uh, ph)‖Ω+ � ‖(uh, ph)‖Ω+ .

Now we develop the term Bh[(uh, ph), (vh, qh)] as

Bh[(uh, ph), (vh, qh)] = ah(uh,uh + ηvph ) + bh(ph,uh + ηvph ) − bh(ph,uh)

= ah(uh,uh) + ah(uh, ηvph ) + bh(ph, ηvph ). (23)

As for the term ah(uh, ηvph ), we get

ah(uh, ηvph ) =
∑

i=1,2

∫

Ωi

μi∇uh,iη∇vph,i dx −
∫

Γ

{{
μη∇nvph

}} [[uh]]ds

≤ ‖uh‖1,Ω,μ‖ηvph‖1,Ω,μ + ‖μ−1/2
max

{{
μη∇nvph

}}‖−1/2,h,Γ ‖μ1/2
max [[uh]]‖1/2,h,Γ

≤ ε

2
‖uh‖21,Ω,μ + 1

2ε
‖ηvph‖21,Ω,μ

+ 1

2ε
‖μ−1/2

max
{{

μη∇nvph
}}‖2−1/2,h,Γ + ε

2
‖μ1/2

max [[uh]]‖21/2,h,Γ .

Exploiting the trace inequality (17), we get:

ah(uh, ηvph ) ≤ ε

2
|||uh |||2 + 1

2ε
‖ηvph‖21,Ω,μ + CI

2ε
‖ηvph‖21,Ω,μ

≤ ε

2
|||uh |||2 + (1 + CI )C2

p1η
2

2ε
‖ph‖20,Ω+,μ

. (24)



Using (11), (22), (24) and (7) we obtain

Bh[(uh, ph), (vh, qh)] + ch(ph, qh) + sh(ph, qh)

≥ Ca |||uh |||2 − ε

2
|||uh |||2 − (1 + CI )C2

p1η
2

2ε
‖ph‖20,Ω+,μ

+ Cp2‖ph‖20,Ω+,μ

≥ (Ca − ε

2
)|||uh |||2 + (Cp2 − (1 + CI )C2

p1η
2

2ε
)‖ph‖20,Ω+,μ

≥ Cs‖(uh, ph)‖2Ω+ ,

and, dividing by ‖(vh, qh)‖Ω+ , we have

Bh[(uh, ph), (vh, qh)] + ch(ph, qh) + sh(ph, qh)

‖(vh, qh)‖Ω+

≥ Bh[(uh, ph), (vh, qh)] + ch(ph, qh) + sh(ph, qh)

‖(uh, ph)‖Ω+
≥ Cs‖(uh, ph)‖Ω+ .

The thesis (10) of the theorem holds by choosing ε and η such that

ε < 2Ca and η <

√
2Cp2ε

(1 + CI )C2
p1

.

�

3.2 Error analysis

We start from the consistency of the scheme, which will be useful for the derivation
of the error estimate. For its derivation we follow [16] and [3].

Lemma 4 Let (uh, ph) be the solution of the finite element formulation (2) and (u, p)
∈ [H2(Ω1∪Ω2)]2 × H1(Ω1∪Ω2) be the weak solution of (1). Then the finite element
formulation (2) fulfills the following consistency relation,

Bh[(u−uh, p− ph), (vh, qh)] = ch(ph, qh)+sh(ph, qh), ∀(vh, qh) ∈ Vh ×Qh . (25)

Proof The property follows by observing that the exact solution (u, p) satisfies

Bh[(u, p), (vh, qh)] = (f, vh)Ω , ∀(vh, qh) ∈ Vh × Qh, (26)

and then subtracting (2) to (26). �

We now analyze the approximation properties of the proposed finite element space, 
using the interpolation operator defined in [17]. As shown in [17], it enjoys the fol-
lowing approximation and stability properties:



Lemma 5 The interpolation operator defined as in [17], namely R∗
h : Hs(Ω) →

Vh,0, with s = 2 for the velocities and s = 1 for the pressure, is such that

‖(v − R∗
hv, p − R∗

h p)‖2Ω+ ≤ h2
(
Cu‖μ1/2

maxv‖22,Ω + Cp‖p‖21,Ω+,μ

)

(approximation), (27)

‖R∗
hw‖r,Ω ≤ C‖w‖s,Ω, 0 ≤ r ≤ min(1, s), ∀w ∈ Hs(Ω)

(stability). (28)

Starting from these results, we prove the following theorem.

