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Publishihg INTRODUCTION

The Direct Simulation Monte Carlo (DSMC), proposed by G. A. Bird in 1963! represented a
real breakthrough in the field of kinetic theory?. In the years, DSMC made possible the numerical
treatment of increasingly complex problems>*, governed by the BoltZmann equation or related
kinetic models. The key of the success of DSMC is its elegant simplieity which allows accom-
modating physical gas models of growing complexity while kéeping«the same general scheme
structure and robustness.

Although the vast majority of DSMC studies are based on, dilute gas models, the flexibility of
DSMC schemes makes possible extensions to dense fluids, i.e. fluids in which the molecular size
(or the range of intermolecular forces) is comparabile with the average intermolecular spacing”.
The smaller extent of this research area reflects the_morne limited development of kinetic theory
of dense fluids. Nevertheless, the more complexsstructire of kinetic models makes DSMC even
more important, since it gives both theory.and.applications the possibility to go beyond the mere
calculation of dense fluids thermodyné@mic and«transport properties. In turn, this permits one to
assess more extensively the models{capabilities.

DSMC schemes for dense fluidg havesbeen developed along two distinct research lines. The first
one®” has been based on a direct modification of the DSMC algorithm, originating from the obser-
vation that the addition of a spatial displacement step to the particles advection and local collision
steps would make theffluid nen-ideal. Tuning the rules governing the particles relative displace-
ments allows simulatingfluid¢ with different equations of state’. Later, the kinetic equation un-
derlying the generalized DSMC scheme has been derived in Ref. 8. The second research line
followed a different path, in that the modifications introduced into the original DSMC collision
scheme wege taylored on an existing kinetic equation. The latter was proposed by David Enskog
in 19227, in an‘atfempt to extend the Boltzmann equation to deal with dense fluids.

Although baséd on a simplified model of the hard sphere fluid, Enskog theory has been rather
suecessful in predicting transport properties of simple fluids!?. Moreover, very good agreement
between molecular dynamics (MD) simulations and direct numerical solutions of Enskog equation
has been found in the study of shock waves propagation in a hard sphere fluid'!. The first particle
scheme for the numerical solution of the Enskog equation was proposed in Ref. 12. The scheme
implementation followed Nambu’s method'?, which made easier coping with the non-local char-

acter of Enskog equation collision integral at the cost of conserving momentum and energy only
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Publishiing statistical sense!*. True DSMC extensions for the Enskog equation have been proposed in
Refs. 15 and 16.
It is interesting to note that Enskog and Enskog-like equations, as well as the associated DSMC
schemes, are not only relevant to investigate fundamental aspects of statistical mechanics but they
have also found application to modeling of dry granular media!”-!3.
As mentioned above, Enskog theory of dense fluids is based on the‘hard sphere potential which
limits its range af application to situations where attractive intermolecular forces can be neglected,
for instance when the dense fluid temperature is well above its’esiticalyalue. Hence, an extension
of the theory to include attractive forces is highly desirable, both from-the theoretical and practical
point of view. Such an extension has been proposed by\De Sobrino in 1967'°. As described in
Section II, intermolecular interaction is represented @s the superposition of the hard sphere poten-
tial and an attractive smooth tail. The short-range repulsive forces are treated as in the standard
or revised Enskog equation theory, while the long-range attractive forces enter the equation in the
form of a mean-field Vlasov term. Accardingly, thiskinetic equation is referred to as Enksog-
Vlasov (EV) equation. The extensiongalthough resulting from an approximate treatment of pair
correlations, gives the model the capability/of providing a unified description of both liquid and

vapor phases, including the interfacéyegion?®-2!

. It has been later proved that the EV equation
can be derived from the Liouville éguation by applying the principle of maximization of entropy?>
and it leads to Korteweg equatiens for non-isothermal liquid-vapour systems in the hydrodynamic
limit?3. The mathematical prgperties of the EV equation and of simplified version of it has been

extensively studieddn cefinection with the liquid-vapor phase transition?*~27.

In spite of its.approximate nature, the EV equation can mimic the fundamental physics of the

condensed state22:25-29

and, therefore, it is a useful bridge between the continuum approaches,
which failito properly deal with the complexities of interfacial phenomena and MD simulations,
whichf can potentially provide an accurate description but are computationally demanding. Bea-
cause ofithe EV equation ability to describe the liquid-vapor interface, most of its applications
have been devoted to determine the kinetic boundary conditions that need to be prescribed at the
Tiquid-vapor interface®*3!. In particular, the statistical features of atoms spontaneously emitted by
the liquid bulk has been elucidated by studying the evaporation into vacuum for both simple?!-32
and binary liquids3?. The contribution of back scattered molecular flux from the vapour to the lig-
uid has also been extensively investigated®*3. Studies have also been carried out for liquid-vapor

