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ABSTRACT This paper aims at evaluating the sources of differences among countries’ innovative

performances in the renewable energy (RE) sector. Namely, we focus on the national innovative capacity, the

knowledge developed abroad and the related knowledge spillovers. We claim that a country is more likely to

develop RE innovation: (i) the larger the knowledge stocks of other countries in the same sector; (ii) especially

when those other countries share established linkages with the focal country. Relying on a knowledge

production function, we model country-level innovative performances in the RE sector for 18 OECD

countries in the period 1990–2006. Our findings confirm that, once controlling for climate-energy policies,

international knowledge spillovers contribute significantly to RE innovation, and their effect is comparable with

domestic R&D and human capital. In addition, international spillovers are more likely if countries share

stronger linkages.
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1. Introduction

Ample consensus exists about the need of a better understanding of the drivers of

innovation in the renewable energy (RE) sector (Arvizu et al. 2011; Nemet 2012).
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Indeed, an extensive diffusion of technologies that harness non-exhaustible, zero-

carbon (or low-carbon) energy sources in a cost-effective manner is necessary to reduce

carbon emissions without hindering energy uses, and to alleviate the supply security

problems of many countries (Popp 2011; Peters et al. 2012). At the same time, however,

invention and deployment efforts should continue because today most RE sources provide

competitive energy services only in certain geographical contexts; in addition, RE

technologies often need to be modified in order to be successfully integrated in each

country’s energy system (Arvizu et al. 2011). Finally, there is evidence that new high-quality

mitigation technologies are developed by a small number of advanced economies, and RE

technologies are no exception (OECD 2008; Dechezleprêtre et al. 2011).

Within this context, the role of international knowledge sources becomes crucial as most

countries are likely to exploit newRE technologies that have been developed by other countries.

The literature has already provided empirical and theoretical evidence that knowledge

originating in one country transcends national boundaries and contributes to productivity growth

and technological progress in other countries (e.g., Keller 2004; Mancusi 2008). However,

empirical evidence on the role played by international knowledge spillovers in environmental

and climate innovation is still scarce and mixed, and the contribution of international diffusion to

innovation in energy sectors is still a relatively untapped area of research.

Among the factors explaining innovative capacity at the national level, the balance

between international and domestic knowledge sourcing in influencing innovation in RE

sector is an open and increasingly relevant question. In fact, follower countries cannot limit

themselves to importing new technologies and/or benefit from technologies developed

abroad as they should also engage in absorptive capacity and adaptive R&D (Lanjouw and

Mody 1996; Popp 2006; Bosetti et al. 2008).

In addition, demand-pull and “interface” policies1 are increasingly recognized to be

relevant instruments to stimulate innovativeness and diffusion of technological change (Del

Rio Gonzalez 2005; Fischer and Newell 2008; Taylor 2008; Popp 2011; Rennings and

Rammer 2011; Horbach, Oltra, and Belin 2013). Although there are examples of innovations

developed in response to foreign regulations, environmentally sound inventions are more

likely to respond to domestic environmental policies (Lanjouw and Mody 1996), particularly

as far as new energy technologies are concerned (Popp 2006).

This paper aims at evaluating the sourcing of differences among countries in the

production of innovation in the RE sector. Namely, we focus on the role of the national

innovative capacity (Furman, Porter, and Stern 2002), of the knowledge developed abroad,

and the related potential knowledge spillovers, while controlling for the climate-energy

policies. Specifically, we claim that (i) a country’s innovative performance in the RE sector

depends positively on the knowledge stocks of other countries in the same sector and (ii) this

is especially so when the latter countries share established linkages with the former. In fact,

1Demand-pull policies raise the revenues of environment-friendly innovators (e.g., feed-in tariffs, RE obligations or tax

credits reserved to RE investments), and have been found to spur incremental innovations; instead, technology-push

policies reduce the costs that environment-friendly innovators have to bear (e.g., public energy R&D, or tax credits for

energy R&D), and they have been shown to favor non-incremental innovations (Nemet 2009; Peters et al. 2012).

Interface policies support technology deployment and learning by using, by reducing the transaction costs that arise

between technology suppliers and users (Taylor 2008).



2 EPO classifies patents on the basis of highly relevant technology domains: biotechnology, ICT, nanotechnology and

environment-related technology; the latter includes RE generation classes. IEA reports the budgets allocated

by OECD governments to research, development and demonstration across energy technological fields, including

RE sources.

energy innovation systems are highly country-specific (Sagar and Holdren 2002; Sagar and 
van der Zwaan 2006; Taylor 2008), and the scope of market transactions in RE technologies 
is limited; thus, cross country knowledge spillovers in this sector are more likely when 
countries are highly interconnected through established linkages.

Relying on a knowledge production function à la Griliches-Jaffe (Griliches 1979; Jaffe 
1986), we model country-level innovations in the RE sector as depending on domestic 
knowledge stocks, domestic human capital, spillovers stemming from international 
knowledge stocks, and climate-energy policies. Our empirical analysis refers to the 
innovation dynamics of 18 OECD countries in the period 1990–2006.

The paper is organized as follows. Section 2 provides a descriptive analysis of the 
geographic distribution of innovation in RE sectors. Section 3 reviews the literature on 
environmental innovations and international knowledge spillovers, and it formulates our 
research hypotheses. The sample, the variables and the econometric models are illustrated in 
Section 4, whereas the empirical findings are discussed in Section 5. Section 6 summarizes 
the main results and outlines some implications for environmental technology policy.

2. Geographical Distribution of Innovations in the RE Sectors: Evidence from OECD 
Countries

Empirical evidence on the characteristics and geographical distribution of innovations in the 
RE sector reveals a high concentration. Relying on patent data from the European Patent 
Office (EPO), Table 1 shows that Germany, the USA, Japan and Denmark account for the 65 
per cent of the total RE patents. Likewise, data on public R&D budgets recorded by the IEA 
(International Energy Agency) and reported in Table 2 confirm that the top four countries, i.e. 
the USA, Japan, Germany and France, account for the 61 per cent of the R&D budget.2 

Overall, OECD countries account for almost 96 per cent of the EPO world patents in the 
RE sector during the 2000–2009 period. RE innovations exhibit a geographic concen-
tration similar to other environmental technologies. Dechezleprêtre et al. (2011) found that 
Japan, the USA, Germany and China accounted for 67 per cent of the world’s climate-

mitigation patents in the 2000–2005 period. Moreover, despite the non-negligible role of large 
non-OECD economies such as China, Russia and Brazil, high-value inventions were more 
likely to originate in more developed economies (namely, Germany, Japan, the USA and 
France).

