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Abstract

The Glucose-Insulin-Glucagon nonlinear model accurately describes how the body

responds to exogenously supplied insulin and glucagon in patients affected by Type I diabe-

tes. Based on this model, we design infusion rates of either insulin (monotherapy) or insulin

and glucagon (dual therapy) that can optimally maintain the blood glucose level within

desired limits after consumption of a meal and prevent the onset of both hypoglycemia and

hyperglycemia. This problem is formulated as a nonlinear optimal control problem, which we

solve using the numerical optimal control package PSOPT . Interestingly, in the case of

monotherapy, we find the optimal solution is close to the standard method of insulin based

glucose regulation, which is to assume a variable amount of insulin half an hour before each

meal. We also find that the optimal dual therapy (that uses both insulin and glucagon) is bet-

ter able to regulate glucose as compared to using insulin alone. We also propose an ad-hoc

rule for both the dosage and the time of delivery of insulin and glucagon.

1 Introduction

Insulin and glucagon are pancreatic hormones that help regulate the levels of glucose in the

blood [1–4]. Insulin is produced by the beta-cells in the pancreas and carries glucose from the

bloodstream to the cells throughout the body. Glucagon releases glucose from the liver into

the bloodstream in order to prevent hypoglycemia. In people affected by diabetes insulin is

either absent (type I diabetes) or not produced in the proper amount (type II diabetes). In type

I diabetes the body’s immune system attacks and destroys the beta cells. As a result, insulin is

not produced and glucose accumulates in the blood which may cause serious harm to several

organs. Type II diabetes is a metabolic disorder in which the beta cells are unable to properly

regulate the blood glucose within limits. Common therapies for diabetes involve the adminis-

tration of exogenous insulin. Currently glucagon is not typically included in therapies because

it does not preserve its chemical properties at room temperature and also because diabetic

patients are still able to produce it.

The control of glucose levels in diabetic patients is an active field of research [5–19]. The

approval by the FDA of a simulator which replaces in-vivo with in-silico therapy testing has

greatly benefited this area of research. This simulator implements a mathematical model, first
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proposed in [1] and updated in [2–4], and provides an alternative to often slow, dangerous

and expensive human testing.

Typically, insulin is administered manually approximately half an hour before each meal

where the amount is determined from the current glucose level (measured through a blood

sugar test), the expected glucose intake, and the patient’s sensitivity to insulin. In what follows

we will refer to this as the standard therapy. In 1992 the first insulin pumps were introduced to

the market. They delivered both a consistent basal amount of insulin and an insulin bolus

determined by the patients based on their glucose level. It was only in 2016 that the first auton-

omous system for glycemic control was approved by the FDA. The system consists of an insu-

lin pump, a sensor that measures the blood glucose level continuously in time, and control

software that is able to regulate the insulin level in the blood without needing any input from

the patient.

Many control techniques have been proposed and tested to regulate blood glucose levels

using insulin pumps including PID (proportional–integral–derivative) control [5, 6, 8–10, 20],

fuzzy logic control [11–13] and bio-inspired techniques [14] which do not rely on a mathemat-

ical model. In [21] closed loop control has been used on a so called “minimal model” [22–24].

In [15–18, 25] a linear model predictive control (MPC) has been used in a model with fixed

structure but for which parameters are constantly updated to adapt to the patient’s response.

In [26] linear MPC has been used in silico. In [27] MPC has been applied to a system linearized

around the operating points of a physically derived nonlinear model and in [28] multiple

model probabilistic predictive control has been used. In [29] MPC has been applied together

with a moving horizon estimation technique to a linear model. Most of the models used when

designing the above controllers are simplified versions of the FDA approved model and all the

control techniques considered only use insulin (but not glucagon) as control input.

Because insulin delivered exogenously is not subject to normal physiological feedback regu-

lation, hypoglycemia is common in patients with Type 1 diabetes who undergo treatment [30].

For these patients it has been proposed that exogenous insulin can be used to lower their blood

glucose level and exogenous glucagon can be used to prevent hypoglycemia [31, 32]. Currently,

a commercial pump that delivers both insulin and glucagon is not available, and the develop-

ment of a two-drug artificial pancreas is still the subject of clinical research [33–41]. An out-

standing research question, which we address in this paper, is the determination of the

temporal dosages of both insulin and glucagon, in the case of the dual therapy.

Following the study in [42] which optimized multi-drug therapies for autophagy regulation,

here we seek to determine an optimal strategy for delivery of both insulin and glucagon. We

consider the combined effects of insulin and glucagon in regulating blood glucose levels in

patients with Type 1 diabetes, using the model in [3] and nonlinear optimal control theory.

Additionally, the objective function that we seek to minimize is the Blood Glucose Index

which is a well known tool to measure the risk for a patient to enter either hyperglycemia or

hypoglycemia. To design the optimal control problem, we use the balance control technique of

ref. [43], which introduces a trade-off between the error allowed with respect to a state based

cost (Blood Glucose Index) and the control effort. Our goal is to evaluate the performance lim-

its of a control algorithm in the blood glucose problem, and to discuss the advantages of the

dual drug therapy compared to the single drug therapy. Note that even though we do not

attempt to design a closed-loop control strategy that works without the patient’s intervention,

the solution we propose can be adapted for that purpose.

From solving the optimal control problem for a family of objective functions derived from

the balance control paradigm, we observe the emergence of a pattern, from which we propose

a simple rule for the delivery of insulin and glucagon similar to the standard therapy, but for
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the case that both insulin and glucagon are used. While this therapy is suboptimal, we see that

it still performs better than the optimal solution with insulin alone.

Finally, we test the robustness of the optimal solution. While optimal control does not guar-

antee robustness of the optimal solution with respect to model uncertainty or parameter mis-

matches, we see that our proposed solution still performs well in the presence of model

parameter perturbations and variations affecting the time and glucose intake of the meal.

