

Third body effect in PlanODyn Luni-solar perturbations for missions design

Camilla Colombo, Politecnico di Milano KePaSSA2017 - 25-27 July 2017, ESA/ESTEC

INTRODUCTION

Introduction

Luni-solar perturbations

...Fascinating interaction between third body luni-solar perturbation and

- Earth's oblateness
- Solar radiation pressure
- Tesseral harmonics

...Perfect example on how we can leverage the natural dynamical effect trough manoeuvres to obtain free long-term effect on the orbit:

- Frozen orbits
- End-of-life Earth re-entry
- End-of life graveyard orbit injection

CMMPASS erc

Introduction

Outline

- Dynamical model in PlanODyn
- Analytical interpretation
- Engineering the perturbation effects
- Current work

DYNAMICAL MODEL

PlanODyn suite

Space Debris Evolution, Collision risk, and Mitigation FP7/EU Marie Curie grant 302270

COMPASS, ERC "Control for orbit manoeuvring through perturbations for supplication to space systems"

End-Of-Life Disposal Concepts for Lagrange-Point, Highly Elliptical Orbit missions, **ESA GSP**

GEO disposal in "Revolutionary Design of Spacecraft through Holistic Integration of Future Technologies" **ReDSHIFT, H2020**

Orbit propagation based on averaged dynamics

For conservative orbit perturbation effects

Disturbing potential function

Planetary equations in Lagrange form

$$R = R_{\rm SRP} + R_{\rm zonal} + R_{\rm 3-Sun} + R_{\rm 3-Moon} \qquad \frac{d\alpha}{dt} = f\left(\alpha, \frac{\partial R}{\partial \alpha}\right) \qquad \alpha = \begin{bmatrix} a & e & i & \Omega & \omega & M \end{bmatrix}^T$$

$$\overline{R} = \overline{R}_{\rm SRP} + \overline{R}_{\rm zonal} + \overline{R}_{\rm 3-Sun} + \overline{R}_{\rm 3-Moon}$$

$$\frac{d\overline{\mathbf{\alpha}}}{dt} = f\left(\overline{\mathbf{\alpha}}, \frac{\partial \overline{R}}{\partial \overline{\mathbf{\alpha}}}\right)$$

Single average

<u>Average</u> over the revolution of the perturbing body around the primary planet

$$\overline{\overline{R}} = \overline{\overline{R}}_{\text{SRP}} + \overline{R}_{\text{zonal}} + \overline{\overline{R}}_{3-\text{Sun}} + \overline{\overline{R}}_{3-\text{Moon}}$$

$$\frac{d\overline{\overline{\mathbf{a}}}}{dt} = f\left(\overline{\overline{\mathbf{a}}}, \frac{\partial\overline{\overline{R}}}{\partial\overline{\mathbf{a}}}\right)$$

Double average

CMMPASS erc

Dynamical model

Perturbation model

Perturbations in planet centred dynamics

- Atmospheric drag (smooth exponential model)
- Zonal harmonics of the Earth's gravity potential, J_2^2
- Selected tesseral terms (e.g., J₂₂ for GEO)
- Solar radiation pressure (with eclipses)
- Third body perturbation of the Sun and the Moon

Ephemerides options

- Analytical approximation based on polynomial expansion in time
- Numerical ephemerides through the NASA SPICE toolkit
- Numerical ephemerides from an ESA implementation

Orbital elements in Earth centred equatorial J2000 frame

PlanODyn: Planetary Orbital Dynamics

▶ "Planetary Orbital Dynamics Suite for Long Term Propagation in Perturbed Environment," ICATT, ESA/ESOC, 2016.

Third body potential

$$R_{3B}(r,r') = \frac{\mu'}{r'} \left(\left(1 - 2\frac{r}{r'}\cos\psi + \left(\frac{r}{r'}\right)^2 \right)^{-1/2} - \frac{r}{r'}\cos\psi \right)$$

- $\mu^{\,\prime}\,\,$ gravitational coefficient of the third body
- r' position vector of third body w.r.t. central planet
- r position vector of satellite
- ψ angle between satellite \mathbf{r} and third body \mathbf{r} '

$$\cos\psi = \frac{\mathbf{rr'}}{rr'}$$

 $\delta = \frac{a}{r'}$

Dynamical model

Third body potential

Third body potential in terms of:

- Ratio between orbit semi-major axis and distance of the third body
- Orientation of orbit eccentricity vector with respect to third body $A = \hat{P} \cdot \hat{r}'$
- Orientation of semi-latus rectum vector with respect to third body $B = \hat{O} \cdot \hat{r}'$
- Eccentric anomaly as angular variable
- Composition of rotation in orbital elements

 $\hat{P} = R_3(\Omega) R_1(i) R_3(\omega) \cdot \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ $\hat{Q} = R_3(\Omega) R_1(i) R_3(\omega + \pi/2) \cdot \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ $\hat{r}' = R_3(\Omega') R_1(i') R_3(\omega' + f') \cdot \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$

Third body potential

Series expansion around $\delta = 0$

$$R_{3B}(r,r') = \frac{\mu'}{r'} \sum_{k=2}^{\infty} \delta^k F_k(A,B,e,E)$$

Average over one orbit revolution

$$\overline{R}_{3B}(r,r') = \frac{\mu'}{r'} \sum_{k=2}^{\infty} \delta^{k} \overline{F}_{k}(A,B,e)$$

hp: the spacecraft is far enough from the perturbing body

- $\mu'\,$ gravitational coefficient of the third body
- \mathbf{r}' position vector of third body
- E eccentric anomaly

dM

$$\overline{F}_{k}(A,B,e) = \frac{1}{2\pi} \int_{-\pi}^{\pi} F_{k}(A,B,e,E) (1-e\cos E) dE$$

Partial derivatives to be included in Lagrange equations

$$A(\Omega, i, \omega, \Omega', i', u')$$
$$B(\Omega, i, \omega, \Omega', i', u')$$
$$\overline{F}_{k}(A, B, e)$$

Kaufman and Dasenbrock, NASA report, 1979

$\partial \overline{F_k}$	$\underline{\partial \overline{F_k}} \partial A$	$+\frac{\partial \overline{F_k}}{\partial B}$
$\partial \Omega$	$\partial A \partial \Omega$	$\partial B \partial \Omega$
$\frac{\partial \overline{F_k}}{\overline{F_k}}$	$= \frac{\partial \overline{F_k}}{\partial A} = \frac{\partial \overline{F_k}}{\partial A}$	$\partial \overline{F_k} \partial B$
∂i [–]	_ ∂A ∂i	∂B ∂i
$\partial \overline{F_k}$	$\partial \overline{F_k} \partial A$	$+\frac{\partial \overline{F_k}}{\partial B}$
$\partial \omega$	$\partial A \partial \omega$	'∂B∂ω
$\frac{\partial \overline{F_k}}{\overline{F_k}} =$	$=\frac{k}{E}$	
∂a	a^{k}	
$\partial \overline{F_k}$		
<i>∂e</i>		

Order of the luni-solar potential expansion

Third-body perturbing potential of the Moon at least up to the fourth order of the power expansion

Blitzer L., Handbook of Orbital Perturbations, Astronautics, 1970

Chao-Chun G. C., Applied Orbit Perturbation and Maintenance, 2005

Validation: XMM Newton trajectory

Propagation time: 1999/12/15 to 2013/01/01

Initial Keplerian elements from ESA on 1999/12/15 at 15:00: a = 67045 km, e = 0.7951, i = 0.67988 rad, $\Omega = 4.1192$ rad, $\omega = 0.99259$ rad System: Earth centred, equatorial J2000

ResSHIFT

Dynamical model

Validation: GEO orbit

Comparison of PlanODyn with STELA (CNES) and with HiFiODyn (full dynamical model) for a typical GEO orbit.

System: Earth centred, equatorial J2000

ANALYTICAL INTERPRETATION

Third-body double averaged potential

Double averaging over one orbit revolution of the s/c and one orbit evolution of the perturbing body (either Sun or Moon) around the Earth

$$\overline{\overline{R}}_{3B}(r,r') = \frac{\mu'}{r'} \sum_{k=2}^{\infty} \delta^{k} \overline{\overline{F}}_{k}(e,i,\Delta\Omega,\omega,i')$$
$$\overline{\overline{F}}_{k}(e,i,\Delta\Omega,\omega,i') = \frac{1}{2\pi} \int_{0}^{2\pi} \overline{F}_{k}(A(\Omega,i,\omega,\Omega',i',\omega'+f'),B(\Omega,i,\omega,\Omega',i',\omega'+f'),e) df'$$

Earth's centred equatorial reference system.