Theorem 2 The following error estimate holds true

‖(u − uh, p − ph)‖Ω+ ≤ Ch
(
‖μ1/2

maxu‖2,Ω + ‖p‖1,Ω+,μ

)
. (29)

Proof .We have

‖(u − uh, p − ph)‖Ω+ ≤‖(u − R∗
hu, p − R∗

h p)‖Ω+ +‖(R∗
hu − uh, R∗

h p − ph)‖Ω+ .

The first term can be estimated using the interpolation error estimate (27) directly,

‖(u − R∗
hu, p − R∗

h p)‖Ω+ ≤ Ch
(
‖μ1/2

maxu‖2,� + ‖p‖1,Ω+,μ

)
.

To estimate the second term we use the inf-sup condition (10), to get

‖(R∗
hu − uh, R∗

h p − ph)‖Ω+ ≤ sup
vh ,qh �=0

C−1
s (Bh[(R∗

hu − uh, R∗
h p − ph), (vh, qh)]

+ch(R
∗
h p − ph, qh) + sh(R

∗
h p − ph, qh))/‖(vh, qh)‖Ω+ .

Adding and subtracting the exact solutions u and p to Bh and using the consistency
relation for the finite element formulation (25), we get

‖(R∗
hu − uh, R∗

h p − ph)‖Ω+ ≤ sup
vh ,qh �=0

C−1
s (Bh[(u − R∗

hu, p − R∗
h p), (vh, qh)]

+ch(R
∗
h p, qh) + sh(R

∗
h p, qh))/‖(vh, qh)‖Ω+ .

Since the stabilization terms are symmetricwe can use theCauchy–Schwarz inequality
followed by the continuity property (13) to obtain

ch(R
∗
h p, qh) ≤ ch(R

∗
h p, R

∗
h p)

1/2ch(qh, qh)
1/2 ≤ ch(R

∗
h p, R

∗
h p)

1/2‖(vh, qh)‖,

sh(R
∗
h p, qh) ≤ sh(R

∗
h p, R

∗
h p)

1/2sh(qh, qh)
1/2 ≤ sh(R

∗
h p, R

∗
h p)

1/2‖(vh, qh)‖.



Finally, by using the continuity of Bh[(·, ·), (·, ·)], (16), it follows that

‖(R∗
hu − uh, R∗

h p − ph)‖Ω+ ≤ C
(
‖(u − R∗

hu, p − R∗
h p)‖Ω+

+ch(R
∗
h p, R

∗
h p)

1/2 + sh(R
∗
h p, R

∗
h p)

1/2
)
.

The first term is estimated using the interpolation error estimate (27). Then we use
the definition of the stabilization terms and the stability properties of the interpolation
operator (27) to obtain

ch(R
∗
h p, R

∗
h p) ≤ Ch2

2∑

i=1

‖pi‖21,Ω+
i ,μ

, sh(R
∗
h p, R

∗
h p) ≤ Ch2

2∑

i=1

‖pi‖21,Ω+
i ,μ

.

The thesis follows by combining the previous estimates. �

3.3 Conditioning of the Schur complement matrix

We are now interested in analyzing the conditioning of the system and in particular
we focus on the Schur complement matrix. The forthcoming results will enable us to
solve the discrete problem using the classical methods for saddle point problems like
the Uzawa method [14]. Problem (2) can be written in algebraic form as

[
A BT

−B S

] [
u
p

]

=
[
fu
f p

]

where blocks are related to the bilinear forms, namely

ah(uh, vh) = (vh, Auh), bh(uh, qh) = (qh, Buh)

while for the stabilization terms we have S = S1 + S2 where

ch(ph, qh) = (qh, S1 ph), sh(ph, qh) = (qh, S2 ph).

The Schur complement C is defined as

C = BA−1BT + S.

