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Transition from regular to irregular reflection of cylindrical
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An analytical model for the evolution of regular reflections of cylindrical converging shock waves
over circular-arc obstacles is proposed. The model based on the new (local) parameter, the perceived
wedge angle, which substitutes the (global) wedge angle of planar surfaces and accounts for the
time-dependent curvature of both the shock and the obstacle at the reflection point, is introduced. The
new model compares fairly well with numerical results. Results from numerical simulations of the
regular to Mach transition—eventually occurring further downstream along the obstacle—point to
the perceived wedge angle as the most significant parameter to identify regular to Mach transitions.
Indeed, at the transition point, the value of the perceived wedge angle is between 39◦ and 42◦ for all
investigated configurations, whereas, e.g., the absolute local wedge angle varies in between 10◦ and
45◦ in the same conditions. Published by AIP Publishing. https://doi.org/10.1063/1.4989384

I. INTRODUCTION

The so-called reshaping of shock waves consists in the
modification of the shock front shape, following its interaction
with a disturbance, e.g., an obstacle or another wave.1 The
reshaping of converging cylindrical or spherical shock waves
by means of solid obstacles can prevent the onset of well-
known surface instabilities that can reduce the effectiveness
of shock waves focusing on, e.g., inertial confinement fusion
applications. Shock reshaping via obstacle interaction involves
two main physical mechanisms, each of which represents a
very interesting challenge.

The first one is the general focusing of converging shock
waves. Unlike the case of planar shock waves, indeed, the
computation of the solution in the presence of a converging
shock wave is more difficult due to, e.g., the non-uniform flow
field. Theoretical, experimental, and numerical studies have
provided general knowledge on the problem. A milestone was
derived independently by Guderley2 in 1942 and by Butler3 in
1954 for cylindrical and spherical shock waves, propagating
in a non-viscous flow. This relation, hereafter referred to as
“Guderley’s law,” provides a self-similar power law correlat-
ing the shock radius and time. This law applies to imploding
cylindrical or spherical shock waves in the proximity of the
focus axis or point, respectively.

The second mechanism consists in the reshaping of a
shock wave. As widely demonstrated by previous studies,4

depending on the combination between fluid-dynamic prop-
erties (the shock Mach number and the gas behavior) and the
geometry of the obstacles, diverse types of reflection occur
and determine the final shape and stability of the shock. Albeit
our understanding of the unsteady interaction between shock
waves and solid surfaces is to this day less complete than that

a)Electronic mail: federica.vignati@polimi.it

of steady reflections, it is well established that such interaction
results in a number of peculiar wave systems.5 The so-called
“pseudo-steady” reflections, concerning planar shock waves
interacting with planar geometries, may result either in a
“Regular Reflection” (RR) or in an “Irregular Reflection”
(IR),6 depending on the only two influential parameters, i.e.,
the incident shock Mach number and the obstacle wedge angle,
both constant. A regular reflection is composed only by the
incident shock and the reflected wave, whereas an irregular
reflection consists of an additional shock wave and a slip line.
The latter group includes “Mach Reflections” (MRs), formed
by an incident shock, a reflected wave, and a Mach stem, all
intersecting at the so-called “Triple Point” (TP), and a set of
non-Mach-type irregular reflections that are observed in the
diffraction of weak shock waves over very thin obstacles.7–11

As observed in Ref. 5, the extension of pseudo-steady
results to the case of cylindrical shock waves interacting with
curved obstacles is not straightforward. Indeed, the observed
reflection is genuinely unsteady due to the increasing propaga-
tion speed of converging shock waves2,12 and the convexity of
both the shock and the obstacle. Moreover, during unsteady
reflections, the transition from regular to Mach reflections
is observed to occur.13 Takayama and Sasaki14 assessed the
influence of both the obstacles’ curvature radius and the lead-
ing edge wedge angle on the transition, in the diffraction of
planar shock waves by cylindrical obstacles. The direct com-
parison between unsteady reflections with the pseudo-steady
case allowed Takayama to point out the differences between
the two processes. Their analysis was made possible by prov-
ing that a class of unsteady shock reflections can be treated as
a sequence of pseudo-steady ones, by means of a comparison
of the respective polar curves.15

This paper explores in detail the reflection of cylindrical
converging shock waves over circular-arc obstacles. First, a
simple analytical model is derived for describing the propa-
gation of regular reflections and compared to numerical data.

1070-6631/2017/29(11)/116104/11/$30.00 29, 116104-1 Published by AIP Publishing.
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A novel parameter, termed the perceived wedge angle θP
w, is

introduced to account for the local curvatures of both the shock
and the obstacle at the reflection point. Then, Takayama’s work
on the regular-to-Mach transition is extended to the case of
cylindrical converging shocks. Starting from regular reflec-
tions, the shock evolution is examined until the transition
to Mach reflections, which is observed and correlated to the
diverse factors.