Nevertheless, the comparison with other technological fields sheds a different light on 
the geographic concentration of RE innovations. Table 1 shows that the patent shares 
cumulated by world leading countries in the RE sector are smaller than in other technological 
fields such as biotechnology, ICT and nanotechnology. Thus, innovation performances are 
more uniform across OECD countries in the RE sector than in other fields. In fact, the 
standard deviation of patent counts over a sample of 34 OECD countries, once normalized 
by the mean value, is smaller in RE than in other fields.



The evidence on the geographic distribution of patents is consistent with the analysis of

publicly funded R&D, a critical energy innovation input and policy measure (Garrone and Grilli

2010). Table 2 shows that only few governments are particularly active in financing the

development (and demonstration) of new RE technologies. Four OECD countries account for

Table 2. Distribution of public R&D budgets, OECD countries, 2000–2009

All fields RE

Cumulated shares

World leader 47 per cent 35 per cent

Four top countries 70 per cent 61 per cent

Leading countries USA USA

Japan Japan

Germany Germany

France South Korea

Standard deviation divided by the mean value

Sample of OECD countries 2.67 (32 countries) 1.86 (27 countries)

Note: The budgets are government budget appropriations or outlays for R&D (GBOARD) in Million USD (2009 prices

and PPP), for 32 OECD countries in all fields (Australia, Austria, Belgium, Canada, Czech Republic, Denmark,

Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, Luxembourg,

Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic, Slovenia, Spain, Sweden,

Switzerland, UK, USA), and 27 OECD countries in RE (the same as in all fields, except Estonia, Iceland, Israel,

Mexico, Poland), 2000–2009 period.

Source: Our elaboration on OECD data (Main science and technology indicators), IEA data (RD&D statistics), IMF

data (World Economic Outlook).

Table 1. Distribution of patents over OECD countries, 2000–2009

All fields RE Biotechnology ICT Nanotechnology

Cumulated shares

World leader 27 per cent 24 per cent 42 per cent 30 per cent 35 per cent

Four top countries 71 per cent 65 per cent 71 per cent 72 per cent 75 per cent

Leading countries USA Germany USA USA USA

Germany USA Germany Japan Japan

Japan Japan Japan Germany Germany

France Denmark UK France France

Standard deviation divided by the mean value

34 OECD countries 2.09 1.89 2.56 2.23 2.42

Note: The patent counts refer to the sum of patent applications made to the EPO, 2000–2009 period (application

date), by 34 OECD countries (inventor’s country of residence; Australia, Austria, Belgium, Canada, Chile, Czech

Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan,

Korea, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic, Slovenia,

Spain, Sweden, Switzerland, Turkey, UK, USA).

Source: Our elaboration on OECD data (Patents according to technology fields).



the 61 per cent of the public R&D budget in the 2000–2009 period. At the same time, both the 
cumulated shares and the ratios between standard deviation and mean value show that 
the geographic concentration is not that high in the RE sector. Efforts to support R&D 
activities are less heterogeneous across OECD countries in the RE sector than in other 
sectors.

This evidence is coherent with climate-economy models, which show that technological 
change is the result of both domestic R&D investments and learning-by-doing dynamics of the 
energy sector (e.g., van der Zwaan et al. 2002; Popp 2004; Popp, Newell, and Jaffe 2009). 
In other words, a well-developed energy innovation system is necessary to produce 
technological advancements (Sagar and van der Zwaan 2006). However, most countries are 
likely to use environmental technologies that were developed in foreign countries. 
In particular, late adopters need to undertake R&D activities to absorb and adapt 
foreign technologies, i.e. to make them compatible to local markets and regulations (Lanjouw 
and Mody 1996; Popp 2006), as well as to produce new technologies at home (Bosetti et al. 
2008).

This intriguing evidence opens the question on the potential autonomy of countries, and 
conversely on the extent to which they may rely on international knowledge sourcing in this 
sector. In the following section, we focus on the role of international knowledge spillovers on 
the national innovative capacity in the RE sector.

3. The Role of International Knowledge Spillovers: Our Research Hypotheses

Diffusion of technological knowledge occurs to a great extent through cross-country 
knowledge or technology spillovers, which indeed have been shown to have a significant 
impact on the innovation activity of countries (Branstetter 1998; Frantzen 2000; Mancusi 
2008; Keller 2009).

The literature on the role of international knowledge spillovers in environmental 
technologies acknowledges that relevant knowledge portions are sourced from other 
countries. However, studies focus mainly on the role of climate-energy policies on the 
development and diffusion of new energy technologies (e.g., Grubb, Hope, and Fouquet 
2002; Taylor 2008; Nemet 2009; Garrone and Grilli 2010; Johnstone, Hascic, and 
Popp 2010; Popp 2011), and on the international diffusion of technologies that are embodied 
in technologies (Lanjouw and Mody 1996; Popp 2006). Other studies highlight that given the 
complex nature of the knowledge base underlying eco-innovations, the latter significantly 
require external sources of knowledge (Horbach, Oltra, and Belin 2013).

As international knowledge diffusion involves both market transactions and externalities 
(Keller 2004; Pizer and Popp 2008), increasing attention has been devoted to the latter, i.e. 
to channels for knowledge spillovers. Knowledge flows across countries, either embodied in 
traded goods or in various disembodied forms through cross-border flows of people, ideas, 
services, patents, products and face-to-face contacts (for a recent survey, see Belderbos 
and Mohnen 2013). A considerable body of theoretical and empirical work has focused on 
import-related international knowledge spillovers, i.e. the extent to which imports of 
manufactured goods could serve as channels for knowledge spillovers (e.g., Coe and 
Helpman 1995; Keller 2004; Lo’pez-Pueyo, Barcenilla-Visu’s, and Sanau’ 2008). At the 
same time, technology diffusion theories have long recognized the idea that international 
established linkages also underpin the geographic spread of new innovations (Rogers



1995). Cross-border contacts, communications and exchanges allow the involved actors to

learn about innovations developed elsewhere (Simmons and Elkins 2004).3 Technological

knowledge can be gained through exports, i.e. learning by exporting (Salomon and Shaver

2005; Liu and Buck 2007). Likewise, foreign direct investment (FDI) has been already

confirmed to be a potentially equally important channel for the mediation of such spillovers

(Gorg and Greenaway 2004; Branstetter 2006). Accordingly, our first Hypothesis is the

following:

H1: The innovative performance of a country in the RE sector positively depends on

knowledge stocks of other countries in the same sector.

As in the general literature on international knowledge spillovers (e.g., Keller 2004;

Belderbos and Mohnen 2013), previous empirical studies on environmental innovation also

highlight that geographic distance is a major moderating variable. For example, Hosseini

and Kaneko (2013) shows that a country’s CO2 intensity decreases if neighboring countries

have a higher institutional quality. Verdolini and Galeotti (2011), using backward patent

citations, find that greater international knowledge flows increase the innovation probability,

but that geographical and technological distances between countries decrease the

probability of knowledge flows.