2 Materials and methods

2.1 Model and parameters

We consider the model in [3, 4] which is a system of nonlinear ordinary differential equations

(ODEs). The equations are given in Eqs (S1)-(S9) in S1 Appendix. We write the ODEs in Eqs

(S1)-(S9) in the form

_xðtÞ ¼ fðxðtÞ; uðtÞ;DðtÞ;YÞ

GðtÞ ¼ x1=VG

ð1Þ

where the state vector is x = [x1(t), x2(t), . . ., x17(t)]T and t is the physical time (in min). In

Table 1 we tabulate all of the variables xi and their names. The control input vector is u(t) =

[uI(t), uG(t)]T, where uI(t)� 0 is the exogenous insulin infusion rate (in insulin Unit/min) and

uG(t)� 0 is the exogenous glucagon infusion rate (mg/min). Both uI(t) and uG(t) are the exter-

nal inputs to the system in Eq (1). A schematic network diagram has been presented in S1 Fig

The scalar quantity D(t) represents the exogenous glucose input, that is, the glucose intake

with a meal. The output of the system is the quantity G(t), which measures the density of glu-

cose in the blood, obtained as the ratio between the plasma glucose and the distribution vol-

ume of glucose VG.

Table 1. Variables and their physical meaning.

Variables Names Representing Units

x1 Gp Mass of glucose in plasma mg/kg

x2 Gt Mass of glucose in tissue mg/kg

x3 Il Mass of insulin in liver pmol/kg

x4 Ip Mass of insulin in plasma pmol/kg

x5 I0 Mass of delayed in compartment 1 pmol/L

x6 XL Amount of delayed insulin action on EGP (Endogenous glucose production) pmol/L

x7 Qsto1 Amount of solid glucose in stomach mg

x8 Qsto2 Amount of liquid glucose in stomach mg

x9 Qgut Amount of glucose in intestine mg

x10 X Amount of interstitial fluid pmol/L

x11 SRs
H Amount of static glucagon ng/L/min

x12 H Amount plasma glucagon ng/L

x13 XH Amount of delayed glucagon action on EGP ng/L

x14 Isc1 Amount of nonmonomeric insulin in the subcutaneous space pmol/kg

x15 Isc2 Amount of monomeric insulin pmol/kg

x16 Hsc1 Amount of glucagon in the subcutaneous space 1 ng/L

x17 Hsc2 Amount of glucagon in the subcutaneous space 2 ng/L

State variables and their physical meaning.

https://doi.org/10.1371/journal.pone.0213665.t001
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When uI(t) = 0, uG(t) = 0 and D(t) = 0, the model reaches (for physically meaningful

parameters) a steady state, also known as the basal condition of a patient. The basal condition

depends upon the parameters of the models Θ. We denote by YGb
a set of parameters for

which the basal glucose level G is equal to Gb. The basal levels for the other states are found

according to Eq (S10).

2.2 Problem formulation

We formulate a nonlinear optimal control problem with two control goals. The first goal is to

regulate the glucose at levels corresponding to low clinical risk of either hyperglycemia or

hypoglycemia during a time period over which a meal is consumed. We assume that a meal is

ingested at time t = τD, which we assume to be modeled as a Dirac delta function D(t) = Dδ(t −
τD). To evaluate the clinical risk of a particular glycemic value, Kovatchev et al. [44, 45] pro-

posed the Blood Glucose Index (BGI), defined as

BGIðGðtÞÞ ¼ 10ð1:509ððlnGðtÞÞ1:084
� 5:3811ÞÞ

2
;

where a small BGI value corresponds to low risk of either hyperglycemia or hypoglycemia.

This metric also takes into account the fact that (i) the target blood glucose range as defined by

the Diabetes Control and Complications Trial [46] (between 70 and 180 mg/dL) is not sym-

metric about the center of the range and (ii) hypoglycemia occurs at glucose levels closer to the

basal level than hyperglycemia. The second goal is to limit the overall usage of insulin and/or

glucagon over the period [t0, tf].
We formulate the optimization problem according to these two goals,

min
uðtÞ

J ¼
Z tf

t0

½apBGIðGðtÞÞ þ aIu
p
I ðtÞ þ aGu

p
GðtÞ�dt; ð2Þ

subject to the following constraints,

_xðtÞ ¼ fðxðtÞ; uðtÞ;Ddðt � tDÞ;YGb
Þ; uðtÞ ¼ ½uIðtÞ uGðtÞ�

T
ð3Þ

GL < GðtÞ < GU ð4Þ

uLI � uIðtÞ � uUI ð5Þ

0 � uGðtÞ � uUG ð6Þ

0 �
R tf
t0
uIðtÞdt � �

U
I ð7Þ

0 �
R tf
t0
uGðtÞdt � �

U
G ð8Þ

xðt0Þ ¼ �x ð9Þ

In Eqs (2) and (3), the insulin infusion rate uI(t) and the glucagon infusion rate uG(t) are

the two control inputs. The three coefficients αp, αI and αG in Eq (2) are tunable factors

through which we may vary the weight associated with each of the three terms in the cost func-

tion J. The first coefficient, αp is dimensionless while the units of αI and αG are (U/min)−p and

(mg/min)−p, respectively. Note that by setting uG = 0 in Eq (6), we have an optimal control

problem in terms of insulin only.

