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1. Introduction and motivation

Torque allocation for over-actuated vehicles is a very interesting and challenging research
topic in Automotive systems. The most modern vehicle architectures, in fact, offer a plurality
of actuators that allow actively shaping the vehicle dynamic response. This active shaping can
be performed by properly setting up hierarchical control problems that regulate the vehicle
motion by allocating the torques at the wheels and then solving constrained control alloca-
tion problems that optimise different cost functions, that can be either safety, or energy, or
performance oriented (or, most interestingly, combinations of all these aspects), see e.g. [1].
Usually, the high-level motion objectives are expressed in terms of imposing a desired yaw-
moment to the vehicle, which must then be transformed in wheel torque reference signals (or
torque differences).

For power trains endowed with wheel individual motors (WIMs), which can be either in-
wheel motors or close to the wheel, the emulation of the open mechanical differential is,
perhaps, the simplest strategy that can be used for the torque allocation problem, which leads
to apply the same torque to the left and right wheels, see e.g. [2]. While this strategy may
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improve the driving experience in off-road conditions, it is obvious that it cannot take full
advantage of the torque- capabilities offered by the WIMs. Along the same lines, the concept
of electric differential (see [3–6]) has recently been developed: the main idea is to make the
speed of the inside/outside wheels (or, alternatively, the speed difference) follows a set-point
generated by a kinematic model, based on the Ackermann steering geometry. While it may
be useful in low-speed manoeuvres, the fact that kinematic models do not take into account
the lateral dynamics makes this approach unsuitable to improve the vehicle- properties or its
safety when driving close to the friction limits.

From the vehicle dynamics viewpoint, the application of different forces on the left/right
wheels produces an additional yaw-moment, which can be seen as a valuable control input to
actively modify the vehicle and ensure a safe motion. In this framework, also known in the
literature as the direct yaw-moment control, there are three major issues that must addressed:
(i) generation of the yaw-rate reference, (ii) vehicle force control and (iii) wheel torque allo-
cation. The most common approach to generate the yaw-rate set-point is to use as reference
the steady-state response of the bicycle model,[7] or, alternatively, employ the understeer
curves.[8] In both cases, the desired vehicle- characteristics, such as neutral, understeer or
oversteer behaviour, can be straightforwardly specified (e.g. through the well-known under-
steer gradient parameter). In addition to the steady-state behaviour, one may also specify
the desired transient response, such as the yaw-rate damping and rising times,[9] which
are crucial to actively modify the vehicle responsiveness and agility. Once the yaw refer-
ence has been found, it is necessary to design a control law that can impose this reference.
There is a wide range of possibilities for designing such a controller, ranging from linear and
time-invariant controllers,[10,11] linear quadratic regulator,[12,13] internal model control,[8]
sliding mode control,[14,15] model-predictive controller.[16] One of the main challenges
in the design of these controllers is to ensure robust operation in the presence of model
uncertainties, e.g. in the tyre–road friction coefficient.

Notice that, although some of these studies consider that the additional yaw-moment is
generated through differential braking and/or active mechanical differential, from a theo-
retical point of view the control algorithms can be straightforwardly adapted to power train
configurations equipped with WIMs.

Finally, the yaw-moment requested by the controller must be translated into a wheel torque
reference. When the actuators are installed in only one axle (e.g. with torque- devices or with
2 WIMs), the allocation is relatively straightforward to perform because there is a one-to-one
mapping between the yaw-moment and the force difference in the axle’s wheels.[8,12,17]
On the other hand, if 4 WIMs are present there is redundancy in the moment generation,
which can be explored to minimise the energy consumption [1,15] or the friction use of
the tyres,[18,19] through the use of optimisation-based techniques. In both cases, the torque
allocation must also take into account the saturation of the power train actuators, such as the
limited torque range and torque rates of the WIMs and friction brakes, and handle the friction
limits of the tyres, e.g. due to the well-known friction ellipse constraints.[19]

The approaches developed so far are, undoubtedly, very attractive and can ensure a safe
and energy-efficient operation of vehicle when the accelerations are moderate (see the gg
diagram in Figure 1). However, as the vehicle approaches its operation limits (see ‘zone B’
in Figure 1), one may question if the existing allocation schemes will be able to extract the
maximum performance from the vehicle (e.g. to operate near the friction limits when one has
combined steering and acceleration/braking).

In this context, the main contributions of this paper are the following: (i) to investigate
torque allocation strategies that allow the driver to extract the maximum performance from
the electric vehicle (EV), i.e. minimise the lap-time, without trying to correct the trajectory or
stabilise the vehicle motion (which are, instead, the main concerns when operating in zone B
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Figure 1. Performance zones in the gg diagram.

of Figure 1). (ii) to extend the preliminary results presented in [20] and formulate an opti-
mal problem that allows determining the torque distribution among the 4 WIMs that makes
the EV perform a given manoeuvre in a minimum time, according to the minimum-time
manoeuvring problem, see [21], which has emerged in recent years as a key tool for deter-
mining the optimal trajectory and driver inputs [22,23] in the racing context. In the present
work, this framework will be revisited to devise a benchmark, a-causal torque allocation
solution, against which the online strategies can be objectively evaluated. (iii) To propose
a causal, online, sub-optimal allocation strategy that uses only the current and past values
of the driver’s inputs (steer, throttle and brake pedal) and the vehicle state (longitudinal and
lateral acceleration), and compare it against the a-causal, offline one to assess the perfor-
mance of the torque distribution algorithm. Although the torque distribution issue has been
previously addressed in the literature, see e.g. [24–26], these studies are essentially focused
on the theoretical assessment of the impact of the WIMs on the operational envelope of the
vehicle. Furthermore, none of these previous studies investigated in detail how to perform
the mapping between the driver inputs/vehicle states and individual wheel torques, which is
discussed herein.

