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a b s t r a c t

This paper describes a method for the automatic identification of acoustic events using a weighted aver-
age of sound pressure and sound intensity measured at the vicinity of airports. The classification is based
on the combination of different parameters using a technique conceptually similar to the sensor fusion:
the indications of different classifiers are merged using the classification uncertainty as a figure of merit.
The method uses the results of a training phase for the observation of statistical distributions of sound
pressure and sound intensity related parameters. The different parameters’ weights are computed ana-
lyzing the overlap of probability distributions of takeoffs and landings, so that more relevance is given
to the quantities presenting a low risk of misclassification. The proposed method does not require any
arbitrary assumption about the parameter effectiveness, given that the indications of multiple (poten-
tially infinite) classifiers can be merged together with weights that minimize the chance of misclassifi-
cation. The method has been validated with measurements performed at the Milan Malpensa airport
(Italy). Results outlined that the proposed classification criterion correctly identifies approximately
99% of events.

1. Introduction

The social impact of airport noise is relevant [1,2] and the public
request for quieter airports lead to develop a strict legislation
based on the compulsory noise monitoring which usually combine
information deriving from noise level meters and radars. As under-
lined by the ISO 20906 [3] and in the literature [4,5], noise mea-
surements close to the airports often involve different noise
sources; complex logics are therefore needed to separate the air-
craft sound events from spurious sources. In many situations, the
uncertainty related to the identification of aircraft-related events
is large [4], given the wide discretional margins that can be chosen
in the ISO 20906 procedure. Consequently, benefits deriving from
an automatic detection can be important.

The problem of automatic acoustic event recognition has
already been faced in the literature: Pfeiffer et al. [6] presented
algorithms aimed to recognize noise-generating events, concluding
that time-frequency patterns are difficult to investigate and claim-
ing that the more like to human hearing a method is, the more
effective it turns out to be. Andringa et al. proposed the use
cochleograms for the identification of aircraft-related events in

residential areas [7]; results demonstrated that even in the case
when the aircraft noise was 5 dB larger than the background, the
detection performances were comparable to the human listeners.
The recognition of ground vehicles noise (cars, trucks, etc.) was
performed using Short Time Fourier Transform (STFT) [8]; results
outlined that diverse events must present significant differences
in order to get distinguished.

The possibility of separating the noise sources depending on
their position was experimentally investigated at the vicinity of
Milan Malpensa Airport [5] using a 3D sound intensity probe [9].
Results allowed discriminating the acoustic contribution of the air-
craft from other sources inside the airport; the 3D probe position
prevented from distinguishing between takeoffs and landings.
Genescà et al. [10] separated the aircraft noise time history from
that of extraneous noise sources using a microphone array, evi-
dencing that the sound source position can be used to discriminate
different aircraft-related acoustic events.

Several recent literature studies used the noise pattern recogni-
tion for the identification of aircraft takeoffs [11,12]; results evi-
denced that approximately 90% of events are correctly classified
using a multimodal autoregressive model. A real time method for
the identification of the aircraft’s sounds has been proposed in
Ref. [13]. A monitoring unit allowed recognizing approximately
93% of events, independently on the measurement location and
on the soundscape.
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This paper aims to propose a novel method for the identification
of aircraft-related acoustic events (takeoffs and landings) using
acoustical quantities. The main idea of the proposed method is to
merge the indications of existing criteria (based on the noise time
history, spectrum, cepstrum and sound intensity direction) using a
linear classifier with multiple thresholds computed starting from
the results of a training phase. The weights of the different param-
eters minimize the chance of misclassification, using the measure-
ment uncertainty as a figure of merit. The proposed method is
described in Section 2. The results of measurements performed at
the Milan Malpensa airport (Italy) are presented in Section 3 and
the method performances is discussed in Section 4. The paper is
eventually concluded in Section 5.

2. Method

As previously mentioned, the method is conceptually similar to
the sensor fusion [14], a technique in which measurements of dif-
ferent sensors measuring the same phenomenon are merged to-
gether with weights that are inversely proportional to the
sensors’ uncertainty. In our case, the indication of different classi-
fication methods are merged together to obtain a unique (and
more reliable) classifier. The uncertainty of each method is given
by the chance of misclassification, that can be identified during a
training phase with statistical analyses.