Optimal regulation of blood glucose level in Type I diabetes
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The first term in the objective function (2) defines a regulation problem, i.e., we try to main-

tain the glucose at low risk levels. The second and third terms in the cost function are chosen

to avoid using excess insulin or glucagon. For p = 1 in Eq (2), the second and third terms

define a ‘minimum fuel’ problem, thus we call the optimization problem ReMF (Regulation

and Minimum Fuel). In this case, we expect the optimal solution to consist of pulsatile inputs

u�I ðtÞ and u�GðtÞ [47, 48]. For p = 2, the second and third term inside the cost function define a

‘minimum energy’ problem, thus we call the optimization problem ReME (Regulation and

Minimum Energy). In this case, we expect the optimal control inputs u�I ðtÞ and u�GðtÞ to be

continuous. The set of equations in (3) coincide with the ODEs in Eqs (S1)-(S9) of S1 Appen-

dix. In Eq (4) GL and GU are the lower and upper bounds for G(t), they can be set in order to

avoid undesired hypoglycemic or hyperglycemic states. In Eqs (5) and (6) uUI and uUG are upper

bounds for the insulin and glucagon delivery rates, respectively. These constraints are set by

the maximum infusion rates allowed by the insulin pump. In Eq (5) uLI � 0 is the lower bound

for uI(t), i.e., a minimum insulin delivery rate that can be used to set a basal insulin infusion

rate to counteract endogenous glucose production [49]. Finally, in Eqs (7) and (8)), �
U
I and �

U
G

set limits to the total limits of insulin and glucagon that can be delivered over the time period

[t0, tf]. The initial condition �x in Eq (9) defines the patient’s condition before administration of

the therapy. In the Results section, we discuss how we choose the bounds on G(t), uI(t), uG(t),
ϕI, ϕG, the control time period [t0, tf] and the initial condition �x.

Our goal is to find an optimal solution which satisfies the constraints in Eqs (3)–(9) and

minimizes the objective function in Eq (2). Note that the BGI only depends upon G(t): we are

making no attempt to control the states of the system, only its output. In the literature, such an

approach is often referred to as target control [47, 50].

2.3 Method: Pseudo-spectral optimal control

Optimal control theory combines aspects of dynamical systems, optimization, and the calculus

of variations [47] to solve the problem of finding a control law for a given dynamical system

such that the prescribed optimality criteria are achieved. The Eqs (2) and (3)–(9) together

form a constrained optimal control problem, which can generally be written as,

min
uðtÞ

JðxðtÞ; uðtÞ; tÞ ¼
Z tf

t0

FðxðtÞ; uðtÞ; tÞdt

s:t: _xðtÞ ¼ fðxðtÞ; uðtÞ; tÞ

eL � eðxðt0Þ; xðtf Þ; t0; tf Þ � eU

hL � hðxðtÞ; uðtÞ; tÞ � hU

t 2 ½t0; tf �

ð10Þ

In general, there exists no analytic framework that is able to provide the optimal time traces of

the controls u�(t) and the states x�(t) in (10), and so we must resort to numerical techniques.

Pseudo-Spectral Optimal Control (PSOC) is a computational method for solving optimal

control problems. Here we present a brief overview of the theory of pseudo-spectral optimal

control. PSOC has become a popular tool in recent years [51, 52] that has let scientists and

engineers solve optimal control problems like Eq (10) reliably and efficiently in applications

such as guiding autonomous vehicles and maneuvering the international space station [52].

PSOC is an approach by which an OCP can be discretized by approximating the integrals by

quadratures and the time-varying states and control inputs with interpolating polynomials.

Optimal regulation of blood glucose level in Type I diabetes
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Here we summarize the main concept of the PSOC. We choose a set of N discrete times {τi}
i = 0, 1, . . ., N where τ0 = −1 and τN = 1 with a mapping between t 2 [t0, tf] and τ 2 [−1, 1]. The

times {τi} are chosen as the roots of an (N + 1)th order orthogonal polynomial such as Legen-

dre polynomials or Chebyshev polynomials. The choice of dicretization scheme is important

to the convergence of the full discretized problem. For instance, if we choose the roots of a

Legendre polynomial as the discretization scheme, the associated quadrature weights can be

found in the typical way for Gauss quadrature. The time-varying states and control inputs are

found by approximating them with Lagrange interpolating polynomials,

x̂ðtÞ ¼
XN

i¼0

x̂ iLiðtÞ ð11Þ

ûðtÞ ¼
XN

i¼0

ûiLiðtÞ; ð12Þ

where x̂ðtÞ and ûðtÞ are the approximations of x(τ) and u(τ), respectively, and Li(τ) is the ith
Lagrange interpolating polynomial. The dynamical system is approximated by differentiating

the approximation x̂ðtÞ ¼
PN

i¼0
x̂ iLiðtÞ with respect to time.

dx̂
dt
¼
XN

i¼0

x̂ i
dLi
dt

ð13Þ

Let Dk;i ¼
d
dt LiðtkÞ which allows one to rewrite the original dynamical system constraints in

(10) as the following set of algebraic constraints.

XN

i¼0

Dk;ixi �
tf � t0

2
fðx̂ i; ûi; tiÞ ¼ 0; k ¼ 1; . . . ;N ð14Þ

The integral in the cost function is approximated as,

J ¼
Z tf

t0

Fðx; u; tÞ � Ĵ ¼
tf � t0

2

XN

k¼1

Fðx̂k; ûk; tkÞ ð15Þ

The original time-varying states, control inputs, the dynamical equations constrained and the

cost function are now discretized approximation of the continuous NLP problem. Thus the

discretized approximation of the original OCP is compiled into the following nonlinear pro-

gramming (NLP) problem.

min
ui

i¼0;...;N

Ĵ ¼
tf � t0

2

XN

i¼0

wif ðx̂ i; ûi; tiÞ

s:t:
XN

i¼0

Dk;ix̂ i �
tf � t0

2
fðx̂k; ûk; tkÞ ¼ 0; k ¼ 0; . . . ;N

eL � eðx̂0; x̂N ; t0; tNÞ � eU

hL � hðx̂k; ûk; tkÞ � hU ; k ¼ 0; . . . ;N

ti ¼
tf � t0

2
ti þ

tf þ t0
2

ð16Þ
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We have used PSOPT [53], an open-source PSOC library, to perform the above PSOC dis-

cretization procedure. The NLP in (16) can be solved with a number of different techniques,

but here we use an interior point algorithm [54] as implemented in the open-source software

Ipopt [55].

