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Abstract 
 
Considering railway axles, classical fatigue damage can occur at the body as a 
consequence of corrosion or ballast impacts, while fretting damage can occur as a result 
of micro-sliding between the wheel assembly and the press-fit seat. As safety critical 
components, railway axles, whose failure can lead to unacceptable human losses, are 
periodically inspected by means of well-established non-destructive techniques 
(typically ultrasonic and magnetic particle inspections) usually requiring expensive 
service interruptions. On the contrary, as shown within the aeronautical field, a 
condition-based maintenance can improve the safety and at the same time minimize 
costs respect to scheduled inspections. This paper investigates the feasibility of an 
Acoustic Emission based Structural Health Monitoring approach applied to railway 
axles subjected to classical and fretting fatigue damages. Experiments were performed 
on full-scale axles using a Vitry test rig, i.e. a three point bending test, with one 
acoustic-emission sensor coupled at the free end of the axle. Results are found to be 
consistent with damage evolution. 
 
1.  Introduction 
 
The present scenario (1) of European railway applications shows a tendency towards 
new maintenance and monitoring procedures for in-service solid axles, with the aim to 
define higher safety levels and, at the same time, to optimize the total cycle life cost of 
the wheel-set. In particular, during service of railway axles, corrosion-fatigue, ballast 
impacts and fretting fatigue damages can occur and trigger crack initiation with 
consequent failure (2). For this reason, railway axles, whose failure can lead to 
unacceptable human losses, are periodically inspected by means of well-established 
non-destructive techniques (typically ultrasonic and magnetic particle inspections) 
usually requiring expensive service interruptions. From this point of view, as shown 
within the aeronautical field (3), switching to a condition-based maintenance can 
improve the safety and, at the same time, minimize costs with respect to scheduled 
inspections.  
 
Nowadays, the applied structural health monitoring (SHM) techniques are, in general, 
based on different physical phenomena (4): dynamic modal data, electromechanical 
impedance, static parameters (displacement field, strain gauges, optical fibres etc.), 
acoustic emission (AE) and elastic waves. In particular, AE (5) is generated by 
developing damages in terms of elastic waves and it is an effective way of localization 
via triangulation and of evaluation of failure behaviour. AE technology is, then, a 
passive non-destructive technique applying a continuous monitoring, which makes 
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possible to evaluate the possible development of damage in real time. This aspect makes 
it potentially more convenient than common inspection procedures based on the 
“Damage Tolerance” approach (1), according to which axles must be stopped and 
checked at least two times before possible failure can occur, with consequent 
inconveniences in terms of both down-time and money. However, the employment of 
acoustic emission for railway axles monitoring is an innovative application, since the 
majority of the cases, in railway field, concerns the monitoring of rail-wheel contact (6) 
and the detection of faults in axle bearings (7) and tracks (8). 
 
This paper investigates the feasibility of an Acoustic Emission based Structural Health 
Monitoring system applied to railway axle subjected to fretting fatigue damage. 
Experiments were performed on a full-scale axle using a Vitry test rig, i.e. a three point 
rotating bending test, with an acoustic-emission sensor coupled at the free end of the 
axle. Preliminary results are introduced and are found to be consistent with damage 
evolution. 
 
2.  Full-scale fretting fatigue test 
 
The full-scale experiment was carried out according to the experimental set-up 
suggested in EN 13261 for testing critical region F3, i.e. the “limit under the fitted areas 
(for solid axle)” (9). In particular, the considered full-scale specimen is representative of 
a solid axle manufactured in EA4T steel grade (quenched and tempered 25CrMo4 alloy) 
and its geometry is shown in Figure 1a. Moreover, with the aim of verifying the 
propagation attitude of pre-existing defects under the press-fit, four artificial defects 
were machined under the hub, as shown in Figure 1b. They were obtained by EDM on 
one side of the wheel seat, at a distance of 10 mm from the edge, equally spaced with a 
circumferential length of 75° each and a depth of 350 μm. Their shape and depth were 
confirmed by a following SEM analysis: Figure 1b shows an example of lapped section 
of one of the artificial defects. 
 

 
(a) 

  
 

(b) 
Figure 1. Full-scale specimen: a) technical drawing; b) artificial defects located under the press-fit. 
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The test was carried out by the Vitry test bench available at the labs of the Dept. 
Mechanical Engineering at Politecnico di Milano (Figure 2). This is a special bench able 
to apply three point rotating bending conditions to full-scale specimens. The hydraulic 
actuator has a maximum load capacity of 250 kN and a three-phase asynchronous motor 
can impose a maximum rotational speed of 1000 rpm. 
 