The proposed method for the automatic events recognition is
therefore based on three steps:

1. Feature selection: identification of parameters derived
from sound pressure and sound intensity that can be used
to distinguish takeoffs from landings.

2. Training of a classification model that is the sum of:
a. Statistical analysis on real measurement data for the

determination of values assumed by the previously
described parameters.

b. Identification of the decision function, i.e. of a threshold
for each parameter to discriminate between takeoffs and
landings using statistical criteria.

c. Combination of different parameters using the measure-
ment uncertainty to identify the weight which minimize
the risk of misclassification.

3. Testing, which involves the verification of the actual
method performances: use of the automatic procedure for
the (known) event recognition in conditions similar to the
training ones.

There are potentially infinite criteria that can be used to dis-
criminate takeoffs and landings using sound pressure and sound
intensity measurements, but their efficiency often depends on
the measurement location and on the aircraft noise characteristics.
Consequently, the questions that the experimenter tries to answer
are

i. Which are the (most efficient) parameters allowing to clas-
sify different acoustic events (for instance, takeoffs and
landings)?

ii. Which is the thresholds for each parameter?

The proposed approach merges the indications of potentially
infinite parameters and, for each of them, computes the threshold
that minimizes the chance of misclassification. In the next sections,
we will describe different parameters that are commonly used for
the analysis of airport noise and then we will explain how to com-
bine multiple indications using a unique classifier.

2.1. Thresholds identification

Independently from the measurement point location and on the
noise characteristics, it is always possible to derive a certain num-
ber n of parameters (P) describing the acoustic event. With the
term parameter, (hereinafter P) we refer to any numerical quantity
extracted from the signal as, for instance, the maximum sound
pressure level or the event duration. Each time that an aircraft
passes in front of the measurement point, the parameter Pj as-
sumes a value pj. The identification of a threshold Tj that allows
identifying if the event is a takeoff or a landing is often problem-
atic, but with the proposed method, Tj is determined analyzing
the probability distributions of the random variable pj during take-
offs and landings.

Let us consider a single parameter (for notation clarity the index
j will be omitted) and its takeoff and landing populations PTO and
PL. For simplicity, let us suppose that the two populations can be
approximated with Gaussian distributions,1 as shown in Fig. 1. In
this case, takeoff data can be summarized by the takeoff mean lTO

and by the takeoff standard deviation rTO. Similarly, landings are
summarized by the landings mean lL and by the landings standard
deviation rL.

The proposed criterion for the calculation of T is based on the
minimization of the probability of misclassification. If we consider
that the a priori probability of the take offs is equal to the a priori
probability of landing (and both are equal to 50%), the optimal T
is the one for which the cumulative probability density function
(CPDF) ‘‘external’’ to the threshold is equal for takeoffs and land-
ings [15]. With reference to the above figure, such a condition is gi-
ven by:

lL � T
rL

¼ T � lTO

rTO
ð1Þ

The threshold T is therefore

T ¼ lLrTO þ lTOrL

rL þ rTO
ð2Þ

The above equation indicates that

� T assumes a numerical value between the mean of takeoffs and
the mean of landings.
� T is closer to the mean of the population with the lower relative

standard deviation.

If takeoff and landing distributions are not Gaussian, the thresh-
old T has to be identified from the experimentally identified CPDF
percentiles so that the probability of misclassification is equal for
takeoffs and landings.

1 Implications of such a choice will be discussed at the end of this paragraph.

Fig. 1. Identification of the optimal threshold for the classification of takeoffs and
landings.



2.2. Combination of different parameters

The number of parameters Pj that allows distinguishing take-
offs from landings is potentially infinite. Depending on the mea-
surement position, on the airport characteristics and on the
presence of disturbing sources, a single parameter may be more
effective than the others in the event detection. Instead of choosing
the parameter that, in a specific situation, provides for the best re-
sults, it is possible to combine different parameters whose thresh-
olds have been identified according to Eq. (3).