To assess the model correctness, numerical simulations
are performed on a number of configurations, identified by
the obstacle thickness-to-chord ratio t/c, leading edge radius
rLE, and incident shock Mach number MLE

s . The shock prop-
agates in dilute air, modeled as an ideal gas with con-
stant specific-heat ration γ = 1.4. Viscous phenomena are
assumed to be confined in the boundary layer,16 whose thick-
ness is considered negligible with respect to the reference
scales of the problem.17 Therefore, results are disengaged
from the spatial scale. The software adopted for the numer-
ical simulation of the reflections is the FlowMesh code,
a solver for Euler equations developed within the Depart-
ment of Aerospace Science and Technology of Politecnico
di Milano.18,19

Section II of this paper includes a brief description of
the domain of investigation, i.e., the set of parameters used to
identify the reflection, and the features of the numerical simu-
lations, recalling the methodology and the results obtained in
Refs. 20 and 21. A simple model describing the evolution of
regular reflection is presented and discussed in Sec. III. The
model applies to the evolution of the novel parameter θP

w while
the shock wave propagates along the obstacle, as a function
of the local shock Mach number. The dynamic transition from
regular to Mach reflections is observed, and the role of the
obstacle thickness and radius of curvature is duly discussed in
Sec. IV. Conclusions and final considerations are reported in
Sec. V. Eventually, the Appendix includes the detailed demon-
stration of the model equation which describes the evolution
of the regular reflection.

II. DESCRIPTION OF THE NUMERICAL EXPERIMENTS

This work stems from the results reported in Ref. 5, which
provide a map of the occurrence of the diverse reflection types
of cylindrical converging shock waves resulting at the lead-
ing edge of circular-arc obstacles. For this reason, the same
parameters, computational domain, and numerical features are
adopted. The reader is referred to Refs. 5 and 21 for a detailed
description of the design of experiments.

A. Geometric parameters and operational conditions

With reference to Fig. 1, unsteady reflections depend on
several factors, including the leading edge wedge angle θLE

w ,
the incident shock Mach number MLE

s , the obstacle radius of
curvature Ro, and the distance of the obstacle leading edge
from the focusing point rLE.5 All the geometrical variables are
made dimensionless with the semi-chord length. The focus
point of the shock is located at (0, 0). The obstacles are defined
as a circular arc whose constant semi-chord is c = 1 and whose
variable semi-thickness is t. Therefore, the obstacle geometry
is fully defined by the parameter t/c only. θLE

w and Ro both

FIG. 1. Extracted from Ref. 5 [F. Vignati and A. Guardone, “Leading edge
reflection patterns for cylindrical converging shock waves over convex obsta-
cles,” Phys. Fluids 28, 096103 (2016). Copyright 2016 AIP Publishing LLC.]:
Sketch of the computational domain and geometrical features. A half-obstacle
is represented, with leading-edge radius rLE and leading-edge wedge angle
θLE

w , depending on the thickness-to-chord ratio t/c. The obstacle profile is a
circular-arc, with the center in (x0, y0) and radius Ro. The shock is depicted
before the reflection, at a radius Rs > rLE, converging towards the focus point
(0, 0) with a Mach number Ms.

depend only on the value of t/c as follows:

Ro =
c
4

(
t/c +

1
t/c

)
,

θ
LE
w =

1
2

[
π − arctan

(
1
t/c
− t/c

)]
.

(1)

The computational domain and the geometry are sketched
in Fig. 1, reported also in Ref. 5.

In this work, the value of t/c is varied on seven levels,
corresponding the latter to the cylindrical case,

t/c = 0.07 · (6.5, 7, 8, 9, 11, 13) , 1. (2)

The obstacle is located in three positions, corresponding
to rLE = 2.8, 5.6, and 7.

The shock intensity is described by the value of Ms eval-
uated at a brief distance upstream the obstacle leading edge.
MLE

s evaluated at rLE = 2.8 is linearly varied on ten levels, from
2.2 to 6.7. The generation of the shock wave is simulated
imposing a circumferential pressure and density step far
upstream the obstacle leading edge on still gas, at a radial
distance of 10c from the focus point. This distance was cho-
sen to guarantee self-similar convergence of the shock waves.2

The breakup of the initial step profile results in a three-wave
system, including a converging shock wave, a contact disconti-
nuity following the shock wave, and a rarefaction wave moving
outwards. The internal pressure Pi and density remain constant
during the simulations, whereas the initial external pressure
is Pe = βPPi. The parameter βP, namely, the initial pressure
ratio, is the controlled parameter to characterize the diverse
shock waves. The shock intensity, indeed, is proportional to
the value of Ms evaluated at 0.4c upstream the obstacle lead-
ing edge. The values of βP are chosen in order to have equally
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FIG. 2. Extracted from Ref. 5 [F. Vignati and A. Guardone, “Leading edge
reflection patterns for cylindrical converging shock waves over convex obsta-
cles,” Phys. Fluids 28, 096103 (2016). Copyright 2016 AIP Publishing
LLC.]: Leading edge reflection types. Full lines represent the partition of
the plane according to the length-scale criterion for pseudo-steady reflec-
tions. The diverse symbols represent different reflection types of converg-
ing shock waves over circular-arc obstacles, as observed from numerical
simulations. Where two different symbols overlap, it was impossible to
clearly determine whether the occurring Mach reflection is transitional or
double.

distributed MLE
s over ten levels, from 2.2 to 6.7, evaluated in

correspondence with the leading edge of the obstacle located at
rLE = 2.8. Each of these levels of MLE

s , therefore, corresponds
to a value of βP.

The influence of the leading edge radius rLE on the reflec-
tion process is two-fold since it determines the radius of the
shock wave and hence its Mach number MLE

s at the point of
first interaction. In particular, the lower the value of rLE, the
larger the one of MLE

s is.
The choice of these parameters follows from the parti-

tion of the plane MLE
s −θ

LE
w reported in Fig. 2, extracted from

Ref. 5, which allows us to observe the configurations which
result in regular reflections at the obstacle leading edge.

The numerical experiments are distributed on a full fac-
torial design,22 for an overall number of 210 treatments, as
reported in Table I.