flows in confined geometries®. In addition to presenting the above brief review of the extensions
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Publishiag applications of DSMC to dense fluids, the paper aims at giving a more detailed description of
its applications to liquid-vapor flows . Accordingly, Sections II and III provide a description of
Enskog-Vlasov equation and the associated DSMC scheme, respectively. Section IV describes a
specific application of DSMC to the study of the evaporation of a non-ideal vapor from a liquid
slab. As discussed below, this problem is not addressed in the literatuz/ in spite of its theoretical

interest and potential practical relevance. 3

II. THE ENSKOG-VLASOV KINETIC EQUATION ~)\

T—
Enskog-Vlasov equation!® provides an approximate \@e iption of a fluid composed of

identical molecules of mass m, interacting through aSutherland potential ¢ in the form:

o ,
¢(p) = i \ﬂ ? (1)
( p>oc

As shown by Egq. (1), the isotropic poten Adepends on the distance p = ||r; — r|| between

two molecules whose centers are locat ﬂ%an 1, respectively. Short range repulsive molecular

forces are taken into account by th\jrd here contribution to ¢, whereas the soft potential tail
tin

¢:(p) describes attractive force aihc\\adistance larger than the hard sphere diameter ©.
As discussed in Refs. 19 and 22, it 1s,possible to obtain EV equation as a closed kinetic equation

for the one-particle’ distibutionfunction f(r,v,?):

Fl(rvt)
m

£ W v-Vef+ 'VVf:ChS(faf)' 2)

In Eq. (2), Cs(f5 fﬁa\co ision integral which describes impulsive binary collisions in a dense

hard sphere /Kc(ordi g to Enskog theory?:
Q?s fvf) = Gz/y {Zhs(ral"l‘Gf()f(""‘GR,VTJ)f(er*J)_
(

Xns(r,x — oK) f(r — ok, vi,) f(r,v,0) } (v, - K) Tdv,d°k. (3)

- A
I%:l; ve equation, v denotes the velocity of the center of mass of a molecule, k a unit vector
% igns the relative position of two molecules at the time of their impact, whereas (v*,v})
pk—collision velocities transformed into (v,vy) by a hard sphere collision, according to the
following relationships:
v =v+ (v, k)k, (4)
Vi =V — (V, . lA() k. (5)
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Publishifigs to be noted that Enskog’s form of the hard sphere collision integral differs from its corre-
sponding form in Boltzmann equation for dilute gases in two important aspects. First of all, hard
sphere collision partners occupy different positions, giving rise to a non-local form of Cy,(f, f).
Second, in dense fluids the volume fraction occupied by molecules is no longer negligible. Pair
spatial correlations are taken into account by the velocity independe?/ air correlation function
at contact®, y,(r,r+ Gﬁ). Following the simplest formulation of dﬁ);\txgry”, the latter has

been assumed to be a function of local number density. More preiS\lt has been assumed that:

Xns(r,r £ OK) = 25 n l'i (6)

Xhs (1 )—; 2= " % (7)

The expression given by Eq. (7) ensures that the l\hefacontrlbutlon to the EV fluid equation

-
of state is consistent with the accurate CarnhariStarling approximation?
considering the soft potential tail ¢,(p)

Since pair correlations are completely neglec
interactions, their effect is accounted by the ﬁco'sistent force field F; (r,¢):
Sdm. r —r

F;(r,0)= —
4 S e =]

l’l(l‘l,l) dl‘l, (8)

which results to be a linear funct the number density field n(r,7).
In view of the applica mde}scnbe in Section IV, it is convenient to give the spatially one-

dimensional form of E¥ equationifor planar geometry:

8 f Fe(x,t) of
0 0 Cutf. 1), ©)
m Vx
being x the ¢ te spanning the directions of flow gradients. Simple manipulations of Eq. (8)

lead to th folly)w1 form for the self-consistent force field, now represented by its single compo-

nent Fi

—27r (Pt (y—x)n(y,t)dy+ =2 (ly —x[)n(y,t)dy|.  (10)

\y x|<o ly—x|>0

5 ‘Equilibrium solutions of EV equation

A brief description of the properties of equilibrium solutions of EV equation seems in order
here, because of their relevance for the evaporation flows described in Section IV. A more com-

plete account is given in Ref. 21.
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FIG. 1. (a)- Vapor-liquid equilibrium coexistence curve from Eq. (16),Algebraic potential tail with y = 6.
——

(b)- Equilibrium density profiles: 7'/T,. = 0.596 (o), T /T, =0.663 (%), /T. =0.729 (), T/T, = 0.795
(N), T/T, = 0.862 (V). Algebraic potential tail with y {

Uniform equilibrium solutions of EV equationdare ¢ cterized by Maxwellian distribution func-
tions having constant number density n and t ‘\es@re T. In uniform equilibrium, the pressure

pisrelated ton and T by a generahzed Van der Waals equation of state>”