Few studies add the role of linkages among countries as a strengthening factor for

potential knowledge spillovers, the rationale being that spillovers are more likely when

countries are connected somehow. Thus, for example, Liu and Buck (2007) consider the

impact of multiple channels for international technology spillovers on the innovation

performance of Chinese firms in high-tech industries; they find that export-related and

import-related spillover channels are positively associated with the innovative capacity of

domestic firms. Similarly, Perkins and Neumayer (2009) empirically tested the influence of

three transnational linkages (namely, import and export, inward FDI and telephone calls) on

domestic improvements in CO2 and SO2 efficiency. They found that import linkages with

more environmentally efficient countries foster the transmission of CO2 and SO2 efficiency,

while exports, inward FDI and telephone calls do not seem to play a significant role. More

recently, the same authors find that FDI can impinge on the transmission of CO2 efficiency

toward countries that are less CO2-efficient or that have a higher institutional quality (Perkins

and Neumayer 2012). Hübler and Keller (2010) also found that inward FDI do not have a

significant role in the variation of energy intensity of developing countries.4 In this context,

Bosetti et al. (2008), assuming that the effectiveness of spillovers depend on the country’s

absorptive capacity, show that high-income countries reduce their energy R&D investments

due to international spillovers. Conversely, Braun, Schmidt-Ehmcke, and Zloczysti (2010),

investigating the determinants of innovative activity in wind and solar technologies for OECD

countries, find that international knowledge spillovers play a negligible role compared with

3We are aware that patent citations can be used as a proxy for knowledge flows between different innovating firms,

regions or countries (among others, Verdolini and Galeotti 2011, or Nemet 2012). Nonetheless, we have adopted a

different modeling strategy because patent citations only capture a part of the knowledge flows.
4 It is worth noting that the mixed evidence on the influence of FDI may be also due to the fact that foreign MNCs do not

automatically leak technology to domestic firms either because MNCs may have an incentive to prevent leakages or

because domestic firms must have an adequate absorptive capacity (Liu and Buck 2007).



H2: The innovative performance of a country in the RE sector positively depends on

knowledge stocks of other countries in the same sector, provided that the latter share

established linkages with the former.

It might not be out of place here to remark that cross-country linkages are relatively

independent from countries’ innovative activities in one sector. Interactions between

countries may be established for various reasons and are inherently cross-sectoral, even

when they transmit knowledge spillovers related to a single sector. For this reason,

international linkages can only marginally be touched by a country’s efforts to source

knowledge on RE technologies. The latter may well boost its trade flows in the RE sector, but

the overall intensity and structure of its international linkages will change only slightly. This

point can be illustrated through the following example, which is coherent with our measure of

international linkages, i.e. trade flows (Section 4.3). The US imports of wind and solar

equipment in 2010 amounted to 9,410million US dollars (constant US dollars, base 2000;

Sawhney and Kahn 2012). This accounts to less than 1 per cent of the total US imports of

goods and services.

4. Empirical Analysis

4.1. The Model

According to previous empirical work (e.g., Furman, Porter, and Stern 2002; Liu and Buck

2007; Mancusi 2008), we model the innovation performance of a country through a

knowledge production function (e.g., Czarnitzki, Kraft, et al. 2009). Specifically, we started

from a traditional Cobb-Douglas knowledge production function:

Qiht ¼ Dd
ihtF

f
ihtC

c
iht ; ð1Þ

Qiht is the innovative performance of country i in industry h at period t; Diht is the

domestic R&D effort in industry h; Fiht is the stock of R&D accumulated in countries

other than i; Ciht are control variables that account for industry and country

specificities. The following transformation via natural logarithms would facilitate the

interpretation of results:

lnQiht ¼ d lnDiht þ f lnF iht þ c lnCiht : ð2Þ

In order to measure innovative performance, we use the number of patents RPAT

obtained in the RE sector by country i in t (t ¼ 1990, . . . , 2006). In addition, as in our case,

several controls are binary variables (e.g., policy indicators), an ad-hoc elaboration would be

necessary to transform dependent and control variables via logarithms; thus, we preferred to

use a linear-log knowledge production function (i.e., we assume that innovative

domestic intra- and inter-sectoral spillovers. Similarly, Garrone and Grilli (2010) show that 
international public energy R&D has virtually no effect on domestic energy intensity, 
regardless of whether an un-weighted or import-weighted R&D pool is used as a proxy.

Thus, along the conceptualization adopted by Perkins and Neumayer (2009, 2012), we 
focus on the role of international linkages as a channel for spillovers between countries, and 
our second hypothesis states as follows:



performances and control variables are pre-transformed by an exponential function). As far

as explanatory variables, the domestic effort (D) has been proxied by the country’s human

capital (HC) and the domestic R&D stock in RE technologies (DRD), whereas foreign R&D

(F) refers to international knowledge spillovers (IKS) associated to the international

availability of knowledge that the country is likely to access. In order to have coefficients that

are comparable in magnitude, both the explanatory variables and controls were normalized

by their mean. The former, i.e., human capital, domestic R&D stocks and international

knowledge spillover variables, were also lagged by one period, to reduce endogeneity

problems.

Thus, we estimate the following model:

RPAT it ¼ aþ b1 lnHCit21 þ b2 lnDRDit21 þ b3 ln IKSit21 þ
X

s

gsC
s
it þFi þ 1it ; ð3Þ

where C S is the sth control variable, F are unobservable country-specific characteristics

(e.g., countries that are under- or over-represented in the EPO, or have a larger or smaller

stock of private R&D), and 1 is the error term.

4.2. The Sample

Our sample includes 18 industrialized countries observed over the period 1990–2006:

Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Italy, Japan, The

Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, the UKm and the USA.

In particular, we investigate innovation in RE technologies at the country level, by relying on

patents obtained in the relevant technology from the EPO.5 Data are sourced from the April

2010 version of Patstat (OECD, 2010). Patent classes are determined according to the

classification used by Johnstone, Hascic, and Popp (2010), i.e. hydro technologies are

excluded from the analysis, mainly because in most countries they are not supported by

climate policies that are enforced to promote other REs.

Germany and the US lead the ranking of RE patenting activity in the observed period,

while Japan and the UK are the most innovative followers. Nevertheless, in order to position

properly countries in the race for energy-climate innovations, their innovation performances

should be articulated in several sectors and through multiple indicators, as shown by

Fankhauser et al. (2013).

