

Control for Orbit Manoeuvring through Perturbations for Application to Space Systems

Camilla Colombo

CanSat Italy 2018 Planetario di Modena

INTRODUCTION

21/04/2018 Camilla Colombo POLITECNICO MILANO 1863

CMPASS erc

Perchè i satelliti?

Monitoraggio remoto della terra

Monitoraggio remoto della terra

Monitoraggio remoto della terra

Introduction

CMPASS e

Space transfer

Space transfer allows the colonisation of new habitats and reaching operational orbits for science missions and space services.

- Trajectory design and orbit maintenance are a challenging task
- As enabling technology, electric propulsion is increasingly selected as the primary option for near future missions, while novel propulsion systems for deorbiting and orbit-raising are being proposed.
- New space system are under development (e.g. megaconstellation, nano and CubeSat)
- The natural dynamics can be leveraged to reduce the current extreme high mission cost.

Introduction

Space situation awareness

Space debris poses a threat to current and future space activities

- Currently 22000 objects > 10 cm and 500000 objects > 1-10 cm
 Breakups generate clouds of fragments difficult to track
- Fragments can collide at very high velocity and damage operating satellites
- Need to define debris mitigation guidelines

Introduction

Planetary protection

- On average a 10-km-sized asteroid strikes the Earth every 30-50 million years (Globally catastrophic effects)
- Tunguska class (100 m in size) asteroid impact every 100 years (Locally devastating effects)
- Very small asteroids are very frequent but generally burn in the atmosphere
- Spacecraft and launcher for interplanetary missions remain in resonance with the Earth and other planets

Breakup of the object
WT110F during re-entry
(November 2015)

Background and proposed approach

Services, technologies, science, space exploration

SPACE TRANSFER

SPACE SITUATION AWARENESS

Reach, control operational orbit

Asteroids. planetary protection

Space debris

ORBIT PERTURBATIONS

Traditional approach: counteract perturbations

- Complex orbital dynamics
- Increase fuel requirements for orbit control

CMPASS

Novel approach: leverage perturbations

Reduce extremely high space mission costs

Create new opportunities for exploration and exploitation

Mitigate space debris

Develop novel techniques for orbit manoeuvring by surfing through orbit perturbations

METHODOLOGY

21/04/2018 Camilla Colombo POLITECNICO MILANO 1863

Methodology and expected results

- TASK 1 TASK 2 TASK 3
- T1. Understanding of the spacecraft orbit evolution
- T2. Topology of space of orbit perturbations (stability)
- T3. Spacecraft surf these natural currents to the desired orbit
- T4. Design of space missions

EXAMPASS surfing nello Spazio

Manóvra

Surfing

180

Orbit orientation wrt Moon [deg]

240

300

360

120

0.9

8.0

0.7

0.6

0.5

0.3

0.2

0.1

Rientro

a Terra

60

Creare nuove opportunità per l'esplorazine e lo sfruttamento delle risorse spaziali

Ridurre e controllare i detriti spaziali

MISSION APPLICATIONS

21/04/2018 Camilla Colombo POLITECNICO MILANO 1863

Concept demonstration

Perturbation enhanced end-of-life design of INTEGRAL mission

- Astrophysics and astronomy missions (e.g., INTEGRAL and XMM-Newton)
- Very complex dynamics under the effects of Moon and Sun perturbation and Earth's oblateness
- No end-of-life disposal

Trajectory design in the phase space

21/04/2018 Camilla Colombo

Space transfer

Interplanetary fly-by design through maps

- Solution of interplanetary trajectory optimisation problem
- Orbital phase design through well-known Lambert problem
- Tisserand energetic manner method to identify reachable bodies and encounter conditions
- Combined Lambert-Tisserand solution applied to the single flyby problem

Mariner 4 trajectory

Space transfer

Design of spacecraft mega-constellations for space-based services

- Comparative assessment of different constellation geometries for spacebased applications
- Optimisation of constellation design
- Debris interaction and end-of-life
- Perturbation enhanced frozen orbits

Constellation design in LEO and MEO

Space debris

Evolution and collision risk of space debris clouds

- Semi-analytical models to study the evolution of space debris in orbit
- Continuity equation approach: follow he evolution of the spatial density rather than each single object
- Challenging as dynamical problem is very complex
- Interaction of fragmentation clouds in highly elliptical orbit with the ow earth orbit environment

Distribution of debris fragments following a collision event

Space debris

End of life trajectory design

Solar sail deorbiting

- Solar sail for end-of life deorbiting in Earth centred orbit
- Novel technique for solar sailing to maximise deorbiting effect

End-of-life for Lagrangian point missions

- End-of-life trajectory design for missions at the Lagrangian point
- Study of re-entry conditions
- Study of resonances
- Mission application to Gaia and Lisa Pathfinder missions

Solar sailing deorbiting

Gaia mission disposal

Planetary protection

Reference missions for different NEA threat scenarios

- Prepare a response to an Near Earth Asteroid (NEA) impact threat scenario
- Study mission design for NEA deflection mission
- Consider a diversity of cases: asteroids have different orbit and physical properties
- Study of selected case for direct and resonant encounter
- Design of robust deflection manoeuvre
 - Uncertainties on asteroid characteristics
 - Uncertainties on orbit determination and manoeuvre error

Direct deflection mission to 2010RF12

Planetary protection

Analysis of planetary protection requirements

- Spacecraft and launchers used for interplanetary missions and missions to the Lagrangian points may come back to the Earth or impact with other planets
- Planetary protection requirements: avoid the risk of contamination = check maximum impact probability with planets over 50-100 years
- Development of a tool for the verification of the compliance using a Monte Carlo approach and the b-plane representation

Solo launcher velocity dispersion: impact condition with Venus

RESEARCH TEAM

21/04/2018 Camilla Colombo POLITECNICO MILANO 1863

Research team

SHIFT

Department of Aerospace Science and Technology

Camilla Colombo

Post Doc Applied maths

Stefan Frey PhD Space debris

Post Doc Computer science

Davide Menzio PhD Space transfer

Post Doc **Engineering**

Matteo Romano PhD planetary protections

Scientific Advisory Board

European Space Agency Centre National d'Études Spatiales

NASA

UK Space Agency

Japan Aerospace **Exploration Agency**

Ioannis Gkolias Postdoc Orbit perturbations

Simeng Huang PhD Mega-constellations

Mayeul Langlois d'Estaintot Internship

Post Doc **Engineering**

Conclusions

Contributions

- Beauty: Understanding of perturbations dynamics
- Novelty: Surf by exploiting natural disturbances (Problem into opportunity)
- Impact: Perturbation-enhanced mission design

Control for Orbit Manoeuvring through Perturbations for Application to Space Systems

Camilla Colombo

CanSat Italy 2018 Planetario di Modena