The main idea of the proposed combination criterion is to give
more relevance to those parameters for which the takeoff and
landings populations are not overlapped, i.e. where the risk of mis-
classification is lower. Each of the n parameters is associated to the
cumulative probability density function (CPDF) of misclassification
derived from the choice of Tj, hereinafter CPDFj. Given that for
some parameters lL j < lTO j, if data are normally distributed, CPDFj

is defined as:

CPDFj ¼
F

Tj�lTO j

rTO j

� �
if Tj < lTO j

1� F
Tj�lTO j

rTO j

� �
if Tj > lTO j

8<
: ð3Þ

If data are not normally distributed, CPDFj can be identified from
the experimental data, observing the percentage of events in which
the parameter is larger/smaller than the threshold Tj. The weight of
the single parameter pj is computed as:

wj ¼
0:5� CPDFj

XN

j¼1

0:5� CPDFj
� � sign lL j � Tj

� �
ð4Þ

The quantity 0.5 � CPDFj derives from two necessities:
i. The necessity of giving more relevance to the parameters

with a low risk of misclassification: therefore the weight is
proportional to the complementary of CPDFj, i.e. (1 � CPDFj).

ii. The necessity of not giving relevance to those parameters
pj with overlapped takeoff and landing distributions. If
lL j = lTO j, CPDFj is 50% and the parameter does not provide
useful information for the event classification. Consequently,
the quantity (1 � CPDFj) has been modified in (1 � CPDFj �
0.5), i.e. (0.5 � CPDFj).

The expression used to assess if an event is a takeoff or a landing
is given by the linear classifier v:

v ¼
XN

j¼1

wj � ðpj � TjÞ ð5Þ

Because of the initial hypothesis of Fig. 1 (in which the landings
average was larger than the takeoff average) and because of the sign
of Eq. (5), if v is positive the event is classified as a landing; if it is
negative it is classified as a takeoff. Obviously, the adoption of
inverse sign weights would have led to positive v coefficients for
takeoffs and viceversa.

2.3. Aircraft noise

The noise emitted by aircrafts is the sum of:

� Aerodynamic effects, like boundary layer forming on wings, air
intake turbulence and waves spreading out the tail, which
generate broadband noise.
� Engines, which produce typical sound pattern related to the

rotors angular speed, essentially made of low frequency
harmonics and buzz saw noise proportional to the blade passing
frequency.

The aircraft noise reaching the receptor is affected by the air-
craft speed (Doppler effect) and by the air and ground characteris-
tics (atmospheric absorption, reflections).

The simplest acoustic model that can be used to describe an air-
craft taking off or landing (Fig. 2) is the one of a dominant point
source (the airplane) that radiates broad-band non-stationary
noise while moving along an approximately linear path not neces-
sarily parallel to the ground. The receiver (i.e. the measurement
instrument) is located at a fixed position at a small distance from
a semi-reflective surface.

During the takeoff, propellers are the principal noise sources, gi-
ven that the engines are at maximum thrust and the aircraft speed
varies from (approximately) zero to the takeoff one (70–90 m/s for
most of the commercial airliners). Airplane landing noise, con-
versely, is dominated by the aerodynamic part in the initial phase
(when the aircraft approaches the runway) and may include the
contribution of thrust reversal noise (hereinafter TRN) if a sudden
speed reduction is required after touch down.

2.4. Parameters

There are different acoustical parameters Pj that can potentially
be used to discriminate takeoffs from landings. In this section we
propose different sound pressure and sound intensity based
parameters that the literature review and preliminary experiments
outlined as promising.

The easiest acoustic parameter to be analyzed is the sound pres-
sure level (SPL): with a crafted choice of the measurement point
position on the runway (beginning, middle or end), SPL of takeoffs
may differ significantly from the one of landings. The measures
that can be used for the takeoffs and landing identification are
the event duration (ISO 20906 t10), the SPL increase rate (first
derivative before the pressure peak, SPL0) and the SPL curvature
(the second derivative of the SPL – time graph, hereinafter SPL00).
These parameters are expected to be meaningful if the microphone
is close to the touching point or to the takeoff position, where there
is a significant difference in the aircraft speed; a comparison be-
tween SPL of a takeoff and a landing when the measurement posi-
tion (hereinafter MP) is at the beginning of the runway is shown in
Fig. 3.

The index t10 can be computed according to the indication of the
ISO 20906 as the total time in which the SPL exceeds the threshold
of (SPLmax �10 dB). SPL0 is defined as the angular coefficient of the
best fitting line of the SPL – t plot between tstart and tmax. Similarly,
SPL00 is defined as the second-order coefficient of the best fitting
parabola of the SPL – t plot between tstart and tstop.