To the best of our knowledge, the state of art on ‘minimum-time manoeuvring for EVs
with 4 WIMs is very limited’. Most of the previous works on the torque allocation for EVs
with 4 WIMs focused on improving the vehicle , and on the exploration of the additional
yaw-moment needed to stabilise the yaw-rate and/or the vehicle side-slip. In this work, our
main motivation is to extend the research view by focusing on strategies that can promote the
minimisation of the manoeuvre time in a sport environment.

The remainder of the paper is structured as follows. Section 2 presents the vehicle model
adopted in this work, while Section 3 illustrates the optimal control policy that defines the
benchmark solution for the allocation problem. Furthermore, Section 4 presents the causal
allocation strategy, the performance of which is discussed in Section 5.

2. Vehicle model

In this section, a two-track, nonlinear vehicle model will be introduced, which will serve as
a basis for the torque allocation strategies. To make the model tractable, the roll and pitch
dynamics of the EV are neglected, as commonly done in this context.[8,27,28]



Figure 2. Representation of the vehicle model. Notation: XY -axis is fixed with the earth, xy with the vehicle’s
CoG, LC with the wheels. The subscript 1j, j ∈ {l, r} , refers to the vehicle’s wheels, while 2j refers to the rears.

Consider the vehicle represented in Figure 2, as well as the vector p = [X Y ψ]T, which
characterises the position and orientation of the vehicle centre of gravity (CoG) in the XY
-axis system, fixed with earth. The dynamic evolution of p can be defined as⎡

⎣m 0 0
0 m 0
0 0 Iz

⎤
⎦

︸ ︷︷ ︸
M

p̈ =
⎡
⎣cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0
0 0 1

⎤
⎦

︸ ︷︷ ︸
T(p)

⎛
⎝

⎡
⎣Fx

Fy

Mz

⎤
⎦ −�

⎞
⎠ ,

where m is the vehicle mass, Iz the yaw inertia, � ∈ R
3 a vector of disturbances, defined

in Appendix 2, (Fx, Fy) are the generalised forces, applied to the vehicle CoG and Mz the
generalised yaw-moment; the matrix T(p) represents a change of coordinates between the xy
frame (integral to the CoG) and the XY coordinates. The equations of vehicle motion can
also be compactly represented as

Mp̈ = T(p)(F −�), (1)

where F = [Fx Fy Mz]T is the generalised force/moment applied to the COG, and can also
be regarded as pseudo-control input.

One now needs to define F , which depends on complex nonlinear friction forces gener-
ated in the tyre–road interface. To this end, it is convenient to first introduce some auxiliary
variables: the linear velocities of the car (vx, vy), specified in the xy frames, and its yaw-rate
(ψ̇) can be obtained applying a change of coordinates between the xy and XY frames as

[vx vy ψ̇]T = T−1(p)ṗ. (2)

Similarly, given that the wheels speeds are the consequence of the superposition of (vx, vy)
and rotational motion (yaw-rate), one can write [29]

[
vLi

vCi

]
= W−1(δi)

[
1 0 χLi

0 1 χCi

] ⎡
⎣vx

vy

ψ̇

⎤
⎦ , i ∈ {1l, 1r, 2l, 2r},

[χL1l χL1r χL2l χL2r] =
[
− c

2

c

2
− c

2

c

2

]
; [χC1l χC1r χC2l χC2r] = [a a − b − b],



where (a, b) is the CoG position, c is the track width, δi is the steering angle of each wheel
and W(δ) denotes a change of coordinates between the vehicle local coordinates (xy) and the
tyre LC frames, i.e.

W(δ) =
[

cos(δ) − sin(δ)
sin(δ) cos(δ)

]
. (3)

As depicted in Figure 2, the L component is aligned with the wheel longitudinal direction,
while the C component points in the ‘cornering’ direction, orthogonal to the wheel L axis.
To express the load transfer between the front–rear axle, and left–right wheels, a quasi-static
mapping is used

Fz = F0
z + Axax + Ayay,

Fz = [Fz1l Fz1r Fz2l Fz2r]
T, F0

z = mg

2(a + b)
[b b a a]T,

Ax = mh

2(a + b)
[−1 − 1 1 1]T, Ay = mh

c(a + b)
[−b b − a a]T,

(4)

where F0
z is the static force distribution, h the height of the CoG, g the gravitational accelera-

tion and ax, ay the longitudinal and lateral acceleration. The generalised forces/moments (F )
applied to the CoG is the aggregated result of the individual friction forces generated at the
tyre–road interface, namely

F = BFxy, B =
⎡
⎣Bx

By

Bψ

⎤
⎦ =

⎡
⎢⎣

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

− c

2
a

c

2
a − c

2
−b

c

2
−b

⎤
⎥⎦ ,

where Fxy are the friction forces of each tyre, defined in the xy frame (Figure 2):

Fxy = [Fx1l Fy1l Fx1r Fy1r Fx2l Fy2l Fx2r Fy2r]
T.