B. Features of the numerical simulations

Numerical simulations are carried out using the
FlowMesh code, developed at the Department of Aerospace
Science and Technology of Politecnico di Milano.18,19 The

TABLE I. Test matrix for the numerical experiments. Considered parameters
are the thickness-to-chord ratio t/c, the radial coordinate of the obstacle leading
edge rLE, and the initial pressure ratio βP. In all tests, the operating fluid is air
in standard conditions, with γ = 1.4.

Thickness-to-chord t/c 0.445, 0.49, 0.56, 0.63, 0.77, 0.91, 1
ratio
Chord-normalized rLE 2.8, 5.6, 7
leading edge radius
Initial pressure ratio βP 11, 16, 27, 36, 48, 60, 75, 90, 110, 130

solver is a standard finite-volume unstructured-grid solver;
the unsteady Euler equations for compressible inviscid flows
are solved by using a high-resolution flux (centered and Roe
scheme, van Leer limiter, see Ref. 23) and by using the back-
ward Euler implicit time integration scheme. The latter is
only first-order accurate and was preferred over higher-order
backward differentiation formulae for robustness.

Numerical simulations are performed by means of a multi-
domain procedure, adopted to reduce the overall computa-
tional cost. The method, proposed by the authors, is duly
described in Refs. 20 and 21.

References 5 and 21 report an assessment on the adopted
space and time discretization. Since the space and time scales
of the reflection patterns described in Refs. 5 and 21 are
related to the evolution of the regular reflection investigated in
this work, the validation of numerical results performed in
Refs. 5 and 21 extends to the results presented here.
Reference 21 includes also an assessment on the shock
wave position in time to verify the accuracy of numerical
results.

Therefore, calculations are performed on a fixed grid
with normalized node spacing ∆x = 0.002. Hence, the num-
ber of nodes of two-dimensional meshes ranges between
200 000 and 500 000 depending on rLE. An a priori mesh
refinement is performed in correspondence with the obstacle
leading edge to capture the details of the shock diffraction.
The adopted time step is ∆τ/τref = 1.8 × 10�4, where τref

is the reference time, τref = c/
√

TiR, where R is the mass-
averaged gas constant R = R/∑nc

h=1 Mhzh, with nc being
the number of components of the gas mixture, Mh being
the molecular mass, and zh being the molar fraction of the
hth component. In this work and in Ref. 21, air is modeled
as a binary mixture of mostly diatomic gases, i.e., nitrogen
(78%) and oxygen (21%) and therefore R = 287.046 J/(kg K).
The use of implicit schemes in the FlowMesh code18 allows
us to reduce the limitations on the grid spacing due to the
Courant-Friedrichs-Lewy (CFL) condition; in all the investi-
gated cases, the ratio (s ∆τ) /∆x is below 0.7, where s is the
shock speed.

III. REGULAR REFLECTION EVOLUTION

In the regular reflection of cylindrical shocks over
circular-arc obstacles, both the local shock Mach number and
the local angle formed by the shock and the reflecting wall
change during time, as the shock propagates along the obstacle.
Note that in the pseudo-steady case, such an angle is con-
stant. A perceived wedge angle θP

w is defined here as the angle
formed by the obstacle tangent line and the shock radius, both
originated from the reflection point.

A. Derivation of the θP
w−Ms correlation

An analytical correlation between Ms and θP
w is derived

in the following, based on geometrical considerations and
Guderley’s law,2

Rs = r̃
(
1 −

τ

τ̃

)α
, (3)

where α is the self-similarity exponent (characteristic of the
problem symmetry and the thermodynamic model) and r̃ and
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FIG. 3. Definition of the angles adopted in the model of temporal evolution
of the combinations θP

w−Ms in a regular reflection (the reflected wave is not
reported for clearer visibility). The thick solid line represents the reflecting
wall, that is, the union of the obstacle and the lower symmetry line. The
incident shock wave is is represented at a generic radius Rs converging with a
Mach number of variable value Ms. The angle θP

w is the wedge angle perceived
by the shock wave during its convergence, which varies in time to account for
the variable slopes of the shock waves and of the obstacle at the reflection
point. λ is the azimuthal coordinate of the shock wave in a polar coordinate
system. The angle φ is the polar angle of the obstacle, centered in the center
of the obstacle osculating radius.

τ̃ are constants of the problem satisfying the condition[
r̃ = r(τ = 0)

]
⇐⇒

[
r(τ = τ̃) = 0

]
. (4)

The latter is used to express the local shock Mach number
as a function of Rs, whereas geometrical properties allow us
to recast angular values to absolute and shock-obstacle rela-
tive positions, which are functions of Rs as well. The plane
θLE

w −MLE
s , therefore, can be interpreted as the initial config-

uration of regular reflections since at the beginning of the
reflection θP

w ≡ θ
LE
w and Ms ≡ MLE

s . Starting from the leading
edge configuration, each regular reflection will propagate on a

generic θP
w−Ms plane along a trajectory defined by the relation

derived in the following.
With reference to Fig. 3, θP

w can be expressed as a function
of the two angles φ and λ as follows:

θ
P
w =

π

2
− φ + λ. (5)

These angles represent, respectively, the azimuthal coor-
dinates of the obstacle and of the shock wave in a polar
coordinate system. Analytical expressions for φ, λ, and θP

w
are derived in the Appendix and are reported in Table II and
marked as Eqs. (A26), (A27), and (A35), respectively.