—phs n,T) Oc,n2 (11)
where pps(n,T) = nkgT (1+1 x 2 is the hard sphere pressure equation of state,
consistent with the Carnahan- Starhn prox1mat10n for x5, as given by Eq. (7). The potential tail
contribution to the pres equation of state is proportional to n%, being ¢; a constant depending
on ¢;. The particul form of the obtained equation of state causes the critical reduced density
Ne = TGN, / 6 t take th Vﬁfue 0.1304439008, irrespective of the particular choice for ¢,. At
variance wit ty, critical temperature 7, is affected by the assumed soft potential tail
form. In t cas the algebraic tail

c Y
‘"‘ p)=—¢s <E) , 95,7>0, (12)
adopted ina-number of EV equation applications?!-34, the critical temperature is related to the
p(&ﬁ&al}arameters by the following expression:

\ oo _ksTo _ 1 4y

fe 0o ac?’ 3’

o = 10.60122838879298. (13)

On the other hand, considering an exponential tail in the form

oio)-ame [ 4(25)]. "

o
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Publishilegds to the following expression for the critical temperature:

ksT, 4, 3 6 6
=B =—(l+3+5+73) (15)

T‘_d)o_ac A A2

C

as a function of the normalized potential decay distance A.
If the uniform equilibrium temperature 7" of the fluid is lower than Q/ en EV equation admits
non-uniform equilibrium solutions corresponding to a two-phase sy, eﬁljn whigh liquid and vapor

coexist, being separated by a smooth interface?!. In this case, the fluid density profile obeys the
equation?%-21: )
d +1 .
kBTd—n = n(x)Fy(x) +2m62n(x)kgT kxxn r?(x —52 x)] n(x — oky)dky, (16)
X ~1

-

where F, is given by the steady version of Eq. (10).«-The equilibrium liquid and vapor bulk

density values, n;(T) and n,(T), that the fluid th{s%ﬁ:..from the interface, can be determined

by Maxwell’s equal areas rule applied to isO&R3 given by Eq. (11) or by equating the proper

chemical potentials in the liquid and vapo h-&se.si Figure 1 shows the vapor-liquid coexistence

curve obtained by setting ¢, as in Eq. &\ﬁz\v\ihw = 6 to mimic the attractive contribution in the
4

The same potential tail has been used to compute the

obtained by the DSMC extensions described in Section III.

classical 12 — 6 Lennard-Jones po%
equilibrium density profiles sh&(;n\ ewight panel of Fig. 1. Equilibrium solutions have been

A selected set of fluid 0%, taken from the vapor-liquid coexistence curve, is presented
in Table I as a function 9f t
tions have been E(ed as™i

The consider e}uili lum states span a temperature interval in which the vapor phase ex-

quilibrium temperature. The corresponding equilibrium solu-
itidl data in the simulations presented and discussed in Section IV.
hibits significant,deviations from the ideal behavior, as indicated by the vapor compressibility

Z,(T)=p f) / (/kBT) and the value of the hard sphere mean free path, normalized to hard

spher@ﬁzr, /o = 1/[\27nc> xps(n)].

—
ISQ&V[C PARTICLE SCHEME FOR EV EQUATION

\ <

Enskog-Vlasov equation can be solved by an extension of the original DSMC scheme to dense

fluids, described in Refs. 15, 21, and 36 and reported here to give a more self-contained presenta-
tion. Modifications are only required in the collision algorithm because of the non-local structure

of the Enskog collision integral, the main framework of the DSMC scheme being unchanged.

7
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LE I. Reduced liquid number density n; = n;6°, reduced vapor number density n} = n,0°, reduced
pressure p* = pc> /¢, vapor compressibility Z,(T) = p(n,T)/(nkgT), and normalized hard sphere mean
free path A /o = 1/[v/21nc> x;,s(n)], as a function of reduced equilibrium temperature 7* = kT / .

T | T/T. | nf n p* Z, )2// o
0.50(0.6626|0.7187|1.2213e-02|5.6822e-03]0.9237 l@w

- N
0.55/0.7288/0.6568(2.3111e-02|1.1154¢-02 0.8739(@4e+00“

0.60(0.7951|0.5917|3.9941e-02|1.9436e-02 0.80&“@8@+00
Vi

0.65|0.8613]0.5205|6.5517e-02|3.1009e-02 %)&6\14 4e+00

0.70/0.9276/0.4363| 0.1066 4.6261@@536%1\1.8283&00
x NG
(v—=vi(1))

In particular, the one-particle distribution functiovg t)"fy represented as a superposition of N,

Dirac’s 6 functions e
NP
flrvn =¥ @ )5
l\

each term O (r —r;) 6 (v —v;) represe 'n.g%he ntribution of a mathematical particle, character-

v—v;(t)), (17)

ized by its spatial position r;(z) and velo \Rt) It should be noticed that, in general, N, is not
equal to the real number of pa cl&g@ut in the simulated flow field and the weight 7%/, equal
to the ratio of the number of rehnumber of simulation particles, accounts for that.