Given that the friction forces are usually represented in the LC wheel coordinate frame,[30]
it is also helpful to decompose Fxy in the L and C components

Fxy = W(δ)FLC,

W(δ) =

⎡
⎢⎢⎣

W(δ1l) 0 0 0
0 W(δ1r) 0 0
0 0 W(δ2l) 0
0 0 0 W(δ2r)

⎤
⎥⎥⎦ ,

(5)

where FLC = [FL1l FC1l FL1r FC1r FL2l FC2l FL2r FC2r]T, and δ = [δ1l δ2r δ2l δ2r]T rep-
resent the steering angles. To model the friction forces FLC, a simplified version of the
well-known magic tyre formula (MTF) will be used.[30] The main inputs for this model
are: (i) the longitudinal tyre slip κi, a normalised difference between the wheel rotation speed
(ωi) and the wheel linear speed (vLi) and (ii) the tyre side-slip angle αi. Formally, these are
defined as

κi = ωiri − vLi

vLi
, tanαi = −vCi

vLi
, (6)

where ri is its effective radius, i ∈ {1l, 1r, 2l, 2r} and vLi, vCi the longitudinal and cornering
speed of the tyre. To incorporate the combined slip conditions, the so-called ‘theoretical slips’



[30] are considered, i.e.

σLi = κi

1 + κi
, σCi = tanαi

1 + κi
, σi =

√
σ 2

Li + σ 2
Ci, (7)

which represents the main factors in generating the longitudinal (FLi) and cornering forces
(FCi):

FLi = σLi

σi
Fi(σi, Fzi), FCi = σCi

σi
Fi(σi, Fzi), (8)

Fi(σi, Fzi) = FziD sin(C atan(Bσi)), (9)

where D, C, B are parameters of the model. Notice that, for simplicity, the representation of
the tyre–road friction forces assumes an isotropic model. Furthermore, from Equations (8)
and (9), it can be readily verified that the model satisfies

F2
Li + F2

Ci = F2
i ≤ D2F2

zi, (10)

which is known as the friction circle constraint. Finally, the wheel rotational dynamics is
given by

Jω̇i = Ti − riFLi,

where J is the wheel inertia and Ti the wheel torque. Since the wheel rotational dynamics are,
in general, much faster than the vehicle dynamics, the previous relations will be approximated
with their steady-state relation, i.e.

FLi = rTi. (11)

To model the drivers’ inputs, it is assumed that the vehicle has front steer only, controlled by
the driver, and the front steer angles are equal, that is

δ1l = δ1r = δ1; δ2l = δ2r = 0. (12a)

Furthermore, it is assumed that the torque applied to each wheel of the EV can be manipulated
independently, and the summation of the wheels torques (uT )

T1l + T1r + T2l + T2r = uT (13)

is imposed by the driver or by a high-level vehicular controller.

3. Baseline optimal solution

The definition of the benchmark optimal problem for the torque distribution strategy is now
studied, the solution of which will enable us to extract the maximum performance from the
WIMs. To this aim, an optimal control problem will be formulated, intended to move, in
minimum time, the EV from an initial point p0 = (X0, Y0,ψ0) to a final point pf = (Xf, Yf,ψf),
while fulfilling the physical constraints given by the road grip capabilities (see, e.g. Figure 3
for an illustration of a typical setting to negotiate a 90 ◦ corner).



3.1. Time–distance transformation

Consider the equation of motion re-written as a first-order differential-algebraic equation of
the form

dz1

dt
= z2, (14a)

M
dz2

dt
= T(z1)(F −�), (14b)

where z1 = p is the position, z2 = dp/dt the velocity and t the independent variable. A
common technique when dealing with minimum-time problems is to introduce the spa-
tial coordinate s as an independent variable. There are several advantages in adopting this
change of variable. First, unlike the time, the use of the distance s as an independent variable
allows us to fix its final value, which is particularly useful when discretising the optimisation
problem.[23] Secondly, the distance is also a natural variable to parameterise the road bound-
aries (as will be shown in the following), and the incorporation of the road constraints in the
problem is greatly simplified using s as an independent variable. Finally, if long routes need
to be considered, the problem can be decomposed into shorter sectors and, this, albeit yielding
sub-optimal results, is normally much easier to solve than the original global problem.

In the sequel, s is the one-dimensional position of the vehicle along the road (Figure 3); it
is measured and normalised so that s = 0 at the beginning of the road and s = 1 at the end of
the road. The increments of time t and spatial coordinate s are related as

ṡ dt = ds, (15)

s s0

s s1

s s2

s s3

s s4

ss

s

T s

s sf

s

2
w sX

Y

2
w s

= road’s centre line

= vector tangent to the road's centre

= vector perpendicular to the road's centre

= right boundary of the road

= left boundary of the road

= initial position of the vehicle

= desired final position for the vehicle

cT (s)

c (s)

c(s)

c(s)

Legend: 
c(s)

0

...

f

p0

pf

Figure 3. Definition of the road centre, road boundaries and auxiliary variables.



where ṡ = fs(z1, z2, s) is a normalised speed, the definition of which is postponed to
Section 3.3. Inserting the previous relation into Equation (14), one has

dz1

ds
= 1

ṡ
z2, (16a)

M
dz2

ds
= 1

ṡ
T(z1)(F −�), (16b)

which is a scaled version of the original dynamics. Similarly, the total time of the manoeuvre
(T) can be obtained as

T =
∫ T

0
dt =

∫ s̄

0

1

ṡ
ds, (17)

where s̄ is the total length of the track.