B. Discussion on the model validity

The relation between the shock position and time by
means of Eq. (3) is correct only for genuinely self-similar
cases, such as the cylindrical implosion, for which α = 0.834
(in polytropic ideal gases).2,24–27

It is however well known14 from approximate theoretical
considerations and numerical simulations on cylindrical
implosions that for each combination

(
Ms, θLE

w ≥ θcr
w

)
, there

exists a transition angle θtr
w < θcr

w such that a transition from
regular to Mach reflection occurs when θP

w = θ
tr
w. It is there-

fore expected that, regardless of the obstacle thickness and the
local shock concavity, θP

w ≈ 0 if xs ≈ x0. Therefore, the regular
reflection must eventually become a Mach reflection. This will
cause the shock front to consist of the incident shock is and the
Mach stem and therefore to depart from the cylindrical shape
and from the relation in Eq. (3).

However, also after the RR→MR transition, far from the
obstacle the shock shape still obeys axisymmetrical conditions.
The perturbation, indeed, propagates along the circumferen-
tial direction only up to the triple point: farther from the TP

TABLE II. Complete expression of the angles φ, λ, and θP
w, which depend on the geometry of the obstacle and are a function of Ms, with Rs = r̃

(
Ms/M̃s

) α
α−1

from Eq. (A34).

Angle Expression Reference equations

φ φ(Rs; xo, yo, Ro) = arccos
*..
,

R2
s − x2

0 − y2
0 − R2

o

2Ro

√
x2

0 + y2
0

+//
-

+ arcsin
*..
,

y0√
x2

0 + y2
0

+//
-

(A26)

λ λ(Rs; xo, yo, Ro) = arcsin




y0 + Ro sin


arccos

*..
,

R2
s − x2

0 − y2
0 − R2

o

2Ro

√
x2

0 + y2
0

+//
-

+ arcsin
*..
,

y0√
x2

0 + y2
0

+//
-


Rs




(A27)

θP
w

π
2 − φ(Rs; xo, yo, Ro) + λ(Rs; xo, yo, Ro)

= π
2 − arccos



*.
,

Ms

M̃s

+/
-

2α
α−1

r̃2−x2
0−y2

0−R2
o

2Ro

√
x2

0+y2
0



− arcsin

(
y0√

x2
0+y2

0

)

+ arcsin




y0(
Ms

M̃s

) α
α−1

r̃

+
Ro(

Ms

M̃s

) α
α−1

r̃

sin




arccos



(
Ms

M̃s

) 2α
α−1

r̃2 − x2
0 − y2

0 − R2
o

2Ro

√
x2

0 + y2
0



+ arcsin
*..
,

y0√
x2

0 + y2
0

+//
-







(A35)
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position, the shock remains cylindrical. Therefore the overall
time-to-focusing τ̃ and convergence rate α remain the same.
In case of more than one obstacle, the model fails because
the multiple Mach reflections—two for each obstacle—would
influence all the shock front shape, as it is in the case
of multiple obstacle configurations, inducing the so-called
shock reshaping.28 It was however verified29 that if the
reshaped shock conserves a high level of symmetry (i.e., if
obstacles are symmetrically arranged along the azimuth so
that the reshaped shock is a symmetric polygon), the shock
position with respect to time still follows a power-law trend,

FIG. 4. Predicted evolution of Ms and θP
w in regular reflections according to

Eq. (A35). (a) Predicted evolution of Ms and θP
w in regular reflections (dashed

line) and numerical results (•, I,� ) for diverse initial conditions. Time
increases from top to bottom. (b) Percentage deviation between theoretical
and numerical values.

even though with different α, r̃, and τ̃ constants. Moreover,
the higher the number of edges of the polygon, the closer
the propagation will follow that of the axisymmetric cylin-
drical shock in terms of values of α, r̃, and τ̃, as observed
in Refs. 21 and 29. In this framework, it is assumed that
the values of the three constants do not vary with respect
to the axisymmetric problem and that therefore the effect
of the RR → MR transition on these parameters can be
neglected.

C. Comparison of Eq. (A35) with numerical results

The accordance of the analytic law (A35) with the numer-
ical results is reported in Fig. 4, concerning a regular reflection
over one circular obstacle. The local Mach number of the shock
is measured by means of the procedure described in Ref. 21.
In Fig. 4, the time is increasing from top (θLE

w = π/2) to bottom
(θLE

w > 0 when φ = π/2). During the evolution of the regu-
lar reflection, θP

w spans from θLE
w to the value of the perceived

angle where the regular reflection terminates and the transition
into a Mach reflection occurs.

The average trajectory along the θLE
w −Ms plane agrees

fairly well with the numerical prediction, even though
dispersion of the sampled values is observed. The error is pos-
sibly due to the technique adopted to evaluate the value of Ms

from the numerical simulations. Indeed, the latter is assumed
to be proportional to the difference between the shock radii at
different time steps, and therefore the error on Ms includes the

FIG. 5. Transition from (a) regular reflection to (b) Mach reflection for a
shock wave impinging on a cylindrical obstacle with Ms = 2.0 (βP = 11)
at rLE = 5.6. The shock wave configuration during the transition reproduces
the well-known case of RR→ MR transition investigated by Takayama and
Sasaki14 and Heilig.31
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contributions of two measurements and propagates towards
the following time step.

A persistence of regular reflections is observed for
θLE

w < θcr
w , in accordance with the observations performed

in Ref. 14.