In the simulation of onedor %Simensional flow-fields, the number of computational particles,
N, can always be HQ%Q the number of real molecules by a proper choice of the com-
putational domai%ize n

g Ahe homogeneity directions. In three-dimensional or axisymmetric
simulations su h}(:ho\gis not possible and therefore a weight 7 has to be introduced. It should

be also obsetrved,that, in these cases, the typical DSMC cell size could be smaller than the molec-

ular size e/ont?'n less that one real molecule. Then, the number of simulation particles could
real one and the weight can be seen as the inverse of the number of similar real

be higher than
systems that a)e simulated to obtain good statistics.

s in traditional DSMC implementations, particles positions and velocities are advanced in

t\ry: ,l)\y a time splitting scheme, first order accurate in time and in space. During a time step,
from time ¢ to time ¢ + At, the distribution function f is first updated by disregarding collisions in
Eq. (2). Hence, positions r;, and velocities v;, are provisionally given the following values:

F,[r;(1),1] (Ar)?

H(t+At) =r(t (1At ;
ri(t+Ar) =r;(t) + vi(r)Ar + - >

(18)
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Vi(t+Ar) =v(t) + -

At. (19)

The above scheme has first order time accuracy, because of Eq. (19). Once the first step is com-

pleted, the variation on f induced by the collision term at the right hand side of Eq. (2) is computed

g—f = Cps(f, ), / \ (20)

which does not describe a locally homogeneous relaxation as %ﬂ the case of Boltzmann

from the equation:

equation.
In this second step each particle keeps the position reached ?_E\ the énd of the previous step, whereas
particle velocities v; are updated according to a probabilistic ma)tho which provides an estimate
of the overall collision rate in the computational dginain and*selects collision pairs according to
Eq. (20). D

is

‘We observe that the collision rate of simulation*particl

\N
hgigplvi, 1)
@ \

f(ri—ok,vi) [(vi —vi) -K] " dvi k. (22)

where

v = Gz/%hs [n

To obtain the collision pro ah'd't%:)]ft simulation particles, the computational domain is divided

into a number of cells whose size must be small enough to resolve the flow field gradients. Within

each cell, the dist?yu 1 n’fun?i (17) is spatially regularized and it takes the following form:

N
~ n
D flr,vlt) = N_Z,; O(V—=Vmj), TEGCn. (23)
In Eq. (2 fand N, are the real average number density and the number of simulation particles
in thelm — th,c ‘¢m respectively, whereas v,,; is the velocity of particle j in 6. Substituting
expressi 2}) into Egs. (21) and (22) yields the following result:
KS 1 No Mi Ny
S NC:EZ Z Zvimja (24)
.~ i=1m=1 j=1
n O A Aq 1+ A
Vim =03 [ o 1 (i Sk )| [(vmj—vi) oR] " @k, (25)

being M; the number of cells containing a portion of the sphere having radius a and center r;, and

Yim the region of the unit sphere where r; — ok € %m. Although correct, the direct evaluation

9
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circumvented by the adoption of a majorant collision frequency scheme*! in which N. is estimated

by a stochastic process. An upper bound V;j, for each v;, is easily obtained as

AiC; N
Vijm < Vijm = 2#/ 4’k 26
where A; and C; satisfy the following inequalities:
N Xhs [n <rl — —k)} <A;, vk € .7 ,\%K . (27)
Vinj — Vi SC,',ij. (28)

—
An upper bound N, for the collision rate immediate(lelg@ m Eq. (26)
. Np M; Np P ‘)
N.=-Y Y VN&%GZA,Q. (29)
i=lm=1 i =1

The method consists in replacing the real Cellisionirate N, with N, which is easier to obtain. How-

| =

3

ever, the real collision rate will not be H@;sd ause the extra collisions will be false collisions
~

which do not change the Velocitiesyll ing pairs.
t

According to Eq. (29), the pro@arﬁcle i is selected for a collision (either real or false)

is
2wo 2A,‘C,‘
p=——""t" 30
Q Pi N (30)
Once particle i h%/)e séle(}e the probability it collides with a particle in cell m is
\ N

Zj;nlvijm 1 oa
Dim = , — = —/ d-k. 31
" Z%;IZZJVQ Vijm 4m Sim

4 .
Equati &\(g\is\lm;&s that p;,, equals the probability that, drawing a random vector k on the unit
the Ny,

spher ition r; — ok of the collision partner is in cell €),. The probability that particle j

ofit of particles in 6, is selected for a collision is

—_ Vijm 1
p o= vum 32)

The above result implies that the collision partner of particle i can be chosen at random among the
particles in cell 6,,. The partner selection rules are based on the modified collision frequencies

Vijm which include false collisions. The probability p;;,, that the collision between particles i and

10
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_ Vijm _ [y ¢ (k)d?k

ijm — = ~ ) 33

Pij Vijm fym,» 2k (33)
_ Ok _v)okl™

o (k) = " 1T 2122““"’ ) ok (34)

Since 0 < q)(lA() < 1, pijm 1s also equal to the probability that a rahdom fraction ry is less than
q)(ﬁ), being k uniformly distributed in .%,;. If the collision is acégptedias real, then the velocities
of collision partners are changed according to Egs. (4) and (§). Sincé{or some applications, the
tipical space and time scales of EV based studies of simple.fluids are comparable with those typi-
cally approached by MD, a comparison of the computational performances of the DSMC scheme
described above with those of similar MD simulations is.in order.