From (2), we define the following bilinear form,

Lh [(uh, ph), (vh, qh)] = ah(uh, vh) + bh(vh, ph)

−bh(uh, qh) + ch(ph, qh) + sh(ph, qh). (30)

and state the following assumptions: 



Assumption A4 There exist positive numbers Ca,Cb,Cs1,Cs2,CB, γ , γ̄ , indepen-
dent of uh, vh, ph, qh such that

Ca |||vh |||2 ≤ ah(vh, vh), (31)

Cb(1 + C)‖ph‖0,Ω+,μ|||vh ||| ≥ bh(vh, ph), (32)

Cs1‖ph‖0,Ω+,μ‖qh‖0,Ω+,μ ≥ ch(ph, qh), (33)

Cs2‖ph‖0,Ω+,μ‖qh‖0,Ω+,μ ≥ sh(ph, qh), (34)

CB‖(uh, ph)‖Ω+‖(vh, qh)‖Ω+ ≥ Bh[(uh, ph), (vh, qh)], (35)

γ ‖(uh, ph)‖Ω+ ≤ sup
vh ,qh �=0

Lh [(uh, ph), (vh, qh)]
‖(vh, qh)‖Ω+

, (36)

γ̄ ‖(uh, ph)‖Ω+ ≥ sup
vh ,qh �=0

Lh [(uh, ph), (vh, qh)]
‖(vh, qh)‖Ω+

. (37)

Analogously, there exist γ̄ ′ ≤ γ̄ such that

γ̄ ′‖(uh, ph)‖Ω+ ≥ sup
vh ,qh �=0

bh(uh, qh) − ch(ph, qh) − sh(ph, qh)

‖q‖0,Ω+,μ

. (38)

We remark that the existence of γ̄ ′ follows from (37) with γ̄ ′ = γ̄ . However, we can
consider the case in which a better estimate of γ̄ ′ may be available. Inequalities (31),
(32), (33), (34) and (35) correspond to results of Lemma 1, and (36) is the thesis of
Theorem 1. The equivalence of discrete norms (7) has been used in (13) to obtain (32).
Inequality (37) follows from assumptions (33), (34) and (35).

Theorem 3 Under assumption A4, the eigenvalues of C are localized as follows:

λn(C) ∈
⎧
⎨

⎩
z ∈ C : γ ≤ |z| ≤ γ̄ ′

√

1 +
(
Cb(1 + C)

Ca

)2
⎫
⎬

⎭
. (39)

Proof To prove (39), we follow the general framework proposed in [11]. For each
ph ∈ Qh , let ũh ∈ Vh be defined by

ah(ũh, vh) + bh(vh, ph) = 0 ∀vh ∈ V, that is, ũh = −A−1BT ph . (40)

Taking uh = ũh in (30), makes Lh [(uh, ph), (vh, qh)] = ch(ph, qh) + sh(ph, qh) −
bh(uh, qh) = (qh, C ph) independent of vh ; hence, using (36) and (38),

γ ‖(ũh, ph)‖Ω+ ≤ sup
vh ,qh �=0

(qh, C ph)
‖(vh, qh)‖Ω+

≤ sup
qh �=0

(qh, C ph)
‖qh‖0,Ω+,μ

≤ γ̄ ′‖(ũh, ph)‖Ω+ .

(41)
From (40), (31) and (32) we have,

Ca |||ũh |||2 ≤ ah(ũh, ũh) = −bh(ũh, ph) ≤ Cb(1 + C)‖ph‖0,Ω+,μ|||ũh |||,



so that |||ũh ||| ≤ Cb
Ca

‖ph‖Ω+ , yielding the following estimate,

‖ph‖0,Ω+,μ ≤ ‖(ũh, ph)‖Ω+ ≤
√

1 +
(
Cb(1 + C)

Ca

)2

‖ph‖0,Ω+,μ

and Eq. (41) becomes

γ ‖ph‖0,Ω+,μ ≤ sup
qh �=0

(qh, C ph)
‖qh‖0,Ω+,μ

≤ γ̄ ′
√

1 +
(
Cb(1 + C)

Ca

)2

‖ph‖0,Ω+,μ.

�

4 Numerical results

We analyse the order of convergence of two variants of the proposedmethod compared
with two reference methods and we investigate how Brezzi–Pitkaranta stabilization
improves the conditioning of the algebraic problem.