IV. NON-LEADING EDGE TRANSITIONS

As observed by several theoretical and experimental stud-
ies dealing with the reflection of weak planar shocks over
cylindrical obstacles,14,30,31 due to the loss of self-similarity
with respect to the pseudo-steady problem, θP

w varies along
time, and therefore the reflection may possibly change from
regular to Mach type during the shock propagation. Authors
assessed the effect of the initial wedge angle and the radius of
curvature of the obstacle.

In this work, the RR −→ MR transition is observed also
for cylindrical shocks. Figure 5 reports the temporal evolution
of the reflection pattern of a shock wave generated by an initial
pressure ratio βP = 11. The shock with MLE

s = 2.0 undergoes
a transition from a regular reflection to a Mach type one.

In the following, the RR −→ MR transition will be
discussed for obstacles which can produce a regular reflec-
tion at the leading edge. With reference to numerical results
reported in Fig. 2, a regular reflection occurs for obstacles with
t/c = 0.445, 0.49, 0.56, 0.63, 0.77, 0.91, and 1.0.

Figure 6 illustrates the RR−→MR transition points along
the obstacle profile. On each picture, data indicated with
the same marker represent reflections over obstacles with a

common rLE value, regardless of the value of the shock Mach
number. The detection of the transition points was achieved
by means of simple visual observation of the computed flow
fields and did not require the development of an automatic pro-
cedure. For each analyzed configuration, the value of the coor-
dinates of the transition point (xtr, ytr) is sampled. The absolute
transition angle θtr

w is defined here as the angle between
the local obstacle tangent line and the chord direction. θtr

w,
therefore, is evaluated as

θ
tr
w =

π

2
− arctan

(
ytr + y0

xtr − x0

)
. (6)

The perceived transition angle θ
tr,P
w and the local shock

Mach number at the transition are calculated by means of
Eq. (A35).

From Fig. 6, one observes that the larger the value of t/c,
the lower the value of θtr

w and that the larger the value of rLE,
the higher the value of θtr

w is. The effect of rLE is in accordance
with reference results because the reflection of weak planar
shocks over convex obstacles represents a limit of the present
case, that is, for rLE −→ ∞.

The main error source in the measurement can be
attributed to the observation that, immediately after the
RR −→ MR transition, the growth of the Mach stem is much
slower than during the following evolution of the Mach reflec-
tion; this makes it difficult to detect the transition of the regular
reflection into the Mach reflection, resulting in a maximum
measurement error of ±2.0◦ in the determination of θtr

w and,
therefore, θtr,P

w .

FIG. 6. RR −→ MR transition for increasing t/c and rLE: rLE = 2.8 ( ), rLE = 5.6 ( ), and rLE = 7 ( ). On each picture, data indicated with the same marker
represent reflections over obstacles with a common rLE value but different shock Mach numbers.
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In Fig. 7, the effect of the shock Mach number is shown.
Each row of the array of pictures in Fig. 7 is associated

with a diverse rLE value. The left column represents the transi-
tion points in terms of global quantities, i.e., θtr

w and MLE
s . On

the contrary, the pictures on the right column depict the local
values of wedge angle θtr,P

w and Ms at the transition. Each line
represents the transition angle as a function of the shock Mach
number for a diverse obstacle t/c.

With reference to Figs. 7(a), 7(c), and 7(e) (left column of
Fig. 7), it is observed that the absolute θtr

w is affected mainly by
the obstacle thickness and less by the shock intensity, as in the
self-similar case.14 Indeed, from Fig. 7, no evident trend can
be highlighted due to the effect of the shock Mach number. On
the contrary, for a given combination of rLE and βP, it can be
observed that, in general, the larger the value of t/c, the lower the
value ofθtr

w is. Therefore, the existence of a regular reflection in
the presence of wedge angles which would generate leading
edge Mach reflections is more relevant for larger t/c values.
Under the qualitative point of view, the effect of rLE is found

to influence the range of variability of the transition angles
for diverse t/c values: θtr

w ranges about from 10◦ to 40◦ for
rLE = 2.8, from 27◦ to 41◦ for rLE = 5.6, and from 30◦ to 43◦

for rLE = 7.
The dependence of θtr

w on t/c can be expressed in terms
of Ro and θLE

w , in accordance with Eq. (1). In particular, θtr
w

is higher if Ro is larger and therefore if θLE
w is smaller. The

first result—the relation between the transition angle and the
obstacle curvature—is in accordance with the observations in
Refs. 14 and 30 on the reflection of planar shock waves over
convex obstacles. In these studies, indeed, an increasing trend
between Ro and θtr

w was observed. The second result, i.e., the
decreasing trend between θLE

w and θtr
w, seems to differ from the

results of Ref. 14 where, on the contrary, an increasing trend
between θLE

w and θtr
w was observed. In the cited reference, how-

ever, the effects of Ro and θLE
w were assessed independently.

On the contrary, in this work, both Ro and θLE
w are accounted

for via the parameter t/c, and therefore their influence cannot
be observed separately.

FIG. 7. Transition angles versus shock
Mach number parametrized on t/c and
rLE: absolute values (left column, )
and values perceived at the transition
(right column, ).



116104-8 F. Vignati and A. Guardone Phys. Fluids 29, 116104 (2017)

If local values of the wedge angle and shock Mach number
are considered, i.e., the perceived angle θtr,P

w and the transition
Ms [Figs. 7(b), 7(d), and 7(f), the right column of Fig. 7], the
contribution due to t/c is significantly weaker than in the case
of the absolute transition angle. θtr,P

w becomes independent
from the values of both MLE

s and t/c. Moreover, the effect of
rLE becomes almost negligible since the range of variability
of θtr,P

w remains the same—about from 37◦ to 43◦—for all the
diverse investigated rLE values.