3.2. Road definition and boundaries

One of the requirements that must be incorporated in the problem formulation is the track
constraint, i.e. the vehicle must be, at all times, within the road boundaries. To simplify the
analysis, it will be assumed that it is enough to keep only the vehicle CoG within the road
boundaries. To formally characterise the road, consider that the coordinates of the road centre
line are known and defined through the two-dimension vector c(s) = (cX (s), cY (s)) ∈ R

2,
parameterised as a function of the path coordinate s. From this, the vectors tangent (cT (s)) and
parallel (c⊥(s)) to the road centre can be readily computed, as illustrated in Figure 3. Next,
assuming that the distance between the track centre and the road boundaries is ±w(s)/2, the
lower and upper bounds of the road can be expressed as

c̄(s) = c(s)+ w(s)

2

c⊥(s)
‖c⊥(s)‖ , c(s) = c(s)− w(s)

2

c⊥(s)
‖c⊥(s)‖ , (18)

where ‖ · ‖ is the Euclidean norm. Following a similar methodology to the one described in
[31], the track constraints can now be formulated as a set of linear equalities and inequalities
of the form

c⊥(s)T(Pz1(s)− c̄(s)) ≤ 0, − c⊥(s)T(Pz1(s)− c(s)) ≤ 0, (19a)

cT (s)
T(Pz1(s)− c(s)) = 0, P =

⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦ . (19b)

The first two inequalities state that, for a given s, the position of the vehicle CoG should
not exceed the lower and upper bounds of the road, while the last constraint imposes that
z1 should lie within the road boundaries. For a fixed s = si, the intersection of these three
constraints produces a straight line, which can be regarded as a ‘wayline’ that the vehicle
should pass (see the grey lines si plotted in Figure 3).



3.3. Problem formulation and solution

It is now possible to formulate the benchmark optimisation problem:

min
ṡ,z1,z2,Ti,δ1

∫ s̄

0

1

ṡ
ds

s.t. (16), ṡ = fs(z1, z2, s), ṡ > 0, s ∈ [0, s̄]

(19), F = fF(z1, z2, T1l, T1r, T2l, T2r, δ1)

z1(0) = p0, z1(s̄) = pf, z2(0) = [Ẋ0 Ẏ0 ψ̇0]T

|δ1| ≤ δF , T ≤ Ti ≤ T , i ∈ {1l, 1r, 2l, 2r},

(20)

where the first set of constraints is related with the vehicle’s equations of motion; given
that we are interested in minimum-time results, it was assumed that the vehicle (normalised)
speed should be always positive, which also avoids a division by zero in Equation (16); the
second set of constraints is concerned with the road boundaries and the friction force model;
the function fF is a nonlinear algebraic map, which results from aggregating Equations (2)–
(12); the third set of constraints imposes the initial and final position of the vehicle, as well
as its initial speed; the fourth/last set of constraints are due to the actuators saturation lim-
its. In light of the nonlinearities present in Equation (20), mainly due to the friction force
model, it is difficult to analytically establish the optimality conditions for the problem. Con-
sequently, to ease the solution of this problem, a direct optimisation approach was adopted,
also known as the transcription formulation.[32,33] This means that the dynamic equations
in (20) were discretised (in this work through the Euler forward method), yielding a large
nonlinear optimisation problem that was solved with the help of the ipopt solver.[34] Finally,
to avoid numerical issues due to different magnitudes of the variables, the final formulation
of the discrete optimisation problem employed uniformly scaling factors for all the decision
variables, see [33, p.166].

The discretisation of the optimisation problem also brings in an interesting simplification
in the computation of ṡ. In fact, although one may determine fs(·) in continuous time (see, e.g.
[35]), the discrete version is not only simpler, but also more intuitive. To see this better, let us
consider that the vehicle CoG is at the position z1(si), with velocity z2(si), and that it reaches,
after one integration step, the position z1(si+1). Assuming the forward Euler discretisation,
one can approximate ṡ[si+1] as

ṡ[si+1] ≈ si+1 − si

�t
= (si+1 − si)

‖Pz2(si)‖
‖P(z1(si+1)− z1(si))‖ .

Replacing this approximation in the total manoeuvre time one has

T =
∫ s̄

0

1

ṡ
ds ≈

N−1∑
i=0

‖P(z1(si+1)− z1(si))‖
‖Pz2(si)‖ (si+1 − si), (21)

which reveals that, to minimise the time T , the vehicle speed (‖Pz2‖ =
√

Ẋ 2 + Ẏ 2) should
be maximised and the travelled distance between successive ‘waylines’ (‖P(z1(si+1)−
z1(si))‖ =

√
(X (si+1)− X (si))2 + (Y (si+1)− Y (si))2) should be as low as possible. This

analysis is in accordance with the traditional approach of racing drivers, which normally
try to ‘cut the corners’ (thus minimising the travelled distance) with the maximum possible
speed. Of course, the expression for ṡ presented above can be straightforwardly adapted to
other discretisation schemes.