4.3. Explanatory and Control Variables

As far as the domestic efforts (D), we considered the human capital stock (HC) and the

domestic knowledge stock (DRD) of country i. Specifically, HC is measured by the average

years of schooling for people over 25, as in Barro and Jong-Wha (2010). Data come from the

Barro-Lee Educational Attainment Dataset (http://www.barrolee.com/). In order to proxy

knowledge stocks, we collected the series of public energy R&D budgets of each sample

5We are aware that the EPO is likely to over-represent innovations of European inventors. Nevertheless, the bias

toward European countries is a fixed effect that is largely wiped out by country-specific dummies that account for all

unobservable country-specific characteristics (see Equation (3)).

http://www.barrolee.com/


DRDi ;t ¼ ð12 dÞDRDit21 þ RDit : ð4Þ

The initial value of the stock is defined as follows:

DRDit0 ¼
RDit0

ðdþ gÞ ; ð5Þ

where d, i.e. the depreciation rate, is set equal to 5 per cent, as in Coe and Helpman (1995),

and the R&D growth rate, g, is set equal to 20 per cent, as in Braun, Schmidt-Ehmcke, and

Zloczysti (2010).8

International knowledge spillovers, IKS, have been computed by aggregating the

domestic knowledge stocks of other countries in three different ways. The first indicator of

knowledge spillovers benefiting country i is POOLKS, the un-weighted pool of the R&D

stocks of all other countries j – i in the sample (as, for instance, in Garrone and Grilli 2010):

POOLKSit ¼
X

j–i

DRDjt : ð6Þ

However, as disembodied knowledge flows have been found to be possibly impeded by

geographic distance, a second indicator for country i, DISKS, has been obtained by

weighting the other countries’ R&D stocks through inverse functions of geographic distance

(Xu and Wang 1999):

DISKSit ¼
X

j–i

DRDjt�wdij ð7Þ

with wdij ¼ (1/ln gdij)/Sj–i [1/ln gdij]. wdij is a function of the geographic distance between

countries i and j (i.e., between the capital cities), gdij.

The third indicator, CNTKS, has been obtained by weighting other countries’ R&D

stocks through bilateral trade flows as a proxy of mutual connections. However, differently

from studies adopting only bilateral import flows (e.g., Coe and Helpman 1995; Lichtenberg

and van Pottelsberghe de la Potterie 1998), we also allow for learning by exporting

(Clerides, Lach, and Tybout 1998; Salomon 2006; Liu and Buck 2007; Andersson and Lööf

2009) and the openness of the country (Grossman and Helpman 1991; Branstetter 2001;

Cantwell and Piscitello 2014). Thus, trade flows are calculated as the sum of the total

imports and exports between country i and partner country j, as reported in the UNComtrade

database (2010).

Specifically, we allow for the fact that country i benefits from country j’s R&D efforts if the

bilateral trade flows are sufficiently large in comparison to both country j’s economy and

6According with our classification, hydro R&D budgets have been subtracted from the total R&D budget.
7 In some countries, knowledge on new energy technologies is also produced by private firms through own R&D

activities. This is modeled as an unobservable country-specific characteristic (see footnote 6).
8 Sensitivity analyses are available upon request from the authors.

country for RE technologies6 from the IEA Energy Technology Research and Development 
Database (IEA, 2010a). Thus, the domestic knowledge stock (DRD) of country i is computed 
from the public energy R&D budgets (RD) through the perpetual inventory model7:



trade flows with other countries (Lichtenberg and van Pottelsberghe de la Potterie 1998; Xu

and Wang 1999). Thus, we normalize the weight by the partner country’s GDP, as follows:

CNTKSit ¼
X

j–i

DRDjt�wgijt

� �
; ð8Þ

with wgijt ¼ ln ½ðimportjit þ exportjit Þ=GDPjt �=
P

j–i ln ½ðimportjit þ exportjitÞ=GDPjt �.
The three indicators can be interpreted in a rather straightforward way. POOLKS

represents a global pool of RE technologies, and it captures the essence of international

spillovers only if there is no need to have repeated contact and interaction to facilitate the

diffusion of knowledge (e.g., due to the global reach of computers and online documents).

DISKS takes into account the geographic dimension, and it assumes that closer countries

quite naturally have a larger amount of contacts and interactions to exchange technological

knowledge, i.e. it captures localized knowledge spillovers. CNTKS has the purpose of

representing the diffusion of those components of technological change that are more tacit

and less codified and that, as such, need repeated contacts and interactions. Namely, trade

flows are assumed to capture the frequency and intensity of cross-country interaction

relationships.

4.3.1. Control Variables. Among the control variables, GDP has been included as a

measure of the economy’s size.

To capture the presence of climate-energy policies that support the development and

diffusion of RE technologies, we inserted three binary variables: OB, for performance

standards or obligations (e.g., portfolio standards, quota systems); FIT, for guaranteed

prices or feed-in-tariffs; REC, for carbon emissions or RE certificate trade systems. These

variables equal 1 if country i is enforcing the corresponding measure in year t, and 0

otherwise. The main reference source for these binary variables is IEA (2004). We have

instead resorted to IEA Policies and Measures Database (2010b) for more recent years.

Finally, we also included the ratio between the import of capital goods from the world

and the GDP of the focal country, i.e., CGI, as a control of the impact of spillovers that are

embodied in capital goods imports, in order to reduce the risk of biased estimates for

disembodied spillovers.

Table 3 shows the summary statistics of the variables. The final sample includes 285

observations because some data on patents, R&D budgets or policy indicators were

missing.

Table 4 reports the correlation matrix between the variables transformed according to

the model functional form (Section 4.1). The large and significant correlation between

knowledge production inputs comes as no surprise, as all of them are significantly correlated

to the economy size (GDP) and to the time trend.9 High and significant correlation ratios

between spillover variables should not be considered as a problem, because they are used

in different models.

9 It is worth anticipating that in order to check the robustness of empirical findings, control regressions will be run after

excluding GDP or period-specific indicators (Section 5).



Finally, in order to mitigate the risk of omitted-variable bias, we should include a time

trend (or year effects), although this may cause a loss of efficiency, because all dependent

and independent variables but GDP are significantly and positively correlated with the time

trend (Table 4). A two-way nonlinear models, i.e. the joint inclusion of time and country-fixed

effects would determine inconsistent estimates, because of the so-called problem of

incidental parameters (Hahn and Newey 2004; Charbonneau 2013, 34). Because the

number of time periods is fixed, estimates of fixed effects cannot be consistent, and the bias

contaminates estimates of the coefficients of interest. As a compromise strategy, we

included two period-specific effects: 1996_2000 and 2001_2006 are binary variables that

take value equal to 1, in the time window around Kyoto Protocol signature (i.e., 1996–2000

years) and in subsequent years; the period 1990–1995 is the baseline.