Same approach as El'yasberg (and Kozai) with some improvements:

- Avoid simplification that Moon and Sun orbit on the same plane (very important for precise orbit evolution)
- Facilitate the introduction of the effect of the zonal harmonics

[►] Kozai, Secular Perturbations of Asteroids with High Inclination and Eccentricity, 1962

El'yasberg, Introduction to the theory of flight of artificial Earth satellites - translated, 1967

Third body Kozai theory

- Delaunay's transformation
- Time-independent Hamiltonian

$$W\left(\frac{a}{a'},\Theta,e,2\omega\right) = \cos t \qquad \Theta = (1-e^2)\cos i^2$$

 Kozai, Secular Perturbations of Asteroids with High Inclination and Eccentricity, 1962

- Double averaged potential
- Rotating reference system

$$\overline{\overline{F}}_{3Bsys,2}\left(e,\omega,i\right) = \frac{1}{32}\left(\left(2+3e^2\right)\left(1+3\cos\left(2i\right)\right)+30e^2\cos\left(2\omega\right)\sin^2i\right)$$

 El'yasberg, Introduction to the theory of flight of artificial Earth satellites - translated, 1967

Third-body double averaged potential

Reference system for figure:

- x-y plane lays on the Moon orbital plane
- z-axis in the direction of the Moon angular momentum

Kozai, El'yasberg: $\overline{\overline{F}}_{3Bsys,2}(e,\omega,i)$

Third-body double averaged potential

Kozai, El'yasberg: $\overline{\overline{F}}_{_{3Bsys,2}}(e,\omega,i)$

Third-body double averaged potential

Non autonomous loops in the e- ω phase space!

Design of disposal manoeuvres

ENGINEERING PERTURBATION EFFECTS

Long-term orbit evolution

- 1. Grid in inclination, eccentricity and ω (Moon plane reference system)
- 2. Propagation over ±30 years with PlanODyn

3. Evaluate
$$\Delta e = e_{\max} - e_{\min}$$
 $e_{\max} = \max_{t} e(t)$ $t \in \left[-\Delta t_{\text{graveyard}} + \Delta t_{\text{graveyard}} \right]$
 $e_{\min} = \min_{t} e(t)$ $t \in \left[-\Delta t_{\text{graveyard}} + \Delta t_{\text{graveyard}} \right]$

Long-term orbit evolution

Luni-solar + zonal Δe maps

- Semi-major axis equal to 67045.39 km (XMM Newton's orbit)
- Different values of initial inclination with respect to the orbiting plane of the Moon
- Here: fixed t_0 and fixed Ω_0 to analyse one loop in the phase space but different Ω_0 can be taken into account with $2\omega + \Omega_0$

"Long-Term Evolution of Highly-Elliptical Orbits: Luni-Solar Perturbation Effects for Stability and Re-Entry," 25th AAS/AIAA Space Flight Mechanics Meeting, 2015

Long-term orbit evolution

26/07/2017

26/07/2017

Long-term orbit evolution - Initial inclination 64.28 degrees

CMPASS

erc

Long-term orbit evolution

i₀=60 deg

 i_0 =65 deg

*i*₀=70 *deg*

▶ Gkolias and Colombo, KePASSA 2017

26/07/2017

Quasi-equilibrium

CMPASS

erc

Engineering the perturbation effects

Design disposal manoeuvre in the phase space

Design manoeuvre in the phase space

- Re-entry transfer on trajectories in the phase space to reach $e_{crit} = 1 (R_{Earth} + h_{p, drag})/a$ Maximum Δe exploitable for re-entry or free orbit change
- Graveyard: transfer to quasi-stable point in the phase space Bounded Δe for graveyard disposal orbits

Preliminary analysis Earth re-entry

- Multi-start method plus local constrained optimisation based on gradient
- Gauss planetary eqs. for finite differences to compute change in orbital elements
- Orbit evolution computed with double average eqs.