2.3.1 Continuous approximation of non-differential function in ODEs. The

optimization algorithms implemented in PSOPT require the derivatives of the function

fðxðtÞ; uðtÞ;YGb
Þ exists. As there are terms that contain discontinuities in Eqs (S1)-(S9), we

replace them with smooth approximations which are described in S3 Appendix.

3 Results

We now describe in more detail the optimal control problem in Eqs (2)–(9) by setting the con-

straint and parameter values. In Fig 1A we plot the function BGI(G) versus the glucose G. The

minimum BGI(G) occurs at G = Gd = 112.51 mg/dL, which corresponds to a clinical target set

for the glucose level [46]. Based on the data in [56], the average fasting plasma glucose level of

patients with type I diabetes is Gb = 130 (mg/dL). Thus, we set the the basal glucose level Gb =

130 (mg/dL). The parameters YGb
are set so that the steady state glucose is 130 (mg/dL) in the

absence of a meal and of exogenously supplied insulin, i.e., we compute Θ130.

We set the upper and lower bounds for the glucose level, GL and GU in Eq (4), to satisfy the

target blood glucose range, 90� G(t)� 180 [46]. The control time period is [t0, tf] = [0, 300]

minutes, and we assume that a meal with 70 grams of glucose is consumed at time t = 60 min

(i.e. D(t) = 70δ(t − 60)).

We consider a situation in which the patient’s glucose level is partially controlled by provid-

ing a constant but low insulin infusion rate ub> 0 (which is common for patients who use an

insulin pump) [49] and serves to compensate for the endogenous glucose production. In Fig

1B we show glucose response G(t) for different values of constant ub in the absence of a meal.

We observe that for ub = 0.0024 (U/min), G(t) converges to the desired glucose level Gd. We

thus set the lower bound of uI(t) in Eq (5), uLI ¼ ub, while its upper bound is set to uUI ¼ 15 (in

U/min), the maximum insulin flow allowed in commercial pumps [57]. In the absence of com-

mercially available glucagon pumps, we will assume that a pump mechanically similar to an

insulin pump is used to deliver glucagon. Since the maximum flow rate for an insulin pump is

0.15 mL/min (1 mL of insulin solution contains 100 U of insulin), and normally 1 mg of

Fig 1. A) The Blood Glucose Index (BGI(G(t))) as a function of the blood glucose G(t). The function is minimized at G(t) = Gd = 112.51 (mg/dL). B)

The response of glucose (G(t)) to different time-constant basal insulin infusion rates in the absence of a meal. We see that as ub increases, the glucose is

further down regulated.

https://doi.org/10.1371/journal.pone.0213665.g001
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glucagon is diluted in 1 mL of solution, the maximum glucagon flow rate in Eq (6) is set to

uUG ¼ 0:15 mg/min.

The amount of insulin administered in a bolus to a patient with a basal glucose level lower

than 150 mg/dL normally ranges between 0.12 and 0.2 U/kg [58]. As the body mass of the in-
silico patient we consider is 78 kg, we set �

U
I ¼ 16 U in Eq (7). The maximum total amount of

glucagon administered in one shot to a patient who is in a hypoglycemic state is 1 mg, and a

second identical shot can be administered after thirty minutes. We thus choose the maximum

total amount of glucagon used (as defined in Eq (8)) throughout the five hour therapy to be

�
U
G ¼ 1 mg.

The choice of the initial condition �x in Eq (9) is critical. We select the initial condition so

that the solution of our optimal control problem only attempts to regulate glucose in response

to a meal. In the results presented we have set the initial condition equal to the values of the

states when uI(t) = ub after a period of fasting (the final point of the blue curve in Fig 1B). If we

were to select any alternative initial condition then the solution to the optimal control problem

would try to ‘correct’ the initial condition as well, making comparisons between solutions

difficult.

Once the parameters, bounds, the control time period and the initial condition are set, we

solve the nonlinear optimal control problem using PSOPT . We first solve the optimal control

problem without glucagon (i.e., uUG ¼ 0), and then we solve the optimal control problem using

both insulin and glucagon.

To evaluate the effectiveness of the obtained results, we introduce the following measures.

• The cumulative insulin rI(t) and cumulative glucagon rG(t) used up to time t,

rIðtÞ ¼
Z t

t0

uIðtÞdt; rGðtÞ ¼
Z t

t0

uGðtÞdt:

• The total amount of insulin ϕI = rI(tf) and the total amount of glucagon ϕG = rG(tf) used up

to final time tf.

• The integral of BGI over the entire time period [t0, tf],

D ¼

Z tf

t0

BGIðGðtÞÞdt:

where a large Δ indicates that the patient is at higher risk of either hyperglycemia or hypogly-

cemia for a prolonged period of time.

• The maximum and minimum values attained by the blood glucose level over the entire time

period [t0, tf],

Gmax ¼ max
t2½t0 ;tf �

GðtÞ; Gmin ¼ min
t2½t0 ;tf �

GðtÞ;

which measure the risk for either hyperglicemia or an hypoglicemia [45, 59], respectively.

3.1 Insulin as control input

In this section we use only insulin as control input, i.e., we set uG = 0 in Eq (3). As the orders of

magnitude of the terms BGI and upI in the objective function are different, it is important to

find the appropriate values of the scaling factors αp and αI. In what follows, we use a Pareto-
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front analysis to determine these values. We first rewrite the objective function as

J ¼
Z tf

t0

½εBGIðGðtÞÞ þ upI �dt ð17Þ

where ε = αp/αI. In Fig 2(A)–2(D) we plot Δ, Gmin, Gmax and ϕI as functions of the coefficient

ε. By looking at these plots, we see that the four measures can be divided into two groups. On

the one hand, Δ and Gmax (panels A and C), improve (decrease) as ε increases, with a sharp

transition around ε = 10 for the ReMF problem and around ε = 103 for the ReME problem.