5. Empirical Results and Discussion

5.1. Econometric Strategy

An established body of literature emphasizes that panel innovation counts share two

characteristics (Blundell, Griffith, and Van Reenen 1995, 1999; Blundell, Griffith, and

Windmeijer 2002; Mancusi 2008; Czarnitzki, Kraft, et al. 2009). Unobserved heterogeneity is

Table 3. Variables: descriptive statistics

Variable Definition No. obs. Mean SD Min Max

Dependent variable

RPAT Patent count 285 28.6 43.4 0 258

Explanatory variables

HC Human capital (no. years) 285 9.6 1.6 6 13

DRD Domestic knowledge stock (million

USD, 2008 and PPP)

285 751.6 1,352.8 12 6,094

POOLKS Unweighted sum of international

knowledge stocks (million USD,

2008 and PPP)

285 12,572.9 1,469.0 6,409.8 14,698.0

DISKS Distance-weighted sum of international

knowledge stocks (million USD,

2008 and PPP)

285 698.4 87.6 377.7 943.0

CNTKS Trade-flow weighted sum of

international knowledge stocks (million

USD, 2008 and PPP)

285 856.4 146.4 362.4 1061.1

Control variables

OB Performance standards (binary) 285 0.3 0.5 0 1

REC Tradable certificates (binary) 285 0.1 0.3 0 1

FIT Feed-in tariffs (binary) 285 0.4 0.5 0 1

CGI Capital goods imports divided

by GDP

285 0.1 0.0 0.0 0.2

GDP GDP (million USD, 2005

and PPP)

285 1,440,629 2,433,020 103,816 12,900,000
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10Cross-country heterogeneity and its persistence are confirmed by Hausman test of no correlation between

regressors and the error, and by the Wooldridge test of serial correlation. First-order autocorrelation is present, and

fixed effects are favored against random effects in two models out of four (models (c) and (d)). Results are available

upon request from the authors.
11Quasi-difference generalized methods of moments (GMM) for panel count data could be an alternative option, but

they require large samples (Blundell et al., 2002). Thus, they are not appropriate in our setting.

a first feature of innovation activity across firms, industries or countries. When individual 
fixed effects are present yet not correlated to regressors, i.e. regressors are strictly 
exogenous, the conditional estimator for count data with fixed effects returns unbiased 
estimates (Hausman, Hall, and Griliches 1984; Wooldridge 1999a). However, dynamic 
feedback from the dependent variable to the future values of explanatory variables are also 
likely to be present, a feature that makes regressors predetermined, or weakly 
endogeneous.10 As a consequence, the conditional estimator returns biased estimates 
(Blundell, Griffith, and Windmeijer 2002). In our setting, countries that are successful in RE 
innovation are likely to influence the knowledge stocks of other countries, and to strengthen 
their own innovation capacity. In order to address the endogeneity problem caused by 
dynamic feedback, we adopt the Pre-Sample Mean (PSM) estimation method. It replaces 
unobserved heterogeneity, i.e. fixed effects, by the historical innovation capacities with 
which countries enter the sample (Blundell, Griffith, and Van Reenen 1999; Blundell, Griffith, 
and Windmeijer 2002).11 Thus, a large portion of unobserved heterogeneity is wiped-off 
residuals. While regressors are still influenced by the dependent variable through dynamic 
feedback, they are less likely to be correlated with residuals, and endogeneity is a lesser 
concern. In our setting, fixed effects are approximated by the country-specific means of RE 
patent counts over the 1980–1989 period innovation history, PSM.

In addition, RPAT is assumed to follow a negative binomial distribution, because RPAT 
variance results to be much larger than RPAT mean (Table 3); here, over-dispersion makes 
the Poisson distribution inappropriate. Finally, since unobserved fixed effects are replaced 
by PSM, a random negative binomial estimator can be used. Section 5.2 thus illustrates 
effect random effects estimates of negative binomial models that include PSM and, under 
different specifications of model (3), time period effects.

5.2. Main Results

Table 5 presents the estimates of a baseline model in which the knowledge spillover variable 
is not included (model (a)), and estimates of models where different international knowledge 
spillovers measures have been inserted (models (b)–(d)). In order to check the robustness 
of the results, we also run two control regressions.

As regards explanatory variables (i.e., knowledge production inputs), the domestic 
knowledge stock, DRD, has a positive effect on the country’s patenting activities, at 1 per cent 
significance level in all the models (a)–(d)). Instead, human capital, HC, does not seem to have 
a significant influence, but this may be related to a global trend in schooling, i.e. to the 
correlation between HC and period-specific indicators (see also control regressions in Table 6).

International knowledge spillovers do encourage RE patenting activities throughout 
models ((b)–(d)) (Table 5). In model (b), international spillovers are proxied by the pool of



international knowledge stocks (POOLKS), and are shown to play a significant role at 1 per

cent significance level. Model (c) includes international spillovers measured by DISKS, i.e.

the international knowledge stocks weighted by the inverse functions of geographic

distance; as in the previous case, international spillovers seem to significantly increase RE

patents (at 5 per cent significance level). Finally, model (d) includes the spillover indicator

CNTKS that consider the R&D stocks of “connected” countries.CNTKS has a significant and

positive impact on patenting activities (at 1 per cent significance level).

Table 5. PSM negative binomial models (dependent variable: RPAT)

Full model (a) (b) (c) (d)

lnHC 0.249 0.236 0.170 0.309

(0.259) (0.248) (0.252) (0.247)

lnDRD 0.277*** 0.326*** 0.278*** 0.384***

(0.103) (0.107) (0.105) (0.110)

lnPOOLKS 1.900***

(0.747)

lnDISKS 1.663**

(0.785)

lnCNTKS 1.655***

(0.518)

OB 0.028** 0.042*** 0.039*** 0.041***

(0.014) (0.015) (0.015) (0.014)

REC 0.005 20.001 20.000 20.002

(0.006) (0.007) (0.007) (0.006)

FIT 20.058 20.062* 20.060 20.066*

(0.037) (0.037) (0.037) (0.037)

CGI 0.238 0.078 0.098 0.092

(0.164) (0.175) (0.176) (0.170)

GDP 20.136*** 20.207*** 20.199*** 20.187***

(0.036) (0.046) (0.047) (0.041)

1996–2000 0.117* 0.072 0.083 0.058

(0.065) (0.068) (0.067) (0.067)

2001–2006 0.368*** 0.252*** 0.280*** 0.223**

(0.080) (0.092) (0.090) (0.090)

PSM (fixed effects) 0.042*** 0.051*** 0.052*** 0.047***

(0.008) (0.009) (0.009) (0.009)

Constant 2.056*** 2.297*** 2.199*** 2.463***

(0.292) (0.301) (0.296) (0.314)

No. 285 285 285 285

H0: b1996_2000 ¼ b2001_2006 ¼ 0

x 2 29.16 10.72 13.54 9.53

p-Value 0.0000 0.0047 0.0011 0.0085

Note: PSM negative binomial models: PSM estimates of fixed-effects negative binomial models (Blundell, Griffith, and

Van Reenen 1999); Standard errors in parentheses, *p , 0.10, **p , 0.05, ***p , 0.01; PSM (fixed effects): PSM of

patent counts, as a measure of unobserved cross-country heterogeneity.