Unlike geometric factors, the shock Mach number appears
to have a weak or negligible influence on both the values of θtr

w
and of θtr,P

w in the considered range of parameters. Therefore,
to better assess the effects of the most relevant factors, i.e.,
t/c and rLE, on the RR −→ MR, the Mach number will be
neglected in the following analysis. In Fig. 8, each point of
the diagram represents the average transition angle for a given
combination of t/c and rLE, which is computed on the average
value for all MLE

s . The absolute and the perceived transition

FIG. 8. Average (a) absolute and (b) perceived transition angles versus t/c and
parametrized on rLE ( ). For each point, the range of variability due to Ms

is indicated by the bar .

angles are represented in Fig. 8(a) and Fig. 8(b), respectively.
For each obstacle geometry (combination of t/c and rLE), the
range of variability of the transition angle due to the shock
Mach number is represented by a vertical bar centered in the
mean value of θtr

w.
As observed above, θtr

w exhibits a monotonically decreas-
ing trend versus t/c, whose average slope is influenced by rLE.

On the contrary, θtr,P
w does not present a significant depen-

dence on t/c, being the average slopes of the curves almost null.
Moreover, all the three curves associated with the three val-
ues of rLE become completely overlapped. The above indicates
that θtr,P

w is not influenced by rLE, that is, the shock curvature,
to a first degree of approximation.

The weak dependence of θtr,P
w on all the other parameters,

i.e., t/c, Ms, and rLE, suggests that the perceived wedge angle
is the most significant parameter to identify regular to Mach
transitions.

V. CONCLUSIONS

Numerical simulations were performed to investigate the
evolution of the regular reflection of cylindrical converging
shock waves over circular-arc obstacles. The adopted gas was
air in dilute conditions, and a constant specific-heat ratio was
assumed. Two solvers for Euler equations are used to compute
the solution, the first being in one-dimensional axisymmetri-
cal form—for the simulation of the cylindrical shock onset
and propagation—and the second one in the two-dimensional
Cartesian formulation for the simulation of the shock-obstacle
interaction. A multi-domain procedure was set up to compute
the interface between the two solutions.

The novel parameter perceived wedge angle was intro-
duced to account for the unsteady evolution of the curvatures
of both the shock wave and the obstacle at the reflection point.
A model for the description of regular reflections was devel-
oped, which allows us to trace the combinations of the local
Ms and the perceived local wedge angle θP

w during the shock
propagation in time. The value of θP

w predicted by the model
is in good accordance with numerical results.

The value of θP
w changes during the shock convergence,

and therefore a transition from regular reflection to Mach
reflection is observed. The combination between the wave
Mach number Ms of the incident shock and the local wedge
angle θtr

w which triggers the transition is computed for the first
time for diverse values of the parameter t/c, which includes the
effects of both the leading edge wedge angle and the obstacle
radius of curvature Ro. This allows a comparison with the lit-
erature, showing good agreement in the trend between θtr

w and
Ro, but a discording one between θtr

w and θLE
w with respect to

Ref. 14. Since the present work adopts a different set of vari-
ables with respect to the work of Takayama and Sasaki,14 it is
not clear whether the latter poor agreement is due to different
phenomenology or due to the stronger effect of Ro rather than
θLE

w in the case of converging shock waves.
Numerical results suggest that the new parameter θP

w is
likely the most important parameter to describe the evolution
of the regular reflections and their evolution into Mach reflec-
tions. Indeed, θtr,P

w , i.e., θP
w at the transition, is between 39◦

and 42◦ regardless of t/c, Ms, and rLE, whereas the classical
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parameter θtr
w is in between 10◦ and 45◦. This allows us to

empirically define for the first time a geometrical invariant,
i.e., θP

w, within the unsteady reflection framework.
A final remark concerns the range of validity of the pro-

posed results. It is worth noticing, indeed, that results reported
in this work have been derived under strong assumptions, and
therefore they represent an empirical description of cylindri-
cal shock reflections over circular-arc obstacles. In the detail
of the RR −→ MR transition, indeed, the dependence of the
transition angle on the shock Mach number is assumed to be
a second-order effect, and therefore it was not further investi-
gated. On the contrary, the advantage of this approach is that it
covers the whole range of admissible obstacle thickness: with
reference to Fig. 2, for MLE

s ≈ 2 and higher, the dependence of
θcr

w on the incident shock Mach number is negligible, possibly
null. Therefore, the effects of all the possible t/c values which
generate a leading edge regular reflection are fully explored in
Secs. III and IV.

This implies that the correlations derived in Secs. III and
IV can be adopted even if they are known in advance to pro-
vide only a phenomenological description. The reason is that
their predictive ability is expected to be fairly good albeit their
simpleness because the domain on which they can be applied
is coincident with the one used to define them.

The only parameter whose effect is neglected, due to its
weak effect, is the (local or incident) shock Mach number.
However, for shocks stronger than the explored ones, high tem-
perature effects become non-negligible, and therefore the poly-
tropic ideal gas model cannot apply. On the contrary, if weaker
shocks are considered, it is necessary to keep into account that
the physics of weak shock reflections32 is much more complex
than the one used to describe regular and Mach reflections, and
the required computational resources increase, too.33 There-
fore, different computational methods and assumptions would
be required to describe the reflection of weak or very strong
shocks. In conclusion, it is the authors’ opinion that the domain
of shock Mach numbers where the proposed correlations are
valid cannot be further extended.