−30 −20 −10 0 10 20 30
−100

−80

−60

−40

−20

0

20

40

X (m)

Y
 (

m
)

p
0

p
f

limits

0.00m

25.00m

50.00m

75.00m

224.87m

199.87m

174.87m

149.87m

124.88m 99.95m

Figure 4. Optimal trajectory for the harping corner.

3.4. Example

To illustrate the results that can be obtained with the approach introduced above, Figures 4
and 5 present the optimal solution for negotiating a hairpin corner, with a radius of 20 m
and initial speed of 100 km/h. The vehicle parameters are reported in Appendix 1, while the
sampling distance employed in the discretisation was 5 m. Analysing Figure 5, one can see
that for s ∈ [20, 70] m the vehicle is decelerated, with the front WIMs providing the majority
of the braking torque; due to the rear-to-front load movement, this is a reasonable allocation
solution. Furthermore, for s ∈ [70, 110] m, the vehicle enters the corner, and the driver applies
combined steering and braking. It is worth noticing that, to maximise the lateral force (Fy)
along this road segment, the (expert) driver increases the steering angle and gradually releases
the brake pedal (see the plots of δ1 and uT , respectively). A dual situation occurs at the corner
exit, s ∈ [110, 140] m, with the gradual reduction of the steering angle and a smooth increase
in the applied torque.

Remark 3.1 The optimal results for the harping corner reveal that, for most of the time, the
external wheels (front right and rear right, in this specific example) receive a larger torque
than the inner ones, i.e. |T1r| ≥ |T1l|,|T2r| ≥ |T2l|. This means that, during combined braking
and steering, the torque allocation is generating an ‘understeering yaw-moment’ (see �Mz

in Figure 5), while an ‘oversteering yaw-moment’ is produced during combined acceleration
and steering. From a friction use point-of-view such an allocation is reasonable as, in practice,
larger torque is applied to the wheels that experience a larger vertical load.
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Figure 5. Baseline solution for the hairpin corner manoeuvre: �Mz represents the (additional) yaw-moment
generated by the torque split in the WIMs.

Remark 3.2 The min-time torque allocation solution suggests that, in order to achieve the
full performance of the vehicle, the driver will have to cope with understeering in the corner
entry and oversteering in corner exit.

To better explain the previous remark, let us look more closely at the results depicted
in Figure 5. First, notice that in the initial part of the manoeuvre s ∈ [0, 110] m, the (ideal)
driver applies a positive steering in order to approach the left-hairpin corner, which then
results in a positive (steering) yaw-moment and an increase in the yaw-rate (see bottom plots
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of Figure 6). However, during the same period, one can also observe that the differential
left/right braking torque is contributing with a negative yaw-moment, �Mz < 0 (see also
Remark 3.1). This means that the yaw-moment generated by the torque difference in the
left/right wheels is opposing the yaw-moment generated by the car steering. Consequently,
in this left-harping corner, the driver is turning the steering to the left side, but the torque
difference in left/right wheels is ‘pulling’ the car to the right side of the track. To compensate
this effect, the driver will have to apply more steer, which will make him feel that the car is
‘understeering’ and, perhaps, regard this as an degradation (a dual situation happens in the
corner exit, [110–200] m, but, in this case, featuring ‘oversteering’). In any case, since the
EV is being driven by an ‘ideal driver’, i.e. the steering angle is generated by an optimisation
framework, these potential imbalances are not relevant here.

4. Causal torque allocation strategy

The methodology described in the previous section is a valuable tool to gain some insight on
the optimal torque allocation for the WIMs. However, in practice, this approach is not appro-
priate for real-time implementation because, in addition to the high computational burden,
the vehicle trajectory cannot in general be assumed to be known in advance. Thus, we aim
at emulating the previous baseline optimal solution in a real-time environment with causality
constraints. This led to devise a causal torque allocation strategy that, assuming knowledge
of the driver’s inputs (δ1, uT ) and of the vehicle speed and accelerations (vx, ax, ay), produces
as output the wheel torque references T1l, T1r, T2l, T2r capable of exploiting the full potential
of the WIMs.

4.1. Allocation ratios

To facilitate the design of the allocator, three normalisation factors are introduced (γ0, γ1, γ2)
which, together with uT , parameterise the torque distribution

T1l = uTγ0(1 − γ1) T1r = uTγ0γ1,

T2l = uT (1 − γ0)(1 − γ2) T2r = uT (1 − γ0)γ2,
(22)



where γ0 is the front/rear allocation ratio (γ0 = 1 means all the torque is applied to the front
axle); γ1 is the left/right allocation ratio of the front axle (γ1 = 1 means all the front axle
torque is on the right wheel); γ2 is the left/right allocation ratio of the rear axle. Notice that,
in conventional vehicles, the ratio γ0 is a well-known quantity for distributing the braking
force among the axles [36]; our idea here is to generalise this concept for the left/right torque
split in the front and rear axles.