On the other hand, Gmin and ϕI (panels B and D), behave in the opposite way, i.e., they

improve (insulin decreases and the minimum glucose level increases) as ε decreases, again

with a sharp transition around ε = 10 for the ReMF problem and around ε = 103 for the ReME

problem. Because the four curves in Fig 2(A)–2(D) are monotone, all the points are Pareto-effi-

cient, i.e., it is not possible to improve one objective (e.g. Δ) without worsening the other one

(e.g. ϕI). We notice that past a certain value of ε (10 in the ReMF case, 103 in the ReME case) Δ
and Gmax do not further decrease and Gmin and ϕI remain unchanged. We choose as weights

αp = 10 and αI = 1 for p = 1, while we choose αp = 103 and αI = 1 for p = 2 (these are highlighted

by dashed circles in Fig 2). The reason for these choices (for both values of p) is that these val-

ues yield ϕI* 10 units, which is equal to two thirds of the maximum amount of insulin that

can be supplied (�
U
I ), and Gmin * 93mg/dL, which is far from the hypoglycemic risk region.

In Fig 2E, we plot a projection of the Pareto front in the Δ and ϕI plane. Looking at this plot,

the trade-off between Δ and ϕI is evident; if the total amount of insulin expenditure increases,

Δ decreases and vice-versa. The ReMF and the ReME therapies can also be compared in

Fig 2. Performance of the optimal control solution as a function of ε. Large (small) values of ε correspond to a large (small) weight associated with

the BGI index in the objective function, compared to the weight for insulin expenditure. The first four plots show our metrics as functions of the

objective function coefficients: A) Δ vs. ε, B) Gmin vs. ε, C) Gmax vs. ε, and D) ϕI vs. ε. E) We also project the Pareto front into the Δ - ϕI plane. We see a

clear trade-off between Δ and ϕI as we vary ε. By increasing ε we can decrease the values of Δ and Gmax. However, the values of Δ and Gmax do not

further decrease for ε larger than 10 for the ReMF problem (p = 1) and the value of Δ does not further decrease for ε larger than 103 for the ReME

problem (p = 2). We choose ε = 10 for p = 1 and ε = 103 for p = 2, which are indicated by dashed circles in the figure, for the remaining simulations.

https://doi.org/10.1371/journal.pone.0213665.g002
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Fig 2E. The ReMF Pareto front dominates the ReME one (both Δ and ϕI are lower on the blue

curve (p = 1) compared to the magenta curve (p = 2)). This indicates that a shot of insulin (the

optimal solution of a ReMF problem is typically a pulsatile function) performs slightly better

in terms of Δ than a therapy in which the drug is delivered over a longer period of time while

using less insulin.

Fig 3 shows the results of the optimal control problem for the selected values of αp and αI.
The blue and magenta curves are the optimal solutions of the ReMF and of the ReME problem,

respectively. The orange curve corresponds to the case that 10 U of insulin are injected 30 min-

utes before the time of the meal, i.e., the standard therapy.

We observe that for p = 1 the optimal insulin infusion rate is pulsatile with a pulse appear-

ing at t* 20 minutes, which is 40 minutes before the time of the meal. We obtained qualita-

tively similar results for different choices of the model parameters, with the pulse typically

appearing at a time in the interval t 2 [20, 30] minutes. It is noteworthy that the optimal solu-

tion is close to the standard insulin based therapy for glucose regulation in diabetics. The opti-

mal insulin infusion rate is continuous when we solve the ReME problem, also shown in the

inset of Fig 3B. Note that the ReMF and ReME therapies perform very similarly with respect to

Fig 3. A) The time evolution of glucose G(t) (in mg/dL). The blue curve corresponds to the pulsatile optimal insulin supply rate uI(t) (shown in B)

obtained by solving the ReMF problem. The magenta curve corresponds to the continuous optimal insulin supply rate uI(t) (shown in B) obtained by

solving the ReME problem. The orange curve is the time evolution of G(t) corresponding to the standard therapy (10 U of insulin injected 30 minutes

before the time of the meal). B) Time evolution of the optimal insulin infusion rates uI(t) (in U/min). Color code is consistent with A. C) Cumulative

insulin supply rI(t) (in U) as a function of t.

https://doi.org/10.1371/journal.pone.0213665.g003
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glucose as the peak insulin infusion rate occurs at approximately the same time and the total

amount of insulin administered is nearly equal.

3.2 Insulin and glucagon as control inputs

In the previous section we tuned the weights αp and αI inside the objective function (2). We

now consider the case that uG> 0 and we tune αG, the weight associated with the glucagon

expenditure in the objective function (2), by keeping αp = 10, αI = 1 for p = 1 and αp = 103, αI =

1 for p = 2, as previously determined.

In Fig 4A, 4B and 4C, we plot the optimal Δ, Gmin and Gmax as functions of the parameter

αG, respectively. A large value of αG indicates that we are placing a large weight on the expendi-

ture of glucagon within the objective function (2), i.e., the larger the value of αG, the less gluca-

gon we use. By looking at Fig 4A, we observe that the values of Δ decrease as αG decreases, i.e.,
we can obtain lower (improved) values of Δ if we allow for a larger expenditure of glucagon.

We note that past a certain value of αG (10−2 in the both the ReMF and ReME problems) no

further reduction in Δ is observed. As in the previous case, the maximum glucose level Gmax,

shown in Fig 4C, improves (decreases) when Δ improves (decreases). Interestingly, different

from the previous case, also the minimum glucose level Gmin (Fig 4C) improves (increases)

with Δ and Gmax: this is a consequence of the fact that we are using both insulin and glucagon

as control inputs, which enables us to avoid both hypoglycemia and hyperglycemia.