SPL is also useful for the identification of the use of thrust
reversers. If the thrust reverse is used, the SPL curve has a first
maximum when the aircraft (approximately) passes in front of
the MP, and a second maximum after a few seconds, as shown in
Fig. 4; the peak at time tpk1 occurs when the aircraft passes close
to the MP, the one at time tpk2 is caused by the use of thrust revers-
ers. Also in this case, the effect of the measurement position is

Fig. 2. Acoustic model.



expected to be important, given that the two peaks are visible only
if the measurement position is far from the position where the
thrust reversal is used.

Other parameters can be derived from the sound pressure spec-
trum. The noise produced by turbofan engines’ blades propagates
as pressure waves with buzz saw shape (referred to as buzz saw
noise, hereinafter BSN). Such a condition, because of the high
peripheral fan speed, is mostly evident during the takeoffs and
can be therefore used to distinguish takeoffs and landings. The
BSN is typically embedded in a slow varying wideband noise (e.g.
atmospheric agents, wakes, turbulence, etc.) and its spectrum is
characterized by equally spaced harmonic components. Aircraft-
related events can be classified on the basis of the frequency

difference between the harmonics: if the engine noise is dominant
the frequencies of the spectral peaks are equally spaced. Con-
versely, during landings, the aerodynamic noise is prevalent and
the spectral peaks’ frequencies are randomly distributed. A possi-
ble criterion for the event classification is based on the frequency
difference between adjacent spectral peaks and on the ratio be-
tween the differences standard deviation and mean.

In our experience, best results are obtained if spectra are com-
puted between the times tstart and tstop and afterwards de-trended
to ease the triggering operation. Each spectrum is approximated
(in a least square sense) with a quadratic function and the result
are subtracted from the original spectrum. Peaks can be identified
using the interpolation approach described in Ref. [16]. A compar-
ison of de-trended spectra between a takeoff and a landing is
shown in Fig. 5.

The parameter used for the statistical analyses is related with
the variability of the frequency difference between adjacent spec-
tral peaks. Said fi the frequency of each of the i peaks, the frequency
difference array is computed as di = (fi+1 � fi) The variability of the
frequency differences di is summarized with the standard deviation
r(d1, d2, d3,. . ., dn), hereinafter r(di). A comparison between values
of di for data presented in Fig. 5 is shown in Fig. 6.

An additional frequency domain criterion that can be used to
distinguish takeoffs and landings is the presence of a dominant to-
nal component with increasing frequency during takeoffs. In the
common takeoff procedure, the thrust level is slowly increased
and stabilized for a few seconds, then increased to the takeoff
thrust. Let us call pmax(f) the largest spectral peak at a certain time:
if such a peak is generated by the engines during the takeoff, the
frequency f of pmax, hereinafter f �(t), will slowly increase, remain
constant and then increase again. This typical frequency pattern
will be absent in landings, where the random noise characteristics
are dominating.

Fig. 5. Detrended spectra extracted by a waveform recording a takeoff (top) and a
landing (bottom).
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A comparison between f �(t) (evidenced by the dotted line on the
STFT) of a takeoff and of a landing is shown in Fig. 7. The takeoff
f �(t) plot exhibits a well-defined pattern: from 25 to 30 s f � in-
creases from 900 to 2400 Hz, then remains constant for approxi-
mately 3 s and eventually increases. Once that a stable rotation
speed is achieved, the airplane speed increases and the BPF drifts

because of Doppler effect. On the contrary f �(t) plot of the landing
is almost constant from 0 to 5 s and then rapidly decreases. Also in
this case, analyses are usually more efficient if performed between
tstart and tstop and should be limited to frequencies larger than
800 Hz, where the BSN is dominant.

The necessity of summarizing the plots with a single value leads
to the definition of the index t(f �), defined as the maximum time
span in which f � is increasing.

The presence of equally spaced harmonics suggests the possibil-
ity of using Cepstrum algorithm [17], which is the result of taking
the Fourier transform of a spectrum logarithm. Cepstrum can be
used to outline the presence of periodic components in the signal
spectrum, and seems therefore useful for the takeoffs identifica-
tion. The cepstrograms (also known as short-time cepstrum) of a
takeoff and a landing is shown in Fig. 8: the presence of multiple
lines with a quefrencies2 lower than 0.1 s indicates the presence
of periodic harmonic components. The main pattern disappears after
approximately 28 s: owing to the directional characteristics of the
noise emitted by the propellers, BSN mainly propagates from the en-
gines towards the nose of the airplane, as also shown in Fig. 7. When
the aircraft passes in front of the measurement position there is a ra-
pid passage from BSN to wide band noise, and no dominant quefren-
cies are observed. The lower plot in Fig. 8 shows that no dominant
quefrencies are present during the landing.