4.2. Allocator design

The torque allocation problem, as stated above, has been previously addressed in the
literature.[24–26] These studies assume that the vehicle is operating close to the quasi-steady-
state (QSS) conditions, i.e. constant accelerations and constant yaw-rate, which simplifies
the analysis of the nonlinear vehicle model. Based on the QSS conditions, the torque allo-
cation problem is then formulated within an optimisation framework, aiming to maximise
the longitudinal acceleration for constant radius cornering [25] or the CoG force in an arbi-
trary direction.[24] In what follows, these results will be reformulated and extended in two
directions. First, the theoretical results proposed in [24,26] will be examined in light of the
ratios defined in Equation (22), which will put in evidence the important role that the vertical
forces (Fz) have in the torque distribution. Secondly, while the studies [24,26] focus mainly
on investigating the impact that WIMs have on the vehicle operation envelope (i.e. on the
gg diagram), we will go one step further, and devise a torque allocation strategy that can be
implemented in real-time.

To do that, it is worth noting that, while the baseline solution presented in the previous
section seeks the minimisation of the manoeuvre time, this cost function is not appropriated
for devising a causal allocation strategy, as it asks to know the manoeuvre itself in advance.
To overcome this limitation, here a different performance metric will be explored, suitable
for real-time implementation, but which, from a manoeuvre-time perspective, only ensures
sub-optimal results. The idea behind the sub-optimal formulation is largely inspired by the
gg-diagram concept, a tool that generalises the tyre friction circle concept to the vehicle CoG
forces/accelerations.[37] It is well known in the racing community that, in order to minimise
the lap-time, the vehicle should operate close to the boundaries of the gg-diagram. With this
idea in mind, the design of the causal torque allocator will seek to maximise the CoG forces
(Fx, Fy) applied to the vehicle in a given direction (inferred from the current vehicle state).
This strategy will promote the maximisation of the vehicle performance envelope, which in
turn will enable the driver to reduce the manoeuvre time.

To design the torque allocator, it is convenient to consider the CoG forces represented in
polar coordinates, i.e. Fx + jFy = ρejφ , where ρ is the force magnitude and φ the force angle
in relation to the x -axis. It will be assumed that the vehicle is operating under QSS conditions
(i.e. constant longitudinal, lateral and yaw accelerations), and that the desired force angle φ
is fixed and known (note that the force direction can be straightforwardly inferred from the
current value of ax and ay). The goal is to find the tyre forces Fxy that maximise the force
magnitude ρ in the direction φ. More specifically, this problem can be formulated as

min
ρ,Fxy

− ρ

s.t. BT
x Fxy − ρ cos(φ) = 0; BT

y Fxy − ρ sin(φ) = 0; BT
ψFxy = 0

(CT
i Fxy)2 + (DT

i Fxy)2 ≤
(
μET

i

(
F0

z + Ax
ρ

m
cos(φ)+ Ay

ρ

m
sin(φ)

))2
,

(23)



where i = {1l, 1r, 2l, 2r}, and Bx, By, Bψ are the matrices that compose B in Equation (5). In
the above optimisation problem, the first two constraints ensure that the force applied to CoG
is applied in the desired direction, while the third constraint is related with the constant yaw-
rate assumption (resulting from the QSS conditions) the fourth constraint takes into account
the restrictions introduced by the friction circle, defined in Equation (10), where Ci, Di, Ei

are the matrices that extract the x, y and z force component for each tyre.
Although the previous problem can be solved numerically, Klomp [24] presented a very

useful analytical solution in

Lemma 4.1 see [24] Consider the forces of each tyre, defined in the xy-axis: Fxi + jFxi =
ρiejφi . Assuming that (i) the orientation of the tyre forces coincides with the orientation of
the CoG force, i.e. φi = φ; (ii) the wheels operate at the limit of adherence: ρi = μFzi, the
solution to Equation (23) is given by[

Fxi

Fyi

]
= μFzi

[
cos(φ)
sin(φ)

]
= μET

i (F
0
z + Ax

ρ

m
cos(φ)+ Ay

ρ

m
sin(φ))

[
cos(φ)
sin(φ)

]
.

Since our ultimate goal is to determine the WIM torques, and in view of the linear relation
between torque and longitudinal force expressed by Equation (11), it is desirable to transform
the forces Fxy, defined in the above Lemma, to the LC coordinate system, fixed to the wheel.
Accordingly, combining Equations (24) and (5) one obtains

FLi = μFzi(cos(δi) cos(φ)+ sin(δi) sin(φ)), (24a)

FCi = μFzi(− sin(δi) cos(φ)+ cos(δi) sin(φ)). (24b)

Combining the previous equations with Equations (11) and (22), the allocation ratios can be
determined as

γ0 ≈
(

1 + ax

ax cos(δ1)+ ay sin(δ1)

Fz2l + Fz2r

Fz1l + Fz1r

)−1

, (25a)

γ1 = rFL1r

rFL1f + rFL1r
= Fz1r

Fz1r + Fz1l
, γ2 = rFL2r

rFL2f + rFL2r
= Fz2r

Fz2r + Fz2l
. (25b)

Notice that, during the derivation of Equation (25a), the force direction φ was inferred from
the vehicle acceleration: max ≈ ρ cos(φ), may ≈ ρ sin(φ). Inspecting the above formulas, it
is worth pointing out that γ1 and γ2 (left/right allocation ratios) are not directly affected by
the force direction (φ) or by the steering angle. Actually, they only depend on the ratio of
the vertical forces, which generates fairly intuitive allocation results: (i) during straight line
manoeuvres, equal torques are applied to the wheels of the same axle;1 (ii) during cornering,
the outside wheel receives more torque than the inside one (lighter wheel), in accordance
with the left–right and front–rear weight shift that affects the vehicle. It is also interesting to
note that all ratios are independent of the tyre–road friction peak μ.