In Fig 4D we plot the projection of the Pareto front in the (ϕI, ϕG) plane. By looking at the

Fig 4, ϕI and ϕG appear to be positively correlated and related by an approximately linear rela-

tion. While the timing of administration of insulin and glucagon is different, we see that over-

all the more insulin is used in the optimal solution, the more glucagon is used as well. This is

because the two hormones have opposite effects in the regulation problem and thus they work

so as to balance each other. This is also consistent with the observation that with the dual drug

Fig 4. Performance of the optimal control solution as a function of αG. A) Δ vs. αG. B) Gmin vs. αG. C) Gmax vs. αG. D) ϕI vs. ϕG. E) Δ vs. ϕG. We select

αG = 10−2 for both of the REMF and REME problems, which are indicated by dashed circles in the figure.

https://doi.org/10.1371/journal.pone.0213665.g004

Optimal regulation of blood glucose level in Type I diabetes

PLOS ONE | https://doi.org/10.1371/journal.pone.0213665 March 20, 2019 11 / 23

https://doi.org/10.1371/journal.pone.0213665.g004
https://doi.org/10.1371/journal.pone.0213665


therapy (insulin and glucagon) it becomes possible to simultaneously improve Δ, Gmin, and

Gmax. From the data in Fig 4Dwe derive the following approximate linear relationship between

ϕG and ϕI,

�Gð�IÞ ¼ 0:1596�I � 1:5796 ð18Þ

Obviously, glucagon should be used only when ϕG(ϕI)> 0.

Panel Fig 4E shows a projection of the Pareto front on the (ϕG, Δ) plane. We see again that

the ReMF front dominates the ReME one, i.e., a pulsatile therapy gives better results than a

continuous therapy in terms of Δ and also uses lower amounts of the two drugs (smaller ϕG,

and thus smaller ϕI due to the positive correlation found in Fig 4D).

The Pareto front is monotonically decreasing in Fig 4E which indicates a trade-off between

the total amount of drugs used and the achievable glucose control performance. We choose

the value of αG for which the ratio between the increase in Δ and the decrease in ϕG is mini-

mized, i.e., αG = 10−2 for both ReMF and ReME problems, which are indicated by dashed cir-

cles in the figure.

Fig 5A and 5B show the results of the optimal control problem for αp = 10, αI = 1 and αG =

10−2 when p = 1; and αp = 103, αI = 1 and αG = 10−2 when p = 2. In Fig 5A we plot the time evo-

lution of glucose G(t) for the different optimal solutions. The blue curve corresponds to the

solution of the ReMF problem when only insulin is used (the blue curve in Fig 3A). The red

and green curves correspond to the solution of the ReMF and the ReME problems for the dual

drug therapy. We observe that G(t) reaches the desired level Gd faster if we use both insulin

and glucagon as control inputs, compared to the case that only insulin is used. We also see that

in this case both Gmax decreases and Gmin increases. We therefore conclude that the therapy

with both insulin and glucagon performs better than the therapy with only insulin, as the

risks for both hypoglycemia and hyperglycemia are reduced and glucose fluctuations are

suppressed.

In Fig 5B we plot the optimal insulin infusion rates and in Fig 5C we plot the cumulative

insulin supply rI(t) as a function of time t. We observe that for the ReMF problem, the pulse in

insulin appears at t = 32 minutes in the case that both insulin and glucagon are used (28 min-

utes before the meal), whereas the pulse appears at t = 20 minutes when only insulin is used.

From Fig 5D, we see that, for the ReMF problem, the glucagon delivery function is pulsatile

with a main pulse appearing at t = 145 min (one hour and 25 minutes after the meal) and a sec-

ondary pulse appearing at t = 203. The dual drug therapy shows a noticeable difference

between the ReMF solution and the ReME solution. As expected, the solutions of the ReME

problem are continuous. The glucose response to the ReME therapy is better than the glucose

response to the ReMF solution. Specifically, the green curve has smaller oscillations (in panel

A) at the cost of small increases in the total amounts of used insulin and glucagon (compare

panels C and E)).

Based on the results in Fig 5, we propose a possible ad-hoc dual drug therapy to be used as

an alternative to the standard therapy. Rather than administering insulin half an hour before

the meal (standard therapy), better glucose regulation can be achieved with a slightly larger

insulin injection half an hour before a meal followed by a glucagon injection one hour and

thirty minutes after a meal. The insulin injection of the ad-hoc dual drug therapy is 25% larger

than the one used in the standard therapy, which is consistent with the relation between ϕI for

the monotherapy ReMF optimal solution and the one used in the dual drug therapy.

In Fig 6 we present a comparison between the glucose response to the standard insulin base

therapy (orange curve) and the proposed ad-hoc dual therapy (cyan curve) for the case of a
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meal with 70 grams of glucose (for the particular patient considered this corresponds to 10

units of insulin half an hour before the meal) and the proposed ad-hoc dual drug therapy

(which consists of 12.43 units of insulin thirty minutes before the meal and 0.40 mg of gluca-

gon one hour and thirty minutes after the meal). We observe that the ad-hoc dual drug therapy

Fig 5. A) Time evolution of glucose G(t) (in mg/dL). The blue curve corresponds to uI(t) obtained by solving the ReMF problem. The red curve

corresponds to uI(t) and uG(t) obtained by solving the ReMF problem using the dual drug therapy. The green curve corresponds to uI(t) and uG(t)
obtained by solving the ReME problem using the two-drug-therapy. B) Time evolution of the insulin infusion rate uI(t) (in mg/dL). Color code is

consistent with A. C) The cumulative insulin supply rI(t) as a function of time t. D) Time evolution of the glucagon infusion rate uG(t) (in mg/dL). E)

The cumulative glucose supply rG(t) as a function of time t.

https://doi.org/10.1371/journal.pone.0213665.g005
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performs better in terms of all of the proposed measures (Δ, Gmin, Gmax, ϕI and ϕG) as opposed

to the standard insulin based therapy.