Also in this case it is necessary to summarize data with a
numerical index; a convenient choice can be the number of BSN
patterns in the short-time spectrogram. In the case presented in
Fig. 8, this number is equal to 6 for the takeoff and to 0 for the land-
ing. Obviously, other parameters can be defined, such as the time
in which the dominant quefrency is constant; being the landing
quefrencies randomly distributed, this parameter is expected to
be large in takeoffs and small in landings.

Fig. 7. Result of f*detection for a takeoff (top) and a landing (bottom).

Fig. 8. Comparison between a takeoff (top) and a landing (bottom) cepstrogram in
which BSN consistence has been checked.

2 The independent variable of Cepstrum analysis, measured in seconds.

Fig. 6. Comparison of takeoff (top) and landing (bottom) harmonic spacing.



The last group of parameters can be derived from the sound
intensity vector that, behind assumption of single active compo-
nent and spherical propagation, can be used to identify the source
position and power. Even if airport noise is often due to the
superposition of multiple sources, in the close vicinity of runways,
takeoff and landing aircraft noise is dominant [5] and the single
point-source approximation is reasonable. Sound intensity vector
is commonly measured starting from its Cartesian components:
in the following, we will refer to Ix as the component perpendicular
to the runway, Iy for the component parallel to the runway and Iz

for the vertical intensity component. The knowledge of the inten-
sity vector allows computing different quantities related with the
position of the aircraft such as the aircraft altitude or its speed over
the runway.

One of the most obvious differences between takeoffs and land-
ings is that in the first case the aircraft altitude increases, in the lat-
ter the altitude decreases. It seems therefore obvious to use Iz to
discriminate between the events. Nevertheless, taking off aircrafts
run on the ground for most of the runway, with takeoff distances
ranging from approximately 1 km for the commercial airliners to
more than 2 km for the heaviest ones. During landings, airplanes
fly over the ground for at least 300 m from the head of runway
and descent following a path with about 3� slope; the limited
acoustic radiation angles of incidence may limit the validity of this
parameter. In our experience, better results are obtained if the MP
is located near the runway head and if Iz is averaged between the
runway head and the MP. Since the MP location is known, the aver-
aging period can be identified using the angle of the sound inten-
sity vector in the horizontal plane.

Airplanes, before taking off, enter the runway from the head and
begins to run from a null or negligible speed. Conversely, landing
airplanes fly over the entrance of the track pointing to the so-called
aiming mark. The speed difference between the two conditions is
significant, especially if the MP is close to the aiming point. Differ-
ent parameters related to the aircraft speed can be used: the easi-
est one to derive from intensity measurement is the angular
velocity of the sound intensity vector in the horizontal plane. The
angular velocity can be conveniently computed in conditions sim-
ilar to the ones described in the previous paragraph, i.e. between
the instant in which the aircraft is located on the head of the run-
way and the MP. Fig. 9 shows a comparison between measured an-
gle span for a takeoff (top) and a landing (bottom) when the head
of the runway is located at an angle of approximately 230� (and MP
is located at an angle of 180�, since Iy is null). The plots show that
the takeoff (top) is characterized by an intensity vector angular
velocity lower than 10�/s and the velocity during the landing is lar-
ger than 20�/s.

Another difference between takeoffs and landings is the aircraft
acceleration (i.e. position second derivative), that is positive for
takeoffs and negative for the landings. The position of the aircraft
on the runway can be computed as the intersection between the
sound intensity vector and the runway. The position can be
approximated with a second-order curve in a least square sense:
if the second order coefficient is positive, the event can be classi-
fied as a takeoff and vice-versa. Further indication can be derived
from the uncertainty of such a coefficient, which provide informa-
tion on the reliability of the derived data. The selection of the time
interval for the regression is also critical; best results in our expe-
rience were obtained considering a time interval of 6 s centered on
the MP.