 
Figure 2. Static scheme of the Vitry test bench for full-scale axles. 

 
Previous studies showed (10) that, for the considered material and axle geometry, the 
fretting fatigue limit is approximately 120 MPa. In order to check such a conclusion, 
two different nominal stress levels were applied, during the test, at the section of the 
press-fit seat where artificial defects were located: first, 108 MPa were applied for 
1.5x107 cycles without observing any macroscopic clue of damage, then 135 MPa were 
applied for about 6.5x106 cycles at which failure occurred. In particular, failure was 
detected by an ultrasonic phased array system applied, during the test, at suitable 
interruptions. 
 

 
(a) 

  
(b) (c) 

Figure 3. Surface inspection of the tested press-fit seat: a) 2D map visual testing; b) and c) 
fluorescent magnetic particle testing. 

 
The specimens was, then, disassembled and the press-fit seat inspected by visual testing 
(2D map, Figure 3a) and fluorescent magnetic particle testing (Figure 3b and 3c). As 
can be seen, two cracks developed during the test: the first one (Figure 3b) initiated at 
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defect S1 and extended from both sides of it, while the second much smaller one (Figure 
3c) initiated at the free side of the seat (3 mm from the edge) with circumferential 
extension of 4 mm. 
 
3.  Structural health monitoring by acoustic emission 
 
The experimental set-up for AE structural health monitoring consisted (Figure 4) in a 
Vallen AE control unit AMSY-6 with eight channels, a piezoelectric sensor Vallen 
VS150-M at 150 kHz, a Pre-amplifier Vallen AEP4 at 34dB and a sliding contact to 
drive the signal from the piezoelectric sensor and the pre-amplifier, both rotating along 
with the axle, to the control unit. The sensor was coupled to the axle by means of a 
silicone couplant. The control unit acquired also the signals of the applied load and of 
the number of cycles so that each event could be precisely associated to its number of 
fatigue cycles and to the load. 
 
Unfortunately, due to the bench configuration, just one sensor could be adopted during 
the test because, of the two flat ends of the full-scale axle, one is not accessible since it 
is connected through a gear to the motor pulley aimed at the rotational speed transfer. 
This means no localization of events could be carried out, losing a lot of useful 
information for the interpretation of results. 
 

 
Figure 4. Experimental set-up for AE structural health monitoring of the axle. 

 
In order to check the acoustic contact of the sensor, many calibration acquisitions were 
carried out by the pencil lead break (PLB) test (5). In particular, PLBs were applied on 
the axle surface starting from the nearest possible location to the sensor (267 mm) to the 
furthest (1813 mm) at regular length distances of 100 mm. All the signals originated by 
PLBs exhibited a clear burst waveform with amplitude of 70 dB (Figure 5).  
 
A characterization of environmental noise was, then, carried out (Figure 5). First, the 
axle was put in rotation at the test speed (509 rpm) without any applied load: in this 
condition, acquired acoustic emission signals are just related to random noise (from the 
electric motor, bearings …). Then, electro-magnetic interference was acquired plugging 
and unplugging the set-up cables. Finally, the interference of the moving bridge crane of 
the lab was acquired, as well. All the acquired data allowed to properly set the 
acquisition threshold, which was set to 69 dB, in order to include signals similar to 
PLBs and reduce as much as possible the amount of useless data. 
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During the test, for all the recorded events, the experimental set-up automatically 
provided a set of numerical features suitable for describing the raw signal: the channel 
acquiring the signal (CHAN), amplitude (A), rise time (RT), duration (D), counts 
(CNTS), energy (E), root mean square (RMS), threshold (THR), number of cycles 
(PCTA), FLAG for indicating special conditions during a hit and TRAI to enumerate all 
the hits with an associated transient data. Indeed, AMSY-6 allowed also recording the 
waveform of any hit (transient recorder) and analysing it in the frequency domain (11). 
 

  
PLB Random noise 

  
Electro-magnetic interference Bridge crane 

Figure 5. Examples of waveforms acquired from the environment. 
 
Figure 6 shows the complete raw data (a total of 660.000 hits) acquired during the full-
scale test and plotted in terms of amplitude vs. cycles and cumulated energy vs. cycles. 
As can be seen, the amount of recorded events is large and this is the consequence of the 
high background noise level and the long duration of the test. Consequently, a general 
real-time criterion aimed at the identification of failure mechanisms seems difficult to 
be applied and the performance of a post-processing algorithm has been investigated, as 
described in the following. 
 