First of all, it should be noted that the computationakeffort of each of the two stages composing the
DSMC scheme is proportional to the simulation particles number N,. A similar dependence on N,
holds for MD simulations adopting potentiaksange cut-off and some form of nearest neighbor in-
dexing®. For the application described(in Sectton IV, the time step and simulation duration would
also be very close. However, the{dDSME ‘computational cost per particle is generally smaller.
Atoms collisional interaction (gtage 2) 1S«ireated stochastically, the easily estimated number of
collisions to be computed at each time step being much smaller than N,. The calculation of the
self-consistent force fieldfis, in “principle, very similar to the way MD computes forces. However,
the DSMC computatignal effort is proportional to the product of the spatial cell number times the
number of spatial gells withindhe cut-off distance. Both factors are much smaller that the number
of simulation atoms. Mgreover, the numerical calculation of the self-consistent force field can be
easily reduced*tg product of a vector, containing the discretized density field, times a small size
matrix whese £lements only depend on ¢ and can be computed just once and stored to be used
throughout the ‘simulation. Nevertheless, it should be also observed that the impact of the force
field.caleulation on the overall DSMC performances depends on the dimensionality of the prob-
lem. DSMC-MD comparisons of spatially one-dimensional flow simulations show that DSMC
rung about two orders of magnitude times faster than a similar MD simulation with the same
atems number. Comparisons made on two-dimensional flow simulations3® estimated that DSMC
runs about ten times faster than MD, in this case. Such considerations suggest that the computa-
tional advantages of DSMC simulations, based on EV equation, are limited to two-dimensional

planar and axisymmetric flow geometries. However, it should be kept in mind that Enskog theory

11
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gases, where the number of real molecules per cubic mean free path would be too high for a

deterministic simulation.

IV. EVAPORATION OF A NON-IDEAL VAPOR

The DSMC scheme described above has been applied to study4he evaporation of a planar liquid

film when the flow conditions produce a non-ideal vapor. The problém is relevant for modeling
bubble dynamics*? and evaporation of fluid droplets*’ but.it Seems to have received very scant
attention, to the authors’ knowledge.
The simulation setup has been designed to generate vapor flowfields whose general properties are
similar to the classical evaporation of a dilute vapox intoza half-space, as described below. In the
simplified test problem considered here, a liquid film, injthe form of an infinite planar slab of finite
thickness Ax;, is initially in equilibrium with-its vapor phase at temperature 7;. The vapor occupies
two regions, symmetrically located withaespeet to the liquid slab center. Each of them is delim-
ited by the adjacent liquid-vapor inferfacédnd a perfectly reflecting piston, whose planar surface
is kept parallel to the vapor-liquid, interfaee. The left and right pistons are initially located in the
vicinity of the vapor-liquid interface«at positions Fx,(0), respectively. Evaporation flow is started
by withdrawing both pisgOns with constant opposite speeds FV,,. During evaporation, a narrow
strip in the center of the liquidigslab is thermostatted at constant temperature 7; to provide the heat
flux necessary to sustainevap@ration. The resulting flow is unsteady, because of the motion of the
interfaces and pistons. ‘However, the common temperature, 7;(¢), of the slowly receding interfaces,
after an initjal rapid transient cooling, reaches a minimum followed by a slow monotonic increase.
If the inifial slab thickness is large enough, the time evolution of 77, following the minimum, is
so sloWly increasing to be considered a constant plateau. In this phase of the system evolution,
the temperature profile in the liquid takes an approximately linear shape evolving self-similarly.
If'the duration of the temperature plateau is long enough with respect to the time sound waves in
the,vapor take to travel through the gap between the piston and the interface, then the vapor flow
becomes quasi-steady. Its structure is relatively simple, consisting of a kinetic region (Knudsen
layer) next to the interface, followed by a uniform equilibrium region where the vapor moves with
the piston speed, the density and temperature profiles being nearly constant.