The sound pressure measured at the receiver depends on both
the source strength and on the spherical attenuation. The actual
source power can be estimated according to the ISO 9613. Similarly
to what was previously done for the pressure level, different
parameters can be derived from the sound power level (maximum,
first and second derivatives, RMS). The reference power parameter

can be the LPRMS value between tstart and tstop (hereinafter LPRMS),
but other parameters as the maximum power level or the t10 com-
puted on the power instead of the pressure can be used.

3. Case study

The proposed method has been validated with tests performed
at Milan Malpensa airport for civil aviation. This is one of the larg-
est airfield in Italy; located in the north of the country in a mostly
green area it consists of two terminals with relative parks for the
aircrafts, two runways and a heliport. The tracks are parallel,
3.9 km long, 60 m wide, oriented towards North West direction.
The airplanes can run both direction during takeoffs and landings
according to handling rules and atmospheric agents (mainly wind).
The environment outside the airport area presents access roads, a
highway, a railway and vegetation. Finally, atmospheric conditions
normally varies during the year from snowy and icy to sunny and
warm.

3.1. Experimental setup

Sound pressure and sound intensity were measured with a set-
up similar to that adopted in previous studies [5,18]. A 3D sound
intensity probe was arranged with six half-inch microphones man-
ufactured by BSWA, with nominal sensitivity of 50 mV/Pa. Micro-
phones spacing was 40 mm; such a distance, thanks to the
compensation algorithms described in Ref. [9], allowed reliable
measurements (±1 dB) between 20 and 4500 Hz. Data were sam-
pled by two 24 bits NI 9234 data acquisition boards (stored in a
cDAQ chassis) with a pass-band of 5 kHz. A fit-to-purpose virtual
instrument was developed in LabVIEW to acquire and store the
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Fig. 9. Intensity vector rotation for a takeoff (top) and a landing (bottom).



six sound pressure time histories. Data were offline processed to
derive some of the parameters described in Section 2. Measure-
ments were performed in two weeks: the first week of acquisition
was used for the system training, the second for the system
verification.

Given that one of the possible outcomes of the analyses was the
automatic identification of the thrust reversal noise, the 3D probe
was located close to the touching point, at 130 m from the center-
line of the closest runway (960 m from the other). The actual posi-
tion was chosen to accomplish with the airport safety rules and on
the basis of the experience of experiments performed in Madrid
Barajas airport [19]. A picture of the intensity probe with the air-
port on the background is shown in Fig. 10.

3.2. Method training

The first step of the proposed method is the analysis of the
parameters pj CPDF in order to identify the weights wj for the com-
putation of the index v. In this phase the type of event (takeoff–
landing) was derived from the airport flight-plan and from audio
recordings. Parameters were computed on a set of 50 takeoffs
and 50 landings. The parameters included in the analysis were:

a. The SPL increase rate (SPL0).
b. Number of BSN patterns in short time Cepstral analysis.
c. The standard deviation of frequency differences between

spectral peaks r(di).
d. The time in which the dominating spectral component

increased its frequency t(f �).
e. The magnitude of the vertical intensity component Iz.
f. The RMS power level LPRMS.
g. The aircraft acceleration.
h. The average speed before the MP.

The weight of the single parameters wj was computed according
to the procedure described in Section 2 under the assumption of
normally distributed data (verified with Anderson–Darling nor-
mality tests). The results of the training phase are summarized in
Table 1. Results show that the more reliable indicators are:

� The time in which the dominating spectral component
increased its frequency t(f⁄), in which the probability of mis-
classification CPDFj is 5%.
� The average speed before the MP and the average aircraft accel-

eration are also reliable indicators, with CPDFj of 6 and 7%
respectively.
� Iz, BSN, r(di) and pmax have comparable weights (close to 10%),

endorsable to a misclassification rate between 20% and 30%.

� The weight of SPL0 are very low, given that the risk of misclassi-
fication is close to 50%.

Numerical values indicate that the most reliable parameters
have larger weights, while the unreliable ones are marginally con-
sidered in v. The advantage of the proposed method is that the
weight are computed on the basis of experimental results, without
any arbitrary assumption of the experimenter.

3.3. Method verification

The method verification was performed on 94 events (47 take-
offs and 47 landings acquired in the second week of measure-
ments). Also in this case, the type of event was known and the
method validity was assessed by comparing the actual event with
the one predicted by our model. Results (Fig. 11) evidenced that 93
over 94 events were correctly identified; the index v during take-
offs had a mean value of �4.7 and a standard deviation of 1.9. The
index v during landings had a mean value of 11.7 and a standard
deviation of 4.1. The only event not correctly identified (a landing
classified as a takeoff) was characterized by an index v of 0.3. As
later discussed, in case of v values close to zero it is possible to re-
quest the operator action to classify correctly the event.