4.1 Comparison of different variants of methods

The previous analysis is valid for those choices of finite element spaces and stabiliza-
tion terms for which the inf-sup condition is guaranteed on the restricted sub-domains.
The stabilization on the extended cut regionmakes the inf-sup condition to be globally
satisfied. We analyze the numerical performances of the following combination:

– P
1
b−P

1 elements with Brezzi–Pitkaranta stabilization on the cut region.We notice
that, since the inf-sup condition is satisfied because of the bubble stabilization, we
do not need the additional term ch(ph, qh).

– P
1−P

1 with Brezzi–Pitkaranta stabilization on all the domain, i.e. both ch(ph, qh)
and sh(ph, qh) are active.

These two choiceswill be comparedwith two referencemethods. The first one employs
P
1
b − P

1 elements without any additional stabilization in the extended cut region
(sh(ph, qh) = 0). This is themethod forwhichwe observed instabilities in the pressure
approximation, as hown in Fig. 1. The second one has been proposed by Burman–
Becker–Hansbo [3] and it consists in choosing P

1 − P
0 elements with a stabilization

based on the jump of the pressure along the edges of the mesh, so we define:

ch(ph, qh) + s(ph, qh) :=
∑

F∈F1

∫

F

γp

μ1
hF [[ph,1]][[qh,1]]ds

+
∑

F∈F2

∫

F

γp

μ2
hF [[ph,2]][[qh,2]]ds, (42)

where Fi denotes the set of interior faces of Th,
+
i . 



From the standpoint of accuracy, the considered methods are substantially equiva-
lent. Indeed, they all satisfy the following theoretical estimate [12,20]:

‖u − uh‖1,Ω,μ + ‖p − ph‖0,Ω+,μ ≤ Ch(‖u‖2,Ω + ‖p‖1,Ω). (43)

In what follows we will show that the performance of all methods is coherent to the
theory, but appreciable differences may appear in the magnitude of the error.

A strong point in favor of the Brezzi–Pitkaranta stabilization is that it is easy to
implement, that is it keeps to aminimum the effort needed to introduce the stabilization
term in a pre-existing finite element code. Moreover, it can be easily used in a parallel
context. In contrast, the assembling of a stabilization term that needs integration on
the edges of the elements, such as the Burman–Becker and Hansbo stabilization,
usually requires to access information about the adjacent elements to each edge, which
increases the communication between processors.

4.2 Test cases and results

The numerical tests have been implemented in the C++ finite element library LifeV
(www.lifev.org), developed by the collaboration between four institutions: École Poly-
technique Fédérale de Lausanne (CMCS), Politecnico di Milano (MOX), INRIA
(REO, ESTIME) and Emory University.

We solve the saddle point problems in the domain Ω = [0, 1]2 crossed by the
interface Γ = {x, y|(x− xc)2+ (y− yc)2 = a2}. We set a = 0.25 and xc = yc = 0.5.
Let us define Ω1 = {x, y|(x − xc)2 + (y − yc)2 < a2} the internal part of the domain
with respect to the orientation of the normal of Γ , and Ω2 is the external part. We
set γs = 1 and the penalty parameters γp = γu = 10. The determination of these
parameters is fairly heuristic. This is one of the major drawbacks of using penalty
methods for pressure stabilization and to enforce interface conditions. The selected
values have been tuned on the simple test case 1 described below, aiming to obtain a
stable numerical solution that is not prerturbed by the consistency error due to pressure
stabilization. These values have been then kept constant for all the other numerical
experiments. The fact that they fit to all test cases suggests that they fall in the range
where stability and accuracy criteria are simultaneously satisfied.

We consider three different test cases. In the first two tests there is no variation in
the parameters of the problem between the two sides of the interface. The surface Γ

is then an artificial interface, however the additional XFEM degrees of freedom and
the weak imposition of the conditions across the surface can produce extra numerical
errors in the region near the interface. We discuss in details the convergence analysis
for the error on the velocity and pressure solution.

Test 1: Poiseuille’s flowWe start from the Poiseuille’s flow in the domainΩ crossed
byΓ , for the verification of the numerical solver.We remind that in a Poiseuille’s flow,
the velocity profile is parabolic for the horizontal component and null for the vertical
one. The gradient of the pressure is linear. As we can see in Fig. 5, the numerical
results are coherent with the theoretical estimates (43). The error constant of the
stabilized P1 − P

0 scheme is slightly larger than in the other cases. This behavior can

www.lifev.org
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Fig. 5 Convergence analysis for test 1

be explained observing that this method is the only one based on piecewise constant
pressure elements, to approximate a linear pressure field.