DSMC simulations, following the scheme depicted above, have been performed starting from the

12
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(black), = 1300 (blue), t = 2500 (green), t =370 d), = 4900 (magenta), t = 6100 (violet), t = 7300
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with piston velocities V,, = (5.0e — Se—02,1.0¢ —01), in units of y/ @5 /m. In the following,

~
vapor-liquid equilibrium soluti@ able I. For each temperature value, three simulations

reduced units are used: the hardigphere diameter o is the reference length, the molecular mass m

is the reference mass nd/G /0 the reference time. Accordingly, the number density, veloc-
ities and tempere?ées givén, respectively, in units of 673, \/0s/m and ¢ /kp, being kp the

Boltzmann co

nt
It is worth 'tbing that breaking of the liquid slab prevented from obtaining useful results at

the higheS¢ temperature value, 7 = 0.7, corresponding to about 93% of the critical temperature.
Becaue of the infrinsic flow unsteadiness, macroscopic flowfields have been obtained by a combi-
nation o has§ and time averaging, in order to improve the quality of statistics in the less populated
vapor ph%se. For each temperature and piston velocity combination, 12 statistically independent
‘B’aﬁn&croseopically equivalent simulations have been run. Each simulation used 10° particles, a
grid size of 1/10 and a time step of 5.0e-03. Within each simulation, time averaging has been
performed over a time window which is long with respect to molecular scale but relatively short

with respect to the vapor phase time scale. Moreover, the amplitude of the time averaging window

has been kept short enough to have neglible interfaces displacement during the averaging process.

13
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<
Thanks to the relatively high si@ ticle number, statistical run to run variations are small.
N

In particular, the relative error associated with global flow properties (like 7:, and 7., for instance)

corresponding to the Wf,St ighest values of 7; considered here. For 7; = 0.5, the vapor is
close to ideal con?}tfion ee ,T'able I); the small value of the piston velocity, V,, = 0.075, produces

a small evapor

is well below 1.0%. Fig@\ows the time evolution of the fluid density profile for two cases
d

tion s flux and a small evaporative cooling of the interface. As a result, the

density profile'simply recedes while approximately keeping its equilibrium shape. For 7; = 0.65,

uch higher. Hence, evaporation causes stronger cooling of the interface
leading to a moxé pronounced transient, during which the liquid density in the interface region
inereas whgeas the vapor density decreases, with respect to the equilibrium value. The initial
rapid suriyce cooling is followed by a flow regime in which the interfacial density profile keeps the
??ﬂ?e ghape, receding with fairly constant velocity, as shown by the four leftmost curves in Fig. 2.
Invorder to give a more quantitative description, the interface motion has been followed by defin-
ing its position x;(¢) as the point where the absolute value of the spatial derivative of the density
profile |%(x, t)| has a maximum. The time histories of the interface position, corresponding to the

cases considered in Fig. 2, are shown in Fig. 3. In the low temperature case, the initial transient

14
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Publishiveg be hardly detected and the interface appears to move with constant velocity over most of the
simulation time.
The transient cooling effect is more evident in the second case, where the temperature is higher

and initially causes more intense evaporation and faster interface recession, before the onset of the

B}IM equation and the

to the vapor liquid inter-

(approximately) constant velocity recession.

The comparison with the dilute gas approximation, provided by th

companion boundary conditions, requires that a temperature is attrib

face. This is a delicate point which has been addressed in di

nt ways>>*++_ Figure 4 shows
the flowfield structures in the vicinity of the interfaces in t ﬁ?('m-conditions having identical
piston speeds, V), = 0.10, but different temperatures and\nitial iquid slab thickness, respectively
set equal to: 7; = 0.50, Ax; = 80.0 (left panel) anQ: (.65, Ax; = 140.0 (right panel). Both
flowfields belong to the quasi-steady regime dek%(; EE)VG' The position of the interface is
given by the maximum of the absolute value ¢ density gradient, marked by the vertical dashed
lines. The intensity of the maximum also olvs\it\ interface thickness increases with temper-

ature?!. The above definition of the interface pgsition is more than simply conventional. Actually,

this is also the point where the veloeity } aecelerating towards V), and where the longitudinal,

transversal and overall temperatures, "I (%), 7 (x) and T'(x) = (7 (x) + 2T (x))/3, separate. The
temperatures mentioned above are'de as:
10— [ e )P vy (39)
n(x)R ’ ’

r = IO, .

/&J/{x) = m / (vs +v2)f(x,v)dv, (36)
J Ve

and thei afation‘marks the beginning of the kinetic region where the distribution function be-

comeﬁfsitrg i¢ because of the mixing of two different molecular groups. The first one, moving

T

obd one, moving with velocities vy < 0, is formed by the molecules which have already
\?’\bg red a number of collisions in the gas phase and are being scattered back to the interface. The
t

withuyelegities v, > 0, is formed by the molecules spontaneously evaporating from the interface.
e

~
ribution function of the first group is well represented by a half-range (v, > 0) Maxwellian (see

Refs. 33 and 46 for a more detailed discussion), characterized by a temperature extremely close to
the fluid temperature at the separation position. The second group is well represented by a drifting

Maxwellian with a lower temperature, produced by the vapor expansion.