4. Discussion

Results evidenced that the use of an index computed merging
the indications of different parameters derived from sound pres-
sure and sound intensity measurements is more reliable than each

Fig. 10. Picture of the 3D probe, with the airport and the runway visible on the
background.

Table 1
Results of the training phase.

Parameter pj lTO rTO lL rL Tj CPDFj wj

SPL0 �10.5 2.7 �10 5.2 �10.5 50% 0%
BSN 2.5 1.5 1.0 0.6 1.4 24% 11%
r(di) 11.5 5.2 17 2.4 15.2 23% 11%
t(f⁄) 4.9 1.9 0.9 0.5 1.7 5% 19%
Iz �56 9.7 �39 18 �50.0 27% 10%
LPRMS 73 8.2 50 18 66.2 19% 13%
Avg. acceleration �0.3 0.8 �10 5.9 �1.4 7% 18%
Avg. speed before MP 20.5 5.8 61 21 29.3 6% 18%

Fig. 11. PDF of the population of v during the method verification campaign. The
left histogram (negative values) summarizes the takeoffs, the right histogram
summarizes the landings.



single parameter from which it derives. The relative weight of dif-
ferent parameters has been computed so as to minimize the prob-
ability of event misclassification.

Although there are several parameters (features) that have not
been included in our analyses, experimental results evidenced
the advantages of giving more relevance to the quantities with
low probability of misclassification. In our case, the most reliable
classifiers were derived from the sound spectral characteristics
and from the sound intensity vector. As already outlined in Sec-
tion 2, the parameter weights wj cannot be used for tests per-
formed in other airports (or even different locations in the same
airport), given that the numerical values depend on the position
of the MP on the runway, on the airport characteristics and on
the presence of other noise sources. Nevertheless, the wj computa-
tion is based on the training phase results and, in any condition,
more relevance is given to those parameters that, in the specific
location, allowed distinguishing takeoffs from landings in the
training phase.

Although different criteria for the computation of the weights
wj are possible, the one proposed in this paper is the one that min-
imizes the chance of misclassification. In our test case, the best cri-
terion was t(f �), which granted a probability of misclassification of
5%. The common choice in many of the existing literature studies is
to use only the parameter that, during the training phase, per-
formed better. The simultaneous use all the parameters (giving
more relevance to t(f �) and no relevance at all to SPL0) allowed a
probability of misclassification of 1%, i.e. much lower than the
probability of misclassification of the best parameter. The choice
of using the best parameter does not account for possible mis-
matches between training and testing conditions and is less robust
than the one based on the computation of the index v.

Different parameters have been proposed upon considering the
acoustic characteristics of aircrafts’ noise; some of them are widely
used in airport noise monitoring, others (such as the frequency dif-
ference between adjacent spectral peaks or the cepstrum-derived
features) have never been used for aircrafts event classification,
and have been proven to be effective. The use of other parameters
derived, for instance, from camera measurements or from other
sensors is expected to increase the method reliability and can be
included in future researches.

A positive aspect deriving from the use of the index v is that
when the latter is close to 0 (or when it is outside a certain confi-
dence interval, that can be identified during the training campaign)
the chances of misclassification are large; it is therefore reasonable
to request the evaluation of an operator for further analyses.

5. Conclusions

This work described a method that can be used to identify the
aircraft takeoffs and landings with the combination of several dif-
ferent parameters derived from sound pressure and sound inten-
sity measurements. The analysis of the noise time history and
spectral characteristic allowed identifying a group of parameters
that assume different values in takeoffs and landings. Events are
classified using a threshold for each parameter. The parameters
thresholds and the relative weights of the different parameters
are computed minimizing the risk of misclassification. The

proposed method has been validated with measurements per-
formed at Milan Malpensa airport. Experimental results outlined
that the method correctly identify takeoffs and landings, with a
misclassification rate close to 1%. Although other tests could be
useful for a deeper method validation (different airports, different
measurement positions), the proposed method always gives more
relevance to the parameters granting a lower misclassification rate
and is therefore robust and does not require any subjective evalu-
ation about the parameters’ efficiency.
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