Since the tyres vertical forces are intrinsically related with the longitudinal and lateral
accelerations, cf. Equation (4), the torque ratios can also be expressed in the following
equivalent form:

γ0 =
(

1 + ax

ax cos(δ1)+ ay sin(δ1)

ag + hax

bg − hax

)−1

, (26a)

γ1 = (gb/2)− (h/2)ax + (hb/c)ay

gb − hax
, γ2 = (ga/2)+ (h/2)ax + (ha/c)ay

gb + hax
. (26b)
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Figure 7. Torque allocation ratios when the EV is operating within the ‘friction circle’. To simplify the graphical
representation only the case with ay ≥ 0 is shown, and the γ0 plot was computed assuming δ1 = ay(a + b)/V 2.

Remark 4.2 If δ1 = 0, then Equation (26a) yields the ideal front/rear braking distribution
(in the sense that the rear wheels will only lock after the front) employed in conventional
vehicles.[36] This means that the above allocation strategy recovers the well-known front–
rear braking distribution that ensures that the rear wheels only lock after the front.

To investigate the evolution of the front/rear ratio γ0 with combined acceleration/ corner-
ing, consider the allocation results illustrated in Figure 6. From these results, one can see that,
as |ax| increases, γ0 converges to the situation with δ1 = 0 (straight line allocation). On the
other hand, for small longitudinal accelerations (almost pure cornering), there is a disconti-
nuity in γ0, being more pronounced at low speeds; since this discontinuity happens mainly
when ax is close to zero (thus the torque applied to the wheels is small), this is not a con-
cern. Nonetheless, to avoid any numerical issue that may appear with the division-by-zero in
Equation (25a), the final implementation of the allocator saturates the output of γ0, so that
this ratio lies always in the range [−1, 1].

As for the evolution of γ1, γ2, one can observe that these variables always take values
larger than 0.5, which implies that the allocator will generate an ‘understeer’ yaw-moment
during braking (and an ‘oversteer’ during acceleration). These results are in accordance with
the qualitative analysis of the baseline solution, discussed in Remark 3.1. Finally, it is worth
noting that, although Equation (25) was determined assuming that the vehicle (and tyres)
is operating at the boundary of adhesion conditions (see the second assumption considered
in Lemma 4.1), nothing prevents us from extrapolating these expressions for other driving
conditions. For example, Figure 7 shows the allocation ratios when the EV is operating within
the friction limits. Based on this extrapolation, the final causal torque allocation used hereafter
is expressed by the relations (25) and (22), which mainly depends on the vertical tyre load
estimator. Although, in this work, a steady-state vertical load model has been adopted, it
is worth pointing out that the causal torque allocation proposed in Equation (25) can also
be implemented with a more complex vertical load representation, capable of capturing the
suspension dynamics.

5. Evaluation of the allocator performance via simulation tests

In this section, a comparative study between the two allocations strategies discussed in the
previous two sections will be carried out. The first allocation strategy, called baseline torque
allocation solution, employs a discretised version of Equation (20) to determine the ideal
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Figure 8. Simulation results for the hairpin corner: gg-plot, trajectory, speed and yaw-rate.

control inputs that allows the vehicle to execute a given manoeuvre in minimum time. In this
case, the numerical solver explores five control inputs (front steer δ1 + four wheel torques
Ti, i ∈ {1l, 1r, 2l, 2r}) to achieve the minimum-time solution. The second allocation strategy
under study, named causal torque allocation, employs Equation (20) subject to the additional
constraints (25), which enables us to incorporate a fixed torque split policy in the optimisation
problem. For this latter strategy, the numerical solver is only free to explore two control inputs
(front steer δ1 and torque summation uT ) to achieve the minimum-time solution. In other
words, the evaluation of the causal allocation problem is taking advantage of the optimisation
framework to emulate the ‘ideal driver’, which will minimise the manoeuvre time of the
EV configured with a fixed torque split strategy. It is worth noting that the operation of the
vehicle in the limit of adhesion (i.e. with 100% of friction potential) is only made possible
by the use of an ‘ideal driver’ model, emulated through an optimisation framework, which
will be able to cope with extreme driving conditions, such as saturated tyre forces, see also
[22,35].

5.1. Hairpin corner

Figures 8–11 show the simulation results obtained for the hairpin corner, with an initial speed
of 100 km/h and a corner radius of 20 m. Roughly speaking, it can be seen that both allo-
cation strategies produce a trajectory, as well as driver inputs, longitudinal and rotational
speeds, very similar to each other (see, in particular, Figures 8 and 9), which demonstrates
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a very satisfactory performance of the causal allocation strategy. Nonetheless, there are also
small differences that are worth discussing. For example, by inspecting the torque allocation
ratios shown in Figure 10, one can find that the majority of the discrepancies are concen-
trated in the region s ∈ [90, 120] m, which coincides with the situation where the vehicle is
approaching the pure cornering situation. To explain the reason behind these discrepancies,
recall that the causal allocation strategy was devised under the assumption that the EV is
operating under QSS conditions, which assumes an almost constant yaw-rate. However, as
we get closer to the pure-cornering situation, the QSS assumption gets weaker (see, e.g. the
yaw-rate transient represented in Figure 8(c)), which leads to a slight degradation in the per-
formance of the causal allocation. Another possible cause for the small discrepancies may be
related with the singularity of the longitudinal accelerations, in manoeuvres in which such
an acceleration tends to vanish. This degradation can be quantified in light of different crite-
ria. From manoeuvre-time standpoint, the baseline approach requires 9.67 s, while the causal
needs 9.75 s , meaning a degradation of only +0.8% of time. From the friction use perspec-
tive (see Figure 11), it can be observed that the causal allocation leaves some margin for use:
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as the EV approaches the corner apex, the rear wheels decrease their friction utilisation to
90%, but recover the full friction use during the traction phase (the front wheels have a dual
behaviour).
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convenience, the steering and throttle/braking pedal variables were normalised).