3.3 Robustness analysis

We now analyze the robustness of the optimal control therapies we have proposed with respect

to model parameter mismatches, which is a fundamental step for implementation of model

based control. We consider two different types of mismatches. The first type accounts for vari-

ability in the patient’s behavior, in terms of both the time of the meal τD and the amount of glu-

cose intake D. The second type accounts for deviations in the parameter estimation, as well as

the temporal variability of the parameters that a patient may experience during the day [4].

3.3.1 Robustness against variability of the meal time and glucose intake. In this section

we analyze the robustness of the optimal ReMF therapies (both monotherapy and dual ther-

apy) with respect to the two “control” parameters the patient has. The first one is the variation

in the meal time, (�tD � tD) (min), where �tD is the time of a meal and τD is the time of a meal

we assumed in order to compute the optimal therapies. The second one is the variation of glu-

cose in the meal, (�D � D), where �D is the glucose intake in a meal and D is the glucose intake

we assumed to compute the optimal therapies. We consider variations in the meal time �tD in

the interval [30, 90] min and variations of the glucose intake �D in the interval [40, 100] g.

The results of this study are illustrated in Fig 7. Fig 7 provides a visual assessment of the

quality of the optimal therapies in terms of the three proposed measures Δ, Gmax and Gmin (the

over-bar stands for evaluation at the perturbed parameter values ð�tD;
�DÞ). The color in Fig 7

varies according to the control performance from green (good) to red (dangerous). In the

upper panels (A–C) we consider the optimal ReMF monotherapy, while in the lower panels

(D-F) we consider the optimal ReMF dual thearpy. Cross symbols indicate the application of

the optimal control therapies under ideal condition, i.e., when �tD ¼ tD and �D ¼ D. The black

curves labeled by 180, 90 and 70 in Fig 7B, 7C, 7D and 7E are the curve level plots for

�Gmax ¼ GU , �Gmin ¼ GL and �Gmin ¼ 70, respectively. The black curves labeled by 180 in

Fig 7B and 7E, are the curve level plots for �Gmax ¼ GU .

We see from Fig 7A and 7D that the optimal therapies for the ReMF problem (using only

insulin or both insulin and glucagon) are robust with respect to variations in the control

parameters: �D remains well bounded in most of the considered parameter space. In

particular we see from Fig 7B and 7E that the proposed optimal therapies are robust against

Fig 6. Comparison between the glucose response to the standard insulin base therapy (orange curve) and the proposed ad-hoc dual therapy (cyan

curve).

https://doi.org/10.1371/journal.pone.0213665.g006
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hyperglicemic events: for example, even if �D exceeds D by 50% and �tD exceeds τD by 30 min-

utes, the patient will not enter the hyperglycemic regime (Gmax > 300). Fig 7C and 7F reveal

that the proposed therapies suffer from a certain lack of robustness with respect to hypoglyce-

mic events (Gmin < 70), the most dangerous ones. The dangerous cases are, however, confined

to extreme situations in which �D < 0:5D and �tD ¼ tD þ 30 minutes. Fig 7C and 7F show also

that the optimal therapy for the ReMF problem with both insulin and glucagon is more robust

(larger green region and smaller yellow region) than the optimal therapy for ReMF problem

with only insulin (smaller green region and larger yellow region): thus the use of glucagon alle-

viates the risk of severe, life-threatening hypoglycemia.

We obtain qualitatively similar results when performing the same analysis for the other

therapies we proposed (the ReME therapies and the ad-hoc dual drug therapy).

3.3.2 Robustness to parameter mismatches. We consider perturbation of the model

parameters up to 20% of their nominal values,

�Y i ¼ Yið1þ φÞ; ð19Þ

where φ is a random number from a normal distribution N ð0; 0:0672Þ, Θi is a nominal param-

eter for a given patient with basal glucose level Gb and �Y i represents the associated perturbed

parameter. We then apply the optimal insulin and glucagon dosing, calculated for the unper-

turbed system, to 100 perturbed systems. This is analogous to testing the computed optimal

Fig 7. Robustness of the optimal control solution against variations in the meal timing and the amount of glucose in the meal. A)–C) show the

results obtained for the ReNF problem (p = 1) with only insulin provided, D)-F) ReMF (p = 1) problem with both insulin and glucagon provided. Cross

symbols indicate the application of the optimal control therapies for �D ¼ D and �tD ¼ tD. The blue cross symbols correspond to the optimal therapies

for the ReMF problem with only insulin. The red cross symbols correspond to the optimal therapies for the ReMF problem with both insulin and

glucagon. A) and D) are plots of �D=D in the control parameters space ð�tD;
�DÞ. B) and E) are the plots of �Gmax in the control parameters space ð�tD;

�DÞ. C)
and F) are the plots of �Gmin in the control parameters space ð�tD;

�DÞ.

https://doi.org/10.1371/journal.pone.0213665.g007
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control therapy on a specific patient, but the patient’s parameters may vary due to imperfect

knowledge or due to the parameter variability throughout the day. The results of this study are

illustrated with a Control Variability Grid Analysis (CVGA), see Fig 8. The CVGA provides a

simultaneous visual and numerical assessment of the overall performance of the glycemic con-

trol strategies in terms of the achieved minimum/maximum glucose values in the space of

parameters mismatches. In Fig 8, points in the light green region indicate accurate blood glu-

cose control while points in the dark green regions indicate the patient is not immediately at

risk of either hypoglycemia or hyperglycemia. Points in the top two yellow/orange regions

indicate an elevated risk of hyperglycemia and points in the the right two yellow/orange

regions indicate an elevated risk of hypoglycemia. Finally, points in the red corner region indi-

cate an elevated risk of both hyperglycemia and hypoglycemia. Each point reported in the fig-

ure is a plot of Gmax vs. Gmin. Here, the black dots correspond to the glucose response when a

certain therapy is applied to a system with perturbed parameters. Cross symbols indicate appli-

cation of the optimal control therapies to the unperturbed systems.