Test 2: An artificial interface in an incompressible medium We analyse the case
of an artificial interface in an incompressible fluid with constant material properties
over the entire domain as proposed in [3] and [17]. For problem (1), the following
continuous analytical solution is available,

u(x, y) = [
20xy3; 5x4 − 5y4

]
, p(x, y) = 60x2y − 20y3 − 5,

and is obtained by setting the right hand side f = 0. We observe that the velocity
approximation error is very similar for the four considered methods. For the approxi-
mation of the pressure, methods based on the Brezzi–Pitkaranta stabilization perform
slightly better that the others (Fig. 6).

Test 3: An elastic interface problem After these preliminary tests, we analyze a
problem with heterogeneous coefficients [3]. This is an incompressible linear elastic
problem that can be reinterpreted as a Stokes flow with suitable forcing terms. Let Ω
be the unit square [0, 1]2 andΩ1 be the circle of radius a = 0.25 centered in b = xc =
yc = 0.5, as defined above. We set E1 = E2 = 1, ν2 = 0.25 and ν1 = 0.49. Coeffi-
cients μi are defined as follows: μi = Ei/(2(1+ νi )), λi = Eiνi/[(1+ νi )(1− 2νi )].
Using polar coordinates, where r = √

(x − b)2 + (y − b)2, the analytical solution for
velocity and pressure is given by the following expressions, for ν1 �= 0.5:

ur (r, θ) =
{
c1r in Ω1
(
r − b2

r

)
c2 + b2

r in Ω2

uθ (r, θ) = 0

p(r, θ) =
{

−2c1λ1 in Ω1

−2c2λ2 in Ω2
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Fig. 6 Convergence analysis for test 2

c1 =
(

1 − b2

a2

)

c2 + b2

a2

c2 = (λ1 + μ1 + μ2)b2

(λ2 + μ2)a2 + (λ1 + μ1)(b2 − a2) + μ2b2
,

which exactly satisfy the interface conditions of (1). The solution of this test case,
calculated using P

1
b − P

1 elements, is shown in Fig. 1. The momentum and mass
conservation equation of (1) are satisfied, provided that the right hand sides f and g
are chosen for the momentum and continuity equations, respectively,

f = 0, g = − pi
λi

in Ωi .

We notice that the variation on the Poisson coefficient produces a kink in the radial
velocity profile and a strong discontinuity in the pressure solution (Fig. 1a, b). Strictly
speaking, p can be interpreted as the pressure only in the incompressible case (Stokes
problem), but we shall omit this distinction. Similarly to the previous results, perfor-
mances of the methods are quite similar concerning the velocity approximation.When
the pressure field is discontinuous, Fig. 7 shows that resorting to a stabilizationmethod
on the cut region is recommended. However, the best performances are obtained when
pressure stabilization is adopted on the entire domain, combined with either P1 − P

0

or P1 −P
1 elements. Finally, we are interested in studying the behavior of the scheme

for two different choices of weights ki . In Fig. 8, we collect the results of the test
discussed above, performed using the weights defined in [16], which do not account
for the heterogeneity of viscosity. Comparing the results reported in Figs. 7 and 8, we
do not observe a significant difference. We remark that the computational cost of these
weights is very similar and we conclude that both the choices are suitable to solve a
problem with a mild heterogeneity between coefficients.
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Fig. 7 Convergence analysis for test 3, using the averaging weights defined in (3)
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Fig. 8 Convergence analysis for test 3, using the averaging weights defined in [16]

We finally observe that for the analysis of the numerical experiments we have 
used the standard H1 and L2 norms for velocity and pressure respectively, while 
the theoretical error estimate of the scheme we have analyzed is provided for 
‖(u − uh, p − ph)‖Ω+ . We claim that the norms considered for the numerical tests 
are the dominating terms of this more general error indicator. This is confirmed by 
Fig. 9, where we show ‖[[uh]]‖1/2,h,Γ . This term is a part of ‖(u − uh, p − ph)‖Ω+ 

and it scales as h3/2, in agreement with the expected theoretical estimate. We notice 
that its magnitude is significantly smaller than the one of the velocity H1 norm.
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Fig. 9 L2-norm error for the jump of velocity across the interface