As far as control variables,OB coefficients come out positive and significant throughout

models (a)–(d) (5 per cent and 1 per cent significance level). Namely, obligations (e.g.,

portfolio standards) appear to play a role in the development of newRE technologies; instead,

renewable certificates (variable REC) do not show a significant relationship with RE

innovations, while two models (model (b) and (d)) report a negative and significant impact of

the implementation of feed-in tariffs (10 per cent significance level, variable FIT). The latter

Table 6. Control regressions: PSM negative binomial models, without time dummies or GDP

(a) (b) (c) (d)

No period

specific

variables

No

GDP

No period

specific

variables

No

GDP

No period

specific

variables

No

GDP

No period

specific

variables

No

GDP

lnHC 0.837*** 0.321 0.479** 0.319 0.394 0.336 0.587** 0.368

(0.269) (0.277) (0.241) (0.277) (0.252) (0.278) (0.236) (0.275)

lnDRD 0.303*** 0.255** 0.378*** 0.252** 0.297*** 0.256*** 0.456*** 0.319***

(0.101) (0.100) (0.105) (0.101) (0.105) (0.100) (0.107) (0.105)

lnPOOLKS 3.308*** 20.156

(0.683) (0.625)

lnDISKS 3.265*** 20.441

(0.756) (0.609)

lnCNTKS 2.472*** 0.965*

(0.482) (0.551)

OB 0.042*** 0.042*** 0.059*** 0.040** 0.058*** 0.038** 0.052*** 0.050***

(0.015) (0.014) (0.013) (0.016) (0.014) (0.016) (0.012) (0.015)

REC 0.013** 20.005 20.001 20.004 0.000 20.002 0.000 20.011

(0.006) (0.005) (0.007) (0.006) (0.007) (0.006) (0.006) (0.007)

FIT 20.033 20.023 20.058* 20.023 20.053 20.026 20.065* 20.025

(0.037) (0.036) (0.035) (0.037) (0.036) (0.037) (0.035) (0.036)

CGI 0.385*** 0.345** 0.025 0.356** 0.041 0.374** 0.072 0.261

(0.143) (0.162) (0.16) (0.167) (0.163) (0.167) (0.153) (0.171)

GDP 20.051* 20.222*** 20.216*** 20.180***

(0.029) (0.049) (0.05) (0.043)

1996_2000 20.010 20.002 0.012 20.055

(0.057) (0.065) (0.064) (0.065)

2001_2006 0.194** 0.208** 0.234*** 0.098

(0.068) (0.090) (0.087) (0.087)

PSM (fixed

effects)

0.037*** 0.034*** 0.056*** 0.034*** 0.059*** 0.033*** 0.048*** 0.032***

(0.008) (0.008) (0.009) (0.008) (0.009) (0.008) (0.009) (0.007)

Constant 1.862*** 1.897*** 2.399*** 1.881*** 2.257*** 1.870*** 2.613*** 2.119***

(0.276) (0.285) (0.284) (0.293) (0.281) (0.290) (0.303) (0.301)

No. obs. 285 285 285 285 285 285 285 285

Note: PSM-negative binomial models: PSM estimates of fixed-effects negative binomial models (Blundell, Griffith, and

Van Reenen 1999); Standard errors in parentheses, *p , 0.10, **p , 0.05, ***p , 0.01; PSM (fixed effects): PSM of

patent counts, as a measure of unobserved cross-country heterogeneity.



result is puzzling, but it should be reminded that some relevant aspects of the policy adoption

are notmodeled. Policy variables have been included in themodelmainly as controls, and are

measured by binary variables that generally follow a step path. As a consequence, their role

could be captured by period-specific indicators (see also Table 6).CGI, i.e. the capital goods

import indicator, never reaches a standard significance level. Nonetheless, before concluding

that embodied knowledge spillovers are not relevant in RE technologies, we checked this

result through control regressions (Table 6). Namely, GDP, PSM and 2001_2006 do affect

RPAT in models (a)–(d). Economy size, as measured by GDP, correlates negatively with

patenting activities. This surprising result could be a symptom of heteroskedasticity or serial

correlation issues.12 Control regressionswill copewithGDP and its inclusion inRE innovation

models, and will give a hint that size effects may be captured by PSM. Robustness checks of

Section 5.4will also deal with this issue. The coefficient of country-specific pre-sample history

in RE innovations, PSM, is positive, as expected (1 per cent significance level). The test of

joint significance for period-specific indicators suggests that RE patent counts increase over

time, and more importantly since 2001 (1 per cent significance level; bottom of Table 5).

We believe that some results reported in Table 5, as for instance the estimates of HC,

FIT, CGI and GDP coefficients, are worth controlling further because there is a large and

significant correlation between most regressors, on the one hand, and time trend and GDP,

on the other hand. However, a variance-inflation factors (VIFs) test on the right-hand-side

variables has allowed us to exclude that a multi-collinearity problem affects estimates.

Overall, VIFs take a value far below 4 where, as a general rule of thumb, a value above

10 may indicate the possible presence of a serious problem of multi-collinearity (Kennedy

2003, 213). Nevertheless, in order to check further the robustness of the results, we excluded

either period-specific indicators or GDP from control variables (results are reported in

Table 6). The coefficient of HC, i.e. human capital, gains significance in three specifications

that exclude period-specific dummies. This means that HC may be a relevant knowledge

input, but period-specific variables capture its variation. As far as international spillovers are

concerned, it is worth noting that only CNTKS maintains its significance at 1 per cent and

10 per cent levels in models (d). By contrast,POOLKS andDISKS lose in significance ifGDP

is excluded. As to control variables, only obligation policies, OB, are consistently found to

exert a positive influence on the development of RE innovations, while under most

specifications neither emissions trade, REC, nor feed-in tariffs, FIT, play a role. Finally, it

cannot be excluded that imports of capital goods are a vehicle for embodied knowledge

spillovers (i.e., CGI coefficients are positive at standard significance levels in a few cases).

Thus, innovative capacity in the RE sector become more intense if connections with

research-intensive countries grow, if domestic R&D investments rise, if obligations to adopt

RE technologies are maintained.13

Further checks of the robustness of our results are discussed in Section 5.4.

12We thank an anonymous referee for raising this issue and suggesting us the course of analysis that we follow

in Section 5.4.
13 It is worth emphasizing that we are not suggesting that large quantities of imports and exports are per se necessary

or sufficient for countries to produce RE innovations. Trade flows matter only if they are concentrated toward countries

that have developed large stocks of knowledge about RE technologies, as is made clear by the definition of CNTKS

(see Formula (8)).