APPENDIX: ANALYTICAL EXPRESSION FOR ANGLES

In this appendix, the analytical expressions for the angles
φ, λ, and θP

w in Table II are derived.
The angles φ and λ are reciprocally linked through the

generic angles δ and ψ as in Fig. 3. The latter two are the
angles formed with the obstacle chord—i.e., the horizontal
axis—by the lines tangent, respectively, to the shock wave and
to the obstacle at the reflection point, named I. ε is a dummy
angle used only for the derivation of Eq. (5). The two points
S and O indicate the focus point and the center of the obstacle
osculating circle, respectively. Other Latin uppercase letters in
Fig. 3 are dummy variables used to indicate reference points
used to define the angles. The model purpose is to correlate
θP

w and Ms in a regular reflection, and therefore it is valid for
φ ∈

[
φLE , π2

]
.

With reference to the nomenclature introduced in Fig. 3,
the line IE is the tangent line to the shock wave at the reflection
point. SI connects the focus point to the reflection point, and
therefore it is also a radius of the circumference representing

the incident shock wave is. For this reason, the two segments
SI and IE are perpendicular. The line FI is the tangent line of
the obstacle at the reflection point I and divides the right angle
ŜIE into two parts. Therefore, θP

w is the complementary of the
angle F̂IE, termed ε,

SI ⊥ IE =⇒ θ
P
w =

π

2
− ε. (A1)

The point A is in the intersection between the line FI and the
lower symmetry line. Therefore, the points F, I, and A belong
to the straight line FA. The segment IB is a horizontal line
passing by the reflection point. Therefore, the angle F̂IA = π
can be expressed as the sum of three angles, i.e., ε, B̂IA, and
their supplementary, named δ,

F̂IA = π =⇒ ε = π − δ − B̂IA. (A2)

The two lines SA and IB are parallel by definition, and they
are crossed by the line IA. The two angles B̂IA and IÂS are
alternate interior angles, and therefore they have equal values.
For this reason, they will be both referred to as ψ,

IB ‖ SA =⇒ B̂IA = IÂS =: ψ. (A3)

The combination of Eqs. (A2) and (A3) provides the expres-
sion of ε as a function of δ and ψ,

ε = π − δ − ψ. (A4)

It is now necessary to evaluate the angles δ and ψ. The
line DI is adjacent to the line OI, which is the radius of the
obstacle passing by the reflection point. For this reason, the
lines DI and IA are perpendicular, and the line IB subdivides
the right angle D̂IA into two,

DI ⊥ IA =⇒ ψ =
π

2
− D̂IB. (A5)

Since IB and OH are the horizontal lines, the two angles D̂IB
and IÔH are the corresponding angles of the two parallel lines
IB and OH cut by the transversal line DO. Therefore, D̂IB and
IÔH are the equal angles of value φ,

OH ‖ IB =⇒ D̂IB = IÔH =: φ. (A6)

Equations (A5) and (A6) provide the correlation between the
dummy angle ψ and the obstacle polar angle φ,

ψ =
π

2
− φ. (A7)

The other angle used to define ε, i.e.,δ, corresponds to the angle
between the segments IB and EI. The angle ÊIB is crossed
by the segment IC and subdivided into the two angles ÊIC
and ĈIB. Moreover, IC is also adjacent to SI and therefore
perpendicular to the shock tangent line EI. For this reason, the
angle δ is obtained by the sum of the right angle ÊIC and the
angle ĈIB,

EI ⊥ IC =⇒ δ =
π

2
+ ĈIB. (A8)

The horizontal lines IB and SA are cut by the transver-
sal line BS, which defined the corresponding—and therefore
congruent—angles ĈIB and IŜA. The latter is the shock polar
angle λ and therefore also ĈIB = λ,

IB ‖ SA =⇒ ĈIB = IŜA =: λ. (A9)
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This result, together with the expression of δ from Eq. (A8),
correlates the dummy variable δ with the polar coordinate of
the shock evaluated at the reflection point λ,

δ =
π

2
+ λ. (A10)

The correlation between the angle ε and the two polar
angles is obtained by substituting the expressions of φ and λ
[provided by Eqs. (A7) and (A10)] in Eq. (A4),

ε = π − δ − ψ

δ =
π

2
+ λ

ψ =
π

2
− φ




=⇒ ε = φ − λ. (A11)

Finally, the expression of ε as a function ofφ and λ is used
to define the perceived wedge angle θP

w,

θ
P
w =

π

2
− φ + λ. (A12)

The correlation between geometrical and kinematic
parameters follows from the parametrization in polar coordi-
nates of the shock wave (whose geometry is time dependent)
and the obstacle (which is fixed, instead), by means ofφ and λ,

Obstacle: zo =

{
xo = x0 + Ro cosφ,
yo = y0 + Ro sinφ,

(A13)

Shock: zs =

{
xs = Rs(τ) · cos λ,
ys = Rs(τ) · sin λ.

(A14)

At point I, where the shock and the obstacle intersect, their
coordinates are coincident, i.e., zs = zo,{

x0 + Ro cosφ = Rs cos λ,
y0 + Ro sinφ = Rs sin λ.

(A15)

Equation (A15) contains three unknowns Rs, λ, and φ. In this
framework, Rs is not known because the goal is not the deter-
mination of the shock position at a given time, but the definition
of a correlation describing a temporal evolution, and therefore
Rs (τ) must be considered an unknown variable.