For the of monotherapy (ReMF in Fig 8A and ReME in Fig 8B) we find that the control is

67% and 61% accurate, respectively. For the dual therapy case (ReMF in Fig 8C and ReME in

Fig 8D) we find the control is more accurate than for the case of monotherapy, 92% and 94%

Fig 8. Robustness of the optimal control solution against parameter perturbations of the system and CVGA in the Gmin, Gmax plane. The analysis

is performed for A) ReMF (p = 1) problem with only insulin provided, B) ReME (p = 2) problem with only insulin provided, C) ReMF (p = 1) problem

with both insulin and glucagon provided, D) ReME (p = 2) problem with both insulin and glucagon provided, E) the standard therapy, and F) the

proposed ad-hoc dual drug therapy. Cross symbols indicate the application of the optimal control therapies to the unperturbed systems.

https://doi.org/10.1371/journal.pone.0213665.g008
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accurate, respectively. The least robust control is obtained with the standard therapy (shown in

Fig 8E), attaining only 37% accuracy. Note that the optimal dual drug therapies (Fig 8C and

8D) are not only more robust than the optimal insulin therapies (Fig 8A and 8B), but also than

the standard therapy (Fig 8E). We also see that the ad hoc therapy (Fig 8E) is more robust than

the standard therapy (Fig 8E).

4 Discussion

In this paper we have used the Glucose-Insulin-Glucagon mathematical model proposed in

[2–4], which describes how the body responds to exogenously supplied insulin and glucagon

in patients affected by Type I diabetes and designed an optimal dosing schedule of either insu-

lin or insulin and glucagon together to regulate the blood glucose index (BGI), while limiting

the total amount of insulin and glucagon administered. The numerical optimal control soft-

ware PSOPT has been used to solve this optimal control problem. While the numerical solu-

tion requires knowledge of the set of model parameters, which are patient specific, the

solutions we obtain provide insight into the best possible glucose regulation with insulin or

with insulin and glucagon together. Our approach is in agreement with the results of refer-

ences [60–62], in which simplified models are used to analytically establish general theoretical

properties and control limitations for the glucose regulation problem.

Two distinct regulation problems have been considered: the minimum fuel problem

(ReMF) which yields pulsatile (shot-like) type solutions and the minimum energy problem

(ReME) which yields longer periods of time over which insulin is administered but with

smaller delivery rates. This has allowed us to compare standard therapies which typically con-

sist in shots of insulin with therapies in which insulin is delivered continuously. In [63, 64] it

has been proven that the optimal control is pulsatile when the aim of the control is to minimize

the variation in the maximum and minimum output response, the system is positive (like the

one we are considering) and the disturbance (the meal, in our case) is pulsatile. Our work indi-

cates that pulsatile control is still a good choice when more complex objective functions are

chosen. Moreover, a pulsatile control appears to be optimal for alternative more realistic mod-

els of the meal (for example, a meal that is consumed over a window of 15 minutes). We also

see that a continuous drug delivery can achieve better results in the case of the dual therapy,

thus pointing out the importance of developing a commercial pump able to deliver both insu-

lin and glucagon.

For both the ReMF and ReME problems, we compute the optimal drug dosing schedules

when only insulin is available and when both insulin and glucagon are available. The solution

of the insulin only ReMF problem, astoundingly, is nearly equal to the standard method of

insulin based glucose regulation. Similarly, the solution of the ReMF problem when insulin

and glucagon are used is also pulsatile, except that the amount of insulin administered is larger

and the administration time is closer to the time of the meal, while the glucagon is mostly

delivered in a shot about an hour and thirty minutes after the meal.

The solution for the ReME problem when insulin only is available as well as when both

insulin and glucagon are available is different from the ReMF solution in that, rather than

being pulsatile, insulin and possibly glucagon are delivered at a slower rate over longer periods

of time. Nonetheless, the total amount of insulin and possibly glucagon is about the same, and

the peak of the longer delivery time occurs approximately at the same time of the shot accord-

ing to the solution of the ReMF problem. The obtained glucose profiles for the optimal ReMF

and ReME problem solutions do not differ too much from each other: taken together, these

results indicate that the amounts of insulin and glucagon, and the peak times of delivery, are

the most important factors to determine when computing the optimal solutions.
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Based on the above results, we have proposed the following ad hoc therapy when insulin

and glucagon are used in combination: Administer a shot of insulin (with 5% more insulin than
the amount required by the standard therapy based on the planned meal) 30 minutes before eat-
ing. Administer a shot of glucagon of an amount specified by Eq (18) one hour and thirty minutes
after completing the meal. This therapy must be used with caution as the amount of insulin

injected can lead to hypoglycemia if the shot of glucagon is not administered as well.

All optimal dosing schedules we computed were tested for robustness with respect to varia-

tions in the meal timing and size and with respect to variability of the parameters. The thera-

pies we proposed typically maintain the patient in the healthy region even under variable

conditions and patient behavior. Note, however, that the proposed therapies are open-loop

(the drug schedule is computed only from the condition of the patient at the initial time), thus

cannot compensate for unexpected behavior that can arise due to modeling simplifications

(e.g. we do not consider how physical activity influences the blood glucose production and

consumption [65, 66]), measurement noise or bias. A step towards the real application of our

methodology is a real-time closed-loop strategy; this is possible, since the typical time needed

to compute an optimal solution on a standard laptop (i7-8550U CPU with 16GB RAM) is

around 2 minutes. Another main limitation of our study is that real life constraints and long

term physiological effects may make a therapy based on exogenous administration of both

insulin and glucagon impractical.

Our optimal control strategies require knowledge of the meal time and meal glucose

amount. This is somewhat undesirable, as recent advances in diabetes therapy have moved

towards devices that do not require the user to provide information about the meals. Our

results emphasize the importance of knowing when the meals will occur, and that new dosing

schedules would benefit from some knowledge about the meals. This seems to indicate that it

would be beneficial to provide the pump with the ability to interpret the patient’s behavior.
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