14 The associated tests and results are available upon request from the authors.

5.3. Assessing the Role of International Stocks of Knowledge and International Knowledge 
Spillovers: Simulation Exercise

The effects of international knowledge spillovers are captured by POOLKS, DISKS and 
CNTKS coefficients. However, since the relevant variables have been divided by their mean 
value and transformed by natural logarithms, their estimated coefficients (reported in 
Tables 5 and 6) represent the variation in patent count that is caused by a 1 per cent 
increase, other things being equal. Nonetheless, in order to better assess the magnitude of 
the effects of international spillovers on innovation outputs and to compare the explaining 
strength of different spillover indicators, we focus on plausible variations. In fact, differences 
between countries and between years are better captured by the standard deviation 
statistics than by a uniform 1 per cent increase. In particular, the standard variations, i.e., the 
ratios between the sample standard deviations and means, of POOLKS, DISKS and CNTKS 
indicators are equal to 11.68 per cent, 12.54 per cent and 17.10 per cent, respectively. 
To this aim, each knowledge production function input has been given a realistic shock, 
other things being equal, and the response of RPAT has been simulated using the 
coefficients of Tables 5 and 6. Results of simulations are reported in Table 7.

When international knowledge spillovers are measured by pooled international R&D 
stocks (POOLKS), a typical increase in knowledge spillovers causes the patent count of 
countries to increase respectively by 0.222, in the full model, and by 0.386 in the model that 
does not include period-specific indicators, while it is not significant in the model with no 
GDP. Therefore, we cannot confirm our Hypothesis 1 in a robust way. Likewise, when 
considering international spillovers mediated by distance (DISKS), the relevant increase is 
0.209 or 0.409 in the first two specifications, while it is still not significant in the model without 
GDP.

Instead, an increase in CNTKS yields an increase in the patent number count that is 
positive and significant throughout all model specifications. Thus, our Hypothesis 2 is 
confirmed. The RPAT variation is equal to 0.283, 0.423 or 0.165 (Table 7, models (d)). 
In other words, it seems that the R&D activities of connected countries have systematically a 
sizeable and significant impact on RE innovations, though it is smaller than the effect of 
domestic knowledge (DRD).

5.4. Additional Robustness Checks

A few complementary approaches have been adopted to deal with the possible presence of 
unit roots, heteroskedasticity and serial correlation of errors.

The stationarity of variables is a pre-requisite for the consistence of estimates. 
We acknowledge that unit roots have been detected in energy-related panel data analyses 
(Hübler and Keller 2010) and recent developments of econometrics warn against the 
presence of unit roots in cross-country panel data. Nevertheless, the test and treatment of 
unit roots in small micro-econometric panels are not without uncertainty because results are 
generally mixed (Baltagi 2013, 275 and 276). Thus, we view the unit root analysis as a 
relevant yet preliminary robustness check.14



We sought unit roots in all variables relying on the methods developed by Im, Pesaran,

and Shin (2003) and Levin, Lin, and James Chu (2002), i.e. the so-called IPS and LLC

tests.15 All the auto-regressive processes that have been tested allow for a global time trend

due to the significant correlation of time trend with almost all variables (Table 4). Because we

do not have precise conjectures about cross-country correlation for the model variables, we

consider both models that demean the series and models that do not.

Unit root tests reveal that the risk of spurious correlations is not significant; indeed,

because the dependent variable, RPAT, is found to be stationary, irrespectively of tests and

specifications. Results on regressors, instead, are mixed. The unit root tests of first-

differenced variables indicate that regressors may be either stationary or integrated of

order 1. We adopted a cautionary approach, and estimated model (3) after replacing all

regressors with their first-differenced counterparts. Some variables lose their significance

(e.g., DRD) or take unexpected signs (e.g., REC). Nevertheless, the PSM estimates

corroborate our central results, because the only explanatory variables that still have a

positive and significant impact after differencing are POOLKS and CNTKS (10 per cent

significance levels). Therefore, we conclude that our hypotheses are robust to possible

stationarity problems of some explanatory variables.

PSM estimates of Tables 5 and 6 already address overdispersion and cross-country

heterogeneity due to historical differences in innovation capacities, i.e. special forms of

heteroskedasticity. Nonetheless, the risk of downward-biased standard errors is not

eliminated, and a more general control is appropriate for corroborating empirical findings.

Table 7. Simulations: Variation in the number of RE patents (RPAT variation)

(b) (c) (d)

Independent

variables,

SD

Full

model

No

period

specific

variables

No

GDP

Full

model

No

period

specific

variables

No

GDP

Full

model

No

period

specific

variables

No

GDP

International knowledge spillovers

POOLKS 11.68 per cent 0.222 0.386 ns

DISKS 12.54 per cent 0.209 0.409 ns

CNTKS 17.10 per cent 0.283 0.423 0.165

Domestic knowledge sourcing

HC 17.03 per cent ns 0.082 ns ns ns ns ns 0.100 ns

DRD 180.00 per cent 0.587 0.680 0.454 0.500 0.535 0.461 0.691 0.821 0.574

Note: Independent variables are given a variation equal to the ratio between the sample standard deviation and the

mean value.

ns, not significant.

15 The twomethods are complementary. The LLCmethod can reject the presence of unit root tests in all panels, but it is

less suitable for small-size samples. The IPS method is more suitable for small-size samples as ours (N and T fixed),

but, at best, it can show that some panels are stationary.



16Results are available upon request from the authors.
17Results are available upon request from the authors.

In fact, a Wald test for groupwise heteroskedasticity has been run on ancillary linear 
regressions with fixed effects, and it shows that residuals are heteroskedastic.16 The 
Poisson Quasi Maximum-Likelihood (PQML) estimator with fixed effects and robust 
standard errors can be seen as a consistent and flexible alternative to negative binomial 
estimates (Wooldridge 1999a, 1999b; Czarnitzki, Glänzel, et al. 2009). PQML estimates of 
model (3) that are reported in Table A1 of the Appendix are weaker than their PSM 
counterparts (Table 5). Whether this is caused by heteroskedasticity of PSM estimates or by 
inefficiency due to the small sample size is unclear. However, it is comforting that CNTKS 
and OB survive even this check. In particular, PQML estimates corroborate our empirical 
findings on the role of cross-country connections in driving knowledge spillovers on the RE 
technologies.

