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Abstract—The characterization of biological systems in terms
of communication performance is currently limited. In this
paper, an iterative method is presented for evaluating mutual
information in molecular communication systems composed of
genetically engineered cells, based on an indirect non-parametric
estimation of probability density functions. Results are presented
based on the application of this method to proof-of-concept in-
silico data generated via stochastic simulation.

I. INTRODUCTION

Molecular Communication (MC) is an emerging technology
directly inspired by natural communications between cells in
biology [1], [2]. In MC, information is encoded into and
decoded from molecules, rather than electromagnetic waves,
thus opening the road to exploiting biological means to enable
communication among small-scale devices, or nanomachines.

Understanding living cells from an information and com-
munication theoretical perspective is one of the challenges to
gain insights into the fundamentals of MC system engineering.
The objective of this work is to minimize the upper bound
on the Mutual Information (MI), which is usually adopted
to measure the exchange of information in communication
theory [3], in a communication system composed of two
genetically engineered cells [4]. The proposed approach is
based on an iterative method that minimizes an upper bound
of the MI as a difference of entropies, in agreement with [5].

II. SYSTEM MODEL

We consider the same biological system model presented
in [4]. In particular, two Escherichia Coli (E. Coli) bacteria
cells are modeled as the transmitter and receiver, respectively.
Different concentration values of the protein called Isopropyl
β-D-1-Thiogalactopyranoside (IPTG) are injected in the envi-
ronment, each one identifiable with the message Xsource(t)
=xsourceH(t), where H(t) is the Heaviside step function.

A change of IPTG concentration causes a series of chemical
reactions [4] and consequent variations in the concentration
of biological molecules inside the transmitter cell, which
emits in response Acyl-Homoserine Lactone (AHL) in the
environment. AHL is a small molecule employed for sig-
naling in biological systems, also known as quorum sensing
autoinducer. The emitted concentration of AHL molecules then
propagates by means of diffusion (diffusive channel) to the

receiver cell. The receiving cell captures the propagated AHL
molecules by means of a number of receptors. After a series
of chemical reactions inside the receiver cell, a concentration
of Green Fluorescent Protein (GFP), a protein visible at the
microscope, is produced as the received message Ydest(t) [4].
While it is in general a function of time t, in this work
we consider solely the information content of the maximum
difference between the maximum and the minimum value
of Ydest(t). This corresponds to measuring the maximum
distinctness of the signal that allows for a better estimation
of the MI. When propagating from Xsource(t) to Ydest(t), the
information signal attenuates and accumulates noise, generally
modeled by a Poisson process [4]. With the goal of realizing a
discrete uniform input distribution, the range of inputs Xsource

has been varied from 1.5× 106 nM to 1.5× 108 nM with a step
size 1.5× 106 nM.

III. INFORMATION THEORY BACKGROUND

Two fundamental concepts of this study are the entropy
and the MI. The former defines the probabilistic behavior of
a source of information and gives a limit to the complexity
below which a signal can not be compressed. The MI of
two random variables is a measure of the mutual dependence
between the two variables. More specifically, it quantifies the
amount of information expressed in bits obtained about one
random variable, through the other random variable.

In this work, the MI is calculated as [3]

I(Xsource;Ydest) = H(Xsource)−H(Xsource|Ydest) (1)

where H(Xsource) is the entropy of the input variable Xsource

and H(Xsource|Ydest) is the conditioned entropy of the input
Xsource given the output Ydest. The main motivation for using
this formulation is that of performing an optimization on the
input distribution, as illustrated in the next section.

IV. PROPOSED ITERATIVE METHOD FOR THE
MINIMIZATION OF THE UPPER BOUND ON THE MI

An iterative method is here illustrated to minimize the upper
bound on the MI with a constraint on the input concentration
of the engineered cell-to-cell communication system described
in Sec. II. The Nelder-Mead iterative method [6] is a numerical



Algorithm 1: Iterative algorithm to minimize the upper bound
on the MI

Procedure: Minimization of I(X,Y );
Require: I(X,Y ) = H(X)−H(X|Y ) and
H(X) ≥ H(X|Y );

1 while Inew < Iold do
2 Calculate p(X) from mean, variance, skewness,

kurtosis.
3 Pruning technique on X , Y .
4 Doane’s formula to know the number of bins for the

p(X)new after pruning, for p(Y ) and for p(X|y).
5 Calculate H(X) for uniform quantization from p(X)new.
6 Calculate p(X|y) and from that H(X|y) is found.
7 Weight H(X|y) with p(Y ) to obtain H(X|Y ).
8 Iold = I(X,Y )
9 I(X,Y ) = H(X)−H(X|Y )

10 Inew = I(X,Y )
11 mean = meannew, variance = variancenew,

skewness = skewnessnew, kurtosis = kurtosisnew

approach used to find the minimum or maximum of an objec-
tive function in a multidimensional space. According to our
approach, we use a class of probability density functions (pdfs)
parameterized in a multidimensional space that is defined
by the first four moments, i.e. the mean, the variance, the
skewness, and the kurtosis. The main advantage of using this
approach is that it is already implemented in the built-in
MATLAB function fminsearch [7]. The pseudo-code of the
iterative procedure is described in Algorithm 1, where the
subscripts of the variables are removed for simplicity.

The numerical results presented here are based on Gille-
spie’s stochastic simulation [8], implemented using MATLAB
Simbiology [4]. The MI is estimated through the histogram
technique, a simplified version of the Kernel Density Estima-
tion (KDE) belonging to indirect non-parametric estimation
methods. Non-parametric statistics is based on either being
distribution-free, or having a specified distribution but with
unspecified distribution parameters. The histograms used to
estimate the pdfs have been generated according to the Doane’s
formula as in [9], which defines the minimum number of bins
that are required for a wanted precision. Also, we have used
the pruning technique to fit the input data to the pdf that
results at each step of the iterative algorithm. This pruning
is initially applied to the uniform pdf associated to the input
concentrations considered in our Simbiology simulations. The
four moments from which the algorithm calculates the initial
pdf p(X) are those associated with the uniform distribution.
So, they are derived by assuming all the input concentra-
tions equiprobables. The corresponding p(Y ) is estimated by
following the steps of the algorithm, unless for the pruning
technique, that is not necessary in case of uniform distribution.

In this case, the minimization of the upper bound on the
MI leads to an estimation of the best upper bound to the
capacity of the channel. Channel capacity is defined by C =
maxX∈P(X )I(Xsource,Ydest) and it can be obtained only if all
the possible pdfs for the concentration of the IPTG proteins are

Fig. 1. Result of the minimization with the iterative algorithm.

explored at the input, which is clearly not feasible in practice.
The histogram method, used to estimate the MI, has some

statistical limitations, as explained in [5], since it provides an
upper bound to the mutual information. In fact, the Nelder-
Mead iterative method is a heuristic technique that can lead
to convergence on non-stationary points. Another important
aspect is the class of pdfs used at the input Xsource(t), which
should be further investigated for the goal of minimizing the
MI for this particular communication system.

V. RESULTS AND CONCLUSION

In-silico simulations were done by repeating 100 times each
value of IPTG concentration in order to observe the corre-
sponding values of Ydest. Figure 1 shows a first result achieved
with the application of the proposed iterative algorithm. The
distance between the transmitter cell and the receiver has been
chosen equal to 30µm, as in [4]. As it can be observed, after
a fast initial decrease, the upper bound on the MI converges
to a stable value after 5 × 103 iterations. This is a first step
in the research of bounds to the MI of engineered cell-to-cell
MC, where a lower bound should also be investigated.
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