15
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FIG. 4. Density, velocity and temperature profiles in the quasi-s ad}%& (a)- 7; = 0.50, V,, = 0.10:
~—
an
ad

density n(x) (black solid line), density gradient | (black dagheddine)syelocity u, (blue solid line), longi-

tudinal temperature T (x) (light green solid line), transversal te eratbre T\ (x) (green solid line), temper-

ature T (x) = (7j(x) + 2T (x))/3 (red solid line). The VegC\al dashed line marks the position of the density
gradient maximum. (b)- 7; = 0.65, V,, = 0.10: line®a& as on left panel.

\
In this work, the vapor-liquid interfac tch)er re, Ty(¢), has been defined as T'(x;,7), i.e. as the
fluid temperature at the interface p&jon.
is

atures separations. Such statemént i \}\gpproximately correct. However, a closer examination
of the simulation data shows that%g the temperature separation position, Xp, as the point

where (7 —T))/T exce ds?gﬂin threshold (say 0.1%) puts x., within only 0.1c from x; and
.

s noted above, x; seems to mark the onset of temper-

the corresponding se rat}on erature differs from 77 less than 0.5% in all considered cases. It
is also worth stressing that, indibsence of a more rigorous definition, assigning to the interface the
temperature 77 dikdsibove, should be considered a reasonable working assumption. However,

it should also ted that such definition has been found to be consistent with the continuum-

kinetic désgripfion of the evaporation of the Lennard-Jones fluid presented in Ref. 47. There, the
evapofation of aJiquid slab, in the dilute vapor regime, has been studied by MD simulations of
the Len d—J))nes fluid and by a hybrid model, combining a continuum description of the liquid
phase Wit’l a kinetic description of the vapor. The liquid and vapor regions have been connected
‘B}jhg\ netic boundary condition described below by Eqgs. (40), (41) and (42), which replace the
real liquid-vapor interface. Particular care has been taken to tune the thermodinamic and trans-
port properties of the continuum model to those of the Lennard-Jones fluid. The hybrid model
has successfully reproduced MD results. In particular, the time evolution of the liquid surface

temperature predicted by the hybrid model has very well matched the 7;(¢) time hystory obtained

16
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line represents the 77 average in a time win %ekar d around ¢ = 6000 and about 2500 time units wide.

AN

from MD simulations, following\ﬂt\\iae definition given above. Very good agreement has also
been obtained for the ev 0@7@5 rate and Knudsen layer structure in the vapor phase. Figure 5
presents examples of e&ﬁi ory of the interface temperature 77 for the same flow conditions
for which Fig. 3 diSpla ,':he forresponding interface positions. As shown by the upper panel, 7;

exhibits an ex

ﬁ&cay towards a temperature plateau, the decay rate being determined by

the initial slab*thickness and by the evaporation rate. The lower panel presents a closeup of the

interface température in the interval 4000 < ¢ < 8000 which includes the tail of the exponential
decayfon the lefeand the beginning of the temperature increase on the right. The latter is caused
by-the stegpening of the temperature profile in the liquid phase whose thickness is reducing, thus
in easing the amount of heat conducted towards the interface, from the thermostatted central re-

small temperature variation is comparable with the statistical noise and the interface temperature

owever, in a time window around the center of the interval, about 2500 time units wide, the

is assigned its time averaged value as far as the following comparison with classical kinetic theory
is concerned.

In the quasi-steady flow regime, evaporation produces fairly uniform and constant equilibrium

17
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locity Ue = V).

Figure 6 shows an ex pﬁajhe computed flowfield, where most of the computational do-
main is occupied by Z&N@r' m vapor region. In general, the asymptotic values of density
and temperature, pé an /oo, Have been obtained from simulation data by spatial averaging over

h\,ﬁwolecular diameters wide, which excludes the kinetic regions next to the

~
flowfield outside the kinetic re@e ized by the density n., temperature 7, and bulk ve-
t

iston surface. Table II gathers the results of the simulations and presents for
ttiflg, the average interface temperature 77 and the saturated number density, ng (77),
and pressure, (T;), obtained from the coexistence curve. It is possible to note that, at high tem-
perature iy, e\in small downstream flow velocity can cause strong surface cooling and consequent
vapor thi*)ning. Hence, any deviation from ideality during evaporation is likely to be confined to
Wk \evaporation conditions. The downstream flow properties obtained from the simulations are
given in Table III, as a function of flow setting. Columns 3 — 6 contain the downstream values
of vapor temperature, density and pressure which provide the jumps macrosopic vapor proper-
ties suffer across the kinetic layer. The deviation from the ideal behavior is given by the mean

free path A = 1/[v/27tn)s(n)], based on hard sphere interaction and the vapor compressibility

18


http://dx.doi.org/10.1063/1.5097738

AI Fs)ir ct SimulatipnnMleséefc w0 Appbicsyiprgs [o1hilguitick aperdiesihe version of record.