4.3 Problem conditioning

As we already pointed out, the Nitsche-XFEM method allows for using meshes inde-
pendent of the position of Γ , but instabilities in the cut region depend on how the
interface crosses the elements. For this reason, we study the conditioning of the pres-
sure Schur complement matrix C for the third test case previously described and we
use theP1−P

1 elements with Brezzi–Pitkaranta stabilization. By increasing the radius
of the circular interface Γ , see Fig. 1, we modify the intersections between the mesh
and the interface. According to Theorem 3, we expect the condition number of the
stabilized method is not affected by the geometry of the interface. The calculation of
the condition number is done following [18].

In Table 1, we collect the obtained results. First of all, we observe that the condition-
ing ofmatrix C is almost constant when usingP1−P

1 elements with Brezzi–Pitkaranta
stabilization on the whole domain, as expected from (39). The condition number is
independent of how the interface cuts the mesh.

In addition, we calculate the minimum eigenvalue of the Schur complement matrix,
preconditioned with the pressure mass matrix. When the pressure stabilization on the
cut region is active, we use M+

p defined as,

[
M+

p

]

mn
=

2∑

i=1

∫

Ω+
i

qmh q
n
h dx, qmh , qnh ∈ Qh,

where we remark that the integrals of basis functions having support in a K ∈ Gh are
computed on the entire element K . For the non stabilized case, the usual definition is
applied,

[
Mp

]

mn =
2∑

i=1

∫

Ωi

qmh q
n
h dx, qmh , qnh ∈ Qh .



Table 1 Conditioning of the preconditioned Schur complement C for small perturbations of the radius r
of Ω1 (top)

r min
{ |K∩Ω1||K∩Ω2|

}
κ(M−1

p C) κ((M+
p )−1C) κ((M+

p )−1C)

P
1
bubble − P

1
P
1 − P

1 + BP stab. P
1
bubble − P

1 + BP stab.

0.250 0.31038 8.15 × 102 1.35 × 103 559.83

0.270 0.02990 8.27 × 103 1.36 × 103 654.35

0.280 3.35 × 10−4 2.61 × 107 1.37 × 103 2.66 × 103

0.281 1.34 × 10−5 2.18 × 108 1.37 × 103 9.14 × 103

r min
{ |K∩Ω1||K∩Ω2|

}
min{λi (M−1

p C)} min{λi ((M+
p )−1C)} min{λi ((M+

p )−1C)}
P
1
bubble − P

1
P
1 − P

1 + BP stab. P
1
bubble − P

1 + BP stab.

0.250 0.31038 −1.6434 0.486 0.2318

0.270 0.02990 −2.6736 0.4945 0.2316

0.280 3.35 × 10−4 −4.3228 0.4939 0.1359

0.281 1.34 × 10−5 −22.1581 0.4936 0.1235

p

Minumun eigenvalue of the preconditioned Schur complement C for small perturbations of the radius of 
Ω1 (bottom)

The quantities min{λi ((M+)−1C)} and min{λi (Mp
−1C)} inform us about the inf-sup 

stability of the scheme, because they are directly proportional to the inf-sup constant 
[12]. The analysis is reported in Table 1. The fact that the minimum eigenvalue of 
min{λi (Mp

−1C)} is nor positive, neither bounded from below when the size of cut 
elements decreases, confirms the lack of stability of the approximation method without 
pressure stabilization. Conversely, the Brezzi–Pitkaranta stabilization, applied on the 
cut region or on the whole domain, restores the desired positivity and boundedness 
property, almost uniformly with respect to the cut-element size.

5 Conclusions

This work arises from the observation that the approximation of saddle point problems 
with extended finite elements poses some stability issues. In particular, for the Stokes 
problem the approximation of the pressure may be locally unstable. Standard mixed 
finite element spaces combined with simple enrichment strategies lead to a satisfac-
tory approximation method, provided that pressure stabilization is introduced into 
the scheme. The general framework of symmetric stabilization techniques is suitable 
to cure this kind of issues. In particular, we have shown that the Brezzi–Pitkaranta 
stabilization scheme is effective also in this new approximation context. The alge-
braic properties of the scheme are also analyzed, enabling the application of standard 
solvers, such as the Uzawa method.
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