4.  Interpretation of acoustic emission results by an unsupervised 
artificial neural network 
 
Pattern recognition techniques are considered a suitable tool to identify distinct types of 
AE sources based on a multitude of features obtained from the recorded signals (12). It 
also worth remarking the formation of AE signal clusters depends sensitively on the 
experimental set-up, the geometry of the specimen and the possible existence of other 
AE sources not correlated to specimen failure (13). In the literature, to face this kind of 
classification problems in the case of AE, the adoption of unsupervised (14) algorithms 
is suggested (5). Due to the known good performance (5), an unsupervised artificial 
neural network (ANN) algorithm, based on the Self-Organizing Map (SOM) (15), was 
adopted for the present case. The unsupervised nature of this approach does not require 
to know the output a priori, but allows to arrange its architecture according to the input: 
this is particularly useful for the big amount of AE data to be analyzed for the fretting 
fatigue damage of axles. 
 
The adopted SOM had a hexagonal lattice with a sheet structure, with a Gaussian 
neighborhood function. The observation of the U-Matrix allowed appreciating some 
degree of separation among groups of different neurons. In this regard, it could be 
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therefore possible to create a small number of clusters through simple clustering 
algorithms, such as the k-means one (15). However, a big problem consisted in selecting 
the optimal number of clusters a priori. Indeed, once the SOM is trained and the U-
Matrix displayed, the decision of the number of classes in which the input dataset must 
be divided stands to the user. To address this issue, the automatic k-SOM classifier 
algorithm, developed by Davide Crivelli (16) in a research on composite materials, was 
adopted. This approach evaluates the best performing number of clusters a priori, taking 
as a reference a few quality-clustering indexes in a straightforward and automated way. 
More in detail, after training the SOM, the U-Matrix is clustered with the k-means 
algorithm using a number of classes c ranging from cmin = 2 to cmax = 15. The clustering 
quality is then evaluated through three performance indexes: Davies-Bouldin (17), 
Silhouette (18) and Calinski-Harabasz (19). The use of multiple indexes allows 
overcoming the limitations and characteristics of every single parameter. These entire 
features make the approach implementable in any AE based structural health monitoring 
systems. 
 

  
Figure 6. Complete AE raw data acquired during the full-scale test. 

 
The application of the automatic k-SOM algorithm to fretting fatigue AE data identified 
the best number of classes as cbest = 2 with a correspondent aggregate index level Li = 
41 (Figure 7a). Figure 7b, instead, shows the comparison of the obtained two classes in 
terms of the Duration vs. Counts chart: Class 1 contains about 105.000 hits, while Class 
2 about 565.000 hits. As can be seen, it is the largest class (Class 2) to be characterized 
by the higher values of duration and counts, a condition suggesting (Figure 5) this class 
is the one more probably related to damage, while the other one (Class 1) to noise. 
 
The same conclusion is more strongly supported by the clustered cumulative charts 
shown in Figure 8, which reveal a clearly increasing constant trend of Class 1 with time: 
it contains a small number of signals with a low energy content and seems to well 
represent the expected behaviour of a continuous background noise. Class 2, instead, 
includes the highest percentage of signals with also the highest cumulated energy 
located over a rather small range of fretting fatigue cycles: from the literature (20), it is 
known that crack initiation and final fracture present sudden and high accumulation of 
energy, while the propagation phase is almost silent. Since the final fracture phase of a 
crack initiated in a railway axle coincides with the failure of the whole axle, the sudden 
increment of energy shown in Figure 8 can only be associated to crack initiation. It can 
be concluded a limited number of crack initiations occurred during the test, since the 
sudden accumulations of energy are not in an evident number. This hypothesis finds 
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confirmation by the experimental observations carried out at the end of the test, since 
only two surface cracks could be found. 
 
It can be concluded automatic k-SOM is able to distinguish between phenomena related 
to background noise (Class 1) and events related to damage mechanisms (Class 2). 
 

  
(a) (b) 

Figure 7. Classification of AE data: a) indexes and definition of classes; b) automatic k-SOM results 
(Duration vs Counts chart). 

 

 
Figure 8. Automatic k-SOM results: clustered cumulative Energy (left) and Activity (right) charts. 

 
 
4.  Conclusions 
 
In conclusion, it worth to highlight the usage of AE technology to monitor fretting 
fatigue tests on railway axles, besides being an innovative application, runs into a 
quantity of issues and criticalities implying the complex interpretation of the 
relationship between the damaging phenomena and the corresponding AE responses. 
Nevertheless, the application of suitable elaboration tools proved to be very encouraging 
for future developments. 
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