5.2. Test-track

To compare the allocation strategies in a more realistic setting, the last 900 m of the Monaco
track was considered, as shown in Figure 12. Similar to the previous tests, one can verify that
the causal allocation yields an evolution (driver inputs, vehicle states and allocation ratios)
very close the baseline solution. This proximity between solutions is also reflected in the total
manoeuvre time: 30.43 s for the baseline and 30.64 s (+0.70%) for the causal allocation.

Remark 5.1 [(Alternative vehicle configurations)] This work was focused on power train
configuration having 4 WIMs and front steer (2 WS). Nonetheless, thanks to the optimal
framework discussed in Section 3, we can easily adapt the baseline solution to tackle others
power train configurations. To illustrate this feature, we carried out a performance comparison
between the 4 WIMs + 2 WS and the following configurations:

• 4 WIMs + 4 WS, which is obtained by removing constraint (15b) from the optimisation
problem, and introducing rear steer δ2 (with same limits as the front steering).
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• Two centralised electric motors coupled, through open mechanical differentials, to each
axle of the vehicle, i.e. T1f = T1r, T2f = T2r.

Figure 13 depicts the normalised time difference that occurs with the aforementioned vehic-
ular configurations to negotiate a 180◦, 130◦ and 90◦ corners in minimum time . From these
results, one can conclude that the use of 4 WS (with 4 WIMs) only contributes to a slight
decrease in the manoeuvre time (−0.5%), which demonstrates that the configuration under
investigation in this work (4 WIM + 2 WS) is capable of extracting almost the full potential
available in the vehicle. Furthermore, one can also find that the use of two-centralised electric
motors + mechanical differentials leads to a moderate degradation of the manoeuvre time of
3–4.5%, with respect to the 4 WIM + 2 WS configuration.

To conclude the analysis it is worth pointing out that the implementation of the causal
torque distribution strategy is only dependent on the values of the steering angle and vehicle
acceleration, which are variables easily available on-board of everyday cars.

6. Concluding remarks and outlook

In this work, torque allocation strategies for EVs endowed with 4 WIMs have been studied,
targeting the full exploitation of the performance benefits associated with this wheel drive
system. To evaluate the causal controller, a minimum-time optimal problem was formulated,
the solution of which provided a benchmark against which causal strategies can be objec-
tively compared. Furthermore, a sub-optimal, causal, allocation strategy was designed, with
the goal of maximising the performance envelope of the EV. Such a solution, which can be
implemented online, allows exploiting the full vehicle capabilities, with a performance loss of
less than 1% in manoeuvre time with respect to the benchmark solution, and it is transparent
for the driver, thus maintaining the vehicle driveability. Future work will consider the joint



optimisation of performance and energy efficiency, addressing also fail safe operation in case
possible actuator faults. Furthermore, we plan to further investigate the potential relationships
between vehicle- and lap-time/performance. In this respect, we also aim to investigate how a
racing driver rates the characteristics generated by the proposed allocation strategy, in order
to assess the acceptance of the proposed performance-oriented policies.

Note

1. Assuming 50/50 weigh distribution in the left/right wheels.
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Appendix 1. Model parameters

See Table A1.

Table A1. Parameters of the employed vehicle model.

Variable Symbol Value

Vehicle mass m 1100 kg
Yaw inertia Iz 1800 kg m2

Distance between front axle and COG a 1.2 m
Distance between rear axle and COG b 1.3 m
COG height h 0.54 m
Trackwidth c 1.6 m
Coefficient of rolling resistance fr 0.013
Aero. drag coefficient (frontal) Cx 0.35
Aero. drag coefficient (lateral) Cy 3
Frontal area Ax 1.8 m
Lateral area Ay 2.7 m
Air density ρ 1.206 kg/m3

Wheel radius r 0.3 (m)
MTF parameter B B 7
MTF parameter C C 1.6
MTF parameter D D 1

Maximum front steer δF 35◦

http://dx.doi.org/10.1137/1.9780898718577


Appendix 2. Definition of the disturbance

The model (1) is also disturbed by the vector� = [�x �y �ψ ]T, associated with the aerodynamic drag and rolling
resistance forces,[29]

�x = f rmg + νxv2
x , �y = νy|vy|vy, �ψ = 0, (A1a)

where fr is the rolling resistance coefficient, and νk = (ρ/2)CkAk , k ∈ {x, y}, the aero coefficients (see Table A1
for the parameters’ definition). For simplicity, the grade forces were neglected, since only planar motion is being
considered, and positive longitudinal speeds were assumed (i.e. vx > 0).
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