Preliminary analysis Earth re-entry

CMPASS

erc

Engineering the perturbation effects

Design disposal manoeuvre in the phase space

Applications

Design disposal manoeuvre in the phase space

- Only 5 Keplerian elements are propagated: a, e, i, Ω, ω
- Optimal true anomaly f_M where the manoeuvre is applied is selected through optimisation
- Dynamics of the mean/true anomaly is much faster than the evolution
- Single manoeuvre considered at different dates within a wide disposal window [2013/01/01 to 2029/01/01]

Applications INTEGRAL re-entry

Applications

INTEGRAL re-entry

Example: manoeuvre performed on 08/08/2014

26/07/2017

Applications

Re-entry manoeuvre

Preliminary mission design

Moon effect only <u>Double averaged</u> potential

Optimised solution

Moon + Sun + J2:

<u>Single averaged</u> dynamics + global optimisation

Extending the applicability

Region of validity

a = 87,736 km

a = 200,000 km

Extending the applicability

Proposed method

Under development

$$\overline{R}_{3B}(r,r') = \frac{\mu'}{r'} \left(\sum_{k=2}^{\infty} \delta^k \overline{F}_{k,0}(A,B,e) + \sum_{k=2}^{5} \delta^k \overline{F}_{k,1}(A,B,e) \frac{n'}{n} \right)$$

Term due to the motion of the perturbing body during averaging

$$A \simeq A_0 + \frac{\partial A}{\partial f'} \frac{n'}{n} (M - M_0) = A_0 + \frac{1}{n'} \hat{\mathbf{P}} \frac{d\mathbf{r'}}{dt} \frac{n'}{n} (M - M_0)$$

For very high *a* is not enough to assume that orbital elements remain constant during average so need to include coupling between short period fluctuation of orbital elements with the short periodic part of the disturbing function

CONCLUSIONS

Conclusions

- Effect of luni-solar perturbations and the Earth's oblateness on the stability of MEO, GEO and HEOs
- Natural orbital dynamics can be exploited and enhanced
- INTEGRAL is the demonstration in Space!

INTEGRAL REVOLUTION					
1799					
INTEGRAL CURRENT TARGET					
Galactic Center					

(this list is also available in csv-format, click here to download)

Rev	Start time (UTC)	End time (UTC)	Exp. time (s)	Target	Ra (J2000)	Dec (J2000)	Pattern	PI	Proposal	Observation	N
1799	2017-03-30 10:11:09	2017-03-30 13:52:56	12600	Gal. Bulge region	17:45:36.00	-28:56:00.0	<u>HEX</u>	Erik Kuulkers	<u>1420001</u>	1420001 / 0009	Ρ
1799	2017-03-30 14:11:52	2017-03-30 14:45:12	2000	Galactic Center	17:36:47.26	-31:25:52.3	<u>5x5</u> Seq	Joern Wilms	<u>1420009</u>	1420009 / 0001	
1799	2017-03-30 15:06:03	2017-03-31 05:48:09	50000	Galactic Center	17:35:00.58	-32:37:41.9	<u>5x5</u> <u>Seq</u>	Joern Wilms	<u>1420009</u>	1420009 / 0005	
1799	2017-03-31 06:08:30	2017-03-31 09:50:16	12600	Galaxy (I=0, b=0)	17:41:53.52	-29:13:22.8	<u>HEX</u>	Rashid Sunyaev	<u>1420021</u>	1420021 / 0009	Γ
1799	2017-03-31 10:50:17	2017-03-31 11:52:13	3600	Galaxy (I=0, b=-30)	19:58:20.40	-40:46:37.2	<u>HEX</u>	Rashid Sunyaev	<u>1420021</u>	1420021 / 0010	
1799	2017-03-31 12:27:37	2017-03-31 15:05:31	9000	Galaxy (I=0, b=-30)	19:58:20.40	-40:46:37.2	<u>HEX</u>	Rashid Sunyaev	<u>1420021</u>	1420021 / 0010	
1799	2017-03-31 15:33:09	2017-03-31 19:14:56	12600	Galaxy (I=0, b=0)	17:47:59.52	-30:08:27.6	<u>HEX</u>	Rashid Sunyaev	<u>1420021</u>	1420021 / 0011	
1799	2017-03-31 19:42:29	2017-03-31 23:24:15	12600	Galaxy (I=0, b=-30)	20:06:37.68	-41:09:50.4	<u>HEX</u>	Rashid Sunyaev	<u>1420021</u>	1420021 / 0012	

POI ITECNICO

MILANO 1863

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 679086 – COMPASS)

CMPASS

erc

Third body effect in PlanODyn Luni-solar perturbations for missions design

Camilla Colombo, Politecnico di Milano camilla.colombo@polimi.it