Finally, PQML estimates of GDP coefficients are negative and significant, not 
differently from PSM estimates. PQML estimates are robust to cross-country 
heteroskedasticity, but not to serial correlation; moreover, the underlying model assumes 
unobserved fixed effects and Poisson distribution, differently from our main regressions 
(Table 5). Thus, we summarize the main results of two further checks of robustness, which 
deal with possible heteroskedasticity and serial correlation of our core regressions.17 We 
have chosen two compromise options, because to our knowledge standard methods for 
panel innovation counts do not estimate standard errors that are heteroskedasticity and 
autocorrelation consistent. First, we stick to the PSM negative binomial model with time 
period controls, and switch from random effects estimates to a pooled, or population-
averaged, method that estimates heteroskedasticity robust standard errors. It is 
encouraging that estimates of GDP coefficients lose any significance, while knowledge 
spillovers maintain significant and positive impacts. Values of POOLKS, DISKS and 
CNTKS coefficients are similar to those reported by Tables 5 and 6. Second, we abandon 
the assumption of negative binomial distribution, and estimate pooled OLS regressions 
that extend the Newey and West approach, and provide kernel-based standard errors that 
are both heteroskedasticity and autocorrelation consistent (Baum, Schaffer, and Stillman 
2007). The covariance matrix is computed after assuming the presence of arbitrary 
heteroskedasticity and serial correlation up to three lags. GDP coefficients are not 
significantly different from 0, but knowledge spillovers still have significant and positive 
impacts. Caution is necessary to interpret the latter results because they are not obtained 
from established methods for panel count data, but we believe that they confer, in 
combination with other ancillary analyses, a greater robustness to the empirical evidence 
illustrated by this paper.

6. Conclusions and Policy Implications

This paper addresses the role of international knowledge spillovers in RE innovations. 
Specifically, our empirical findings on 18 OECD countries observed in the period 1990–
2006 confirm that foreign R&D has a potential as knowledge source for advanced 
economies that are developing new RE technologies and, more particularly, that



international knowledge spillovers are a central element of climate-friendly technological

change. Thus, our empirical analysis aims to contribute to the scholarly and policy debate on

technological strategies that industrialized countries can adopt in order to cope with climatic

change challenges. Indeed, our analysis allows us to identify factors that enable developed

countries to build on foreign technologies and to join the environmental innovation arena.

Specifically, we find that a country’s innovative performance in the RE sector benefits from

other countries’ R&D in the same sector, but these benefits occur especially when the focal

country maintains repeated contacts and interactions with those other countries. Instead,

the empirical evidence on geographic distance as a barrier to the cross-country spread of

knowledge on RE technologies is mixed, thus strengthening the idea that knowledge

spillovers do benefit from established linkages between countries rather than being

automatically fostered by geographical proximity.

Concerning implications for the design of environmental innovation policies, our results

suggest that public energy R&D expenditure is a key input to innovation in the RE field, i.e. a

relevant element in global efforts toward carbon stabilization. Public support to research

should not be abandoned in favor of other measures, all the more because its effects

help follower countries to join the environmental innovation race. Consistently with results of

previous research (e.g., Bosetti et al. 2008; Dechezleprêtre, Glachant, and Ménière 2008;

Popp 2011), policies aimed at strengthening international knowledge flows should be

encouraged. Because linkages between countries are the outcome of various causes and

are inherently cross-sectoral, they are only marginally touched by a country’s efforts to

source knowledge on RE technologies, i.e. they are exogenous with respect to RE

innovative activities. Therefore, cross-country connections per se can hardly be the subject

of policy recommendations for the RE sector. Nevertheless, international policies that favor

technological cooperation between countries are warranted in order to reduce free-riding

risks without haltering international spillovers. Interestingly, technological cooperation can

be viewed as complementary to climate cooperation. An evolving strand of research

investigates exactly the design of international technology-oriented agreements, with the

purpose of remedying to the public good failure that characterizes climate stabilization

(Kemfert 2004). Finally, technological knowledge in the RE sector is more likely to flow

between countries that have already established intense mutual relations. International

institutions that govern climate policies, such as for instance the European Commission or

Intergovernmental Panel of Climate Change, should consider the presence of mutual

linkages between international technological partners as an implementation criterion of the

flexibility mechanisms for carbon reduction.

Our analysis has focused on connections related to bilateral trade flows as a proxy of

cross-country linkages, but it has not explored the effectiveness of alternative instruments of

cross-country interactions. This certainly ranks high in our research agenda as some

scholars argue that also FDIs are related to international knowledge transmission. Another

development of the present analysis could involve the extension to individual RE

technologies, which are likely to exhibit different technological patterns and different

proneness to benefit from foreign technological knowledge. However, as far as the latter,

and given our purposes, the current domain-level perspective seems to be acceptable. Most

climate-energy policies, a key variable of our model, are technology-neutral. Moreover,

since international knowledge diffusion has been shown to foster the development of RE

technologies overall, whatever their mutual differences, it can be claimed with greater
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18 It is worth acknowledging that, given the weighted variables adopted in our study, we are unable to disentangle the

role of trade flows from the role of international R&D stocks. We thank an anonymous reviewer for stimulating us to

clarify this point, which would certainly help to better address future research on that.

confidence that the coordination of climate-energy policies at the international level is
necessary. Although we believe that our analysis has yielded robust findings on spillovers in
RE technologies and the importance of international linkages,18 we recognize that a larger 
panel data sample would be necessary to attain more robust results on the presence of unit
roots. More in detail, we believe that a cross-country panel with a greater time span, as well
as more informative policy indicators, would be necessary in order to conclude about the
impact of climate-energy policies on RE innovations.
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Table A1. PQML models with robust standard errors (dependent variable: RPAT)

(a) (b) (c) (b)

lnHC 0.096 0.035 0.018 0.012

(0.444) (0.420) (0.428) (0.349)

lnDRD 0.388 0.345 0.348 0.320

(0.242) (0.246) (0.242) (0.240)

lnPOOLKS 1.804

(1.337)

lnDISKS 1.476

(1.236)

lnCNTKS 2.895**

(1.248)

OB 0.026* 0.035* 0.033* 0.038*

(0.016) (0.018) (0.018) (0.019)

REC 0.002 20.002 20.001 20.003

(0.008) (0.010) (0.010) (0.009)

FIT 20.053 20.050 20.053 20.039

(0.048) (0.046) (0.048) (0.041)

GDP 20.135** 20.228** 20.202** 20.296***

(0.057) (0.092) (0.082) (0.090)

CGI 0.267 0.162 0.179 0.076

(0.200) (0.214) (0.207) (0.201)

Fixed effects Yes Yes Yes Yes

1996_2000 0.171 0.142 0.143 0.127

(0.158) (0.159) (0.163) (0.154)

2001_2006 0.413** 0.329* 0.341* 0.254

(0.200) (0.194) (0.201) (0.193)

No. obs. 285 285 285 285

Note: PQML models with robust standard errors: Quasi-Maximum Likelihood estimates of fixed-effects Poisson

models with robust standard errors (Wooldridge 1999b; Simcoe 2008). Standard errors in parentheses, *p , 0.10,

**p , 0.05, ***p , 0.01.
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