The squares of the right- and left-hand sides of each row
of the system zs = zo [Eq. (A15)] are computed, and the rows
of

(
zs

)2
=

(
zo

)2 are added,

x2
0 + y2

0 + R2
o

(
cos2

φ + sin2
φ
)︸               ︷︷               ︸

1

+ 2Ro
(
x0 cosφ + y0 sinφ

)︸                    ︷︷                    ︸
f (φ)

= R2
s

(
cos2

λ + sin2
λ
)︸              ︷︷              ︸

1

. (A16)

The Pythagorean identity allows us to drop the mutual depen-
dence of φ and Rs from λ. Moreover, as resulting from
Eq. (A16), all the terms containing the unknown φ are merged
in the generic expression f (φ) and disengaged from the remain-
ing unknown Rs. Therefore, Eq. (A16) is manipulated to sep-
arate f (φ), in the left-hand side, from Rs in the right-hand
side,

f (φ) =
(
x0 cosφ + y0 sinφ

)
=

R2
s − x2

0 − y2
0 − R2

o

2Ro
, (A17)

where f (φ) is decomposed into the product of two terms, the
variables q and q′. The latter is defined as

q′ B
√

x2
0 + y2

0, (A18)

and therefore f (φ)/q′ is rewritten as
x0

q′
cosφ +

y0

q′
sinφ =: q. (A19)

Since
x2

0

q′2
+

y2
0

q′2
= 1, (A20)

a dummy variable ν is introduced that satisfies the following
relation: (

x0

q′
,

y0

q′

)
= (cos ν, sin ν) . (A21)

Therefore, the variable q is rewritten as a function of φ [from
Eq. (A19)] and ν [from Eq. (A21)] in the compact form
provided by addition formulas,

q= cos ν cosφ + sin ν sinφ
= cos

(
±

(
φ − ν

))
.

(A22)

By reversing the dependence of the variables in Eq. (A22) and
maintaining both the positive and the negative arguments in
the cosine, one has

φ = ± arccos (q) + ν. (A23)

The sign of φ is determined as follows: the ordinate of the
obstacle osculating circle is negative, and therefore sin ν and ν
are also negative. On the contrary, φ ≥ 0 for definition because
the obstacle is described by a polar angle φ ≥ φLE. For this
reason, from Eq. (A23), one has

± arccos (q) = φ − ν ≥ 0. (A24)

The codomain of the arccosine function is non-negative for
definition, i.e.,

arccos (ω) ≥ 0 ∀ω ∈ [−1, 1] , (A25)

and therefore the positive solution is accepted, i.e.,
arccos (q) ≥ 0. By recalling the definitions of q [Eq. (A19)]
and ν [Eq. (A21)], φ is explicitly correlated to Rs (see Table II
for the complete expression of φ),

φ = arccos (q) + arcsin

(
y0

q′

)
. (A26)

The expression of λ is obtained substituting Eq. (A26) into
Eq. (A15) (see Table II for the complete expression of λ),

λ = arcsin

(
y0 + Ro sinφ

Rs

)
. (A27)

With this expression, φ and λ are functions only of Rs and are
parametrized on the obstacle geometry. Combining Eq. (5)
with Eqs. (A26) and (A27), the expression is obtained for
θP

w = θ
P
w (Rs; obstacle geometry).

To express Rs = Rs (Ms), Guderley’s self-similar law
applies to describe the position of the cylindrical shock versus
time for a given set of initial conditions,

Rs = r̃
(
1 −

τ

τ̃

)α
, (A28)

where α, r̃, and τ̃ are constants defined in Sec. III.
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Provided Rs (τ) by means of Guderley’s model, the shock
speed s is computed as the time derivative of Rs,

s =
•

Rs = r̃α
(
1 −

τ

τ̃

)α−1
·

(
−

1
τ̃

)
= r̃

(
1 −

τ

τ̃

)α
︸      ︷︷      ︸

Rs

·
−α

τ̃
(
1 − τ

τ̃

)
= Rs ·

−α

τ̃ − τ
, (A29)

and its Mach number is calculated as

Ms =

����
•

Rs
����

ai
= Rs ·

α

ai
(̃
τ − τ

) , (A30)

where ai is the speed of sound in the internal reason.
If the initial time is set in correspondence with the shock

impingement, the value of r̃ is known but τ̃ is not since it
depends on the evolution of the shock. However, in the fol-
lowing, it will be assumed that τ̃ is very close to the one of
a cylindrical shock (the validity of this approximation is dis-
cussed in Sec. III B) and that therefore τ̃ can be calculated as
follows:

M̃s = Ms |τ=0
r̃ = Rs |τ=0

}
=⇒ M̃s ≈ r̃ ·

α

aĩτ
=⇒ τ̃ ≈

α̃r

aiM̃s

.

(A31)

The mutual dependence of the variables in Eq. (3) is
reversed to express τ = τ (Rs),

τ (Rs) =

1 −

(
Rs

r̃

) 1
α


τ̃, (A32)

and therefore τ (Rs) [from Eq. (A32)] and τ̃ [from Eq. (A31)]
are substituted into Eq. (A30),

Ms =
αRs

aĩτ



1 −

1 −

(
Rs

r̃

) 1
α






= *
,

α̃r
1
α

aĩτ
+
-

R
α−1
α

s , (A33)

to obtain, from the intermediate passage of Eq. (A31),

Rs =

(
Ms

M̃s

) α
α−1

r̃. (A34)

Equation (A34) is then substituted into the expressions of
φ [Eq. (A26)] and λ [Eq. (A27)]. The final expression of the
correlation between the local values of Ms and θP

w,

θ
P
w = θ

P
w (Ms) , (A35)

is reported in Table II.
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