PUb“Shlng T Vp Axl T; nsat(TI) psat(TI)

5.00e-015.00e-02|8.00e+01 | |4.98e-01|1.20e-02|5.51e-03
5.00e-01{7.50e-02|8.00e+01 | |4.93e-01|1.11e-02|5.08e-03
5.00e-01{1.00e-01{8.00e+01 | [4.88e-01|1.04e-02 4.76%-03
5.50e-01{5.00e-02|8.00e+01 | [5.36e-01|1.95e-02 9.%5%

5.50e-01|7.50e-02|8.00e+01|5.28e-01
5.50e-01|1.00e-01 |8.00e+01|5.22e-01

6.00e-01|5.00e-02|1.40e+02|5.59e-01

6.00e-01{7.50e-02|1.40e+02 5.47e(§$\1.07e02

6.00e-01|1.00e-01|1.40e+02 5.%9@,—01% 219.69e-03

6.50e-01(5.00e-02 | 1.40e+02 ‘5.§Se01 ?)43e-02 1.67e-02
“‘2.94e-02 1.42e-02

N5. 01
E&%—Ol 2.29e-02|1.10e-02

—
TABLE II. Interface temperature 7; and sa raw density and pressure, ny4 (77), psa: (T7), as a function

6.50e-017.50e-02 1.40e+GQ

6.50e-01|1.00e-01 2.906%&

r 4

flow parameters 7;, V), and Ax;. \ \ ~

Zoo = p(Nooy Too) [ (Moo Tio)- Repomshow that, as expected, increasing V), brings the down-
stream vapor condition cleger to ideality, whereas increasing 7; produces denser vapor and, if V), is
kept small enough, dgwnstreari¢onditions are rather far from ideal, being A.. below 10 molecular
diameters. /

The quantity H& ﬂp&&m (T)]/ psat (Too) which measures the relative deviation of the actual va-

por pressugé fromdts saturation value at 7., indicates that the vapor expansion across the Knudsen

£

rO(Pace supersaturation. The last two columns report, respectively, the downstream

r M., =V, /c.o and its ideal limit value MYY = | /3/(5T..)V,, the former being

layer tends
—
flow Mach n

bdsed on on-ideal sound speed value, obtained as:

)
\ <

dp dp [(de\ ' [ p de
2 _9p  9p(o¢c r %€
) =5, T or (aT) (n2 ) (38)

being e(n,T) = %T — %”n the fluid specific energy, in reduced units.
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5.00e-01{5.00e-02|8.00e+01| |4.86e-01|1.10e-02|4.94e-03|2.03e+01 |9.29e-01|8.59e-02|5.81e-02|5.56e-02
5.00e-01{7.50e-02|8.00e+01 | |4.75e-01|9.75e-03 |4.33e-03|2.28e+01|9.34e-01|1.32e-01|8.78e-02|8.43e-02
5.00e-01{1.00e-01{8.00e+01 | [4.63e-01|8.81e-03|3.83e-03|2.53e+01|9.39e-01]2.31e-01|1.18e-01|1.14e-01

5.50e-01{5.00e-02|8.00e+01 | |5.21e-01|1.77e-02|8.28e-03 | 1.24e+01|8.96e£0147.18e-02|5.70e-02|5.40e-02
5.50e-01{7.50e-02|8.00e+01 | |5.08e-01|1.55e-02|7.14e-03|1.42e+01|9405e-01 | 1.17¢-01|8.65e-02|8.15e-02
5.50e-01{1.00e-01|8.00e+01| |4.94e-01|1.39e-02|6.26e-03|1.59e+01 |94 2e-0%2.08e-01|1.17e-01|1.10e-01

6.00e-01{5.00e-02|1.40e+02||5.46e-01|2.34e-02|1.11e-02|9.326+00|8.71e-01|4.75e-02|5.69¢e-02|5.24e-02
6.00e-01{7.50e-02|1.40e+02||5.29e-01|1.97e-02]9.23e-03 | . 11e+01 | 8:86e-01|8.65e-02|8.59¢-02|7.99e-02
6.00e-01{1.00e-01|1.40e+02|[5.17e-01|1.72e-02|7.98e-03,1.28e+0148.97e-01|1.03e-01|1.15e-01|1.08e-01

6.50e-01{5.00e-02|1.40e+02||5.75e-01|3.18e-02|1.53e-02{6.79¢+00|8.38e-01|2.48e-02|5.66e-02|5.11e-02
6.50e-01{7.50e-02|1.40e+02||5.51e-01|2.61e-02 {{|.23e-028.34e+00|8.58e-01|9.07e-02|8.56e-02|7.83e-02
6.50e-01]1.00e-01|2.00e+02| |5.25e-01|1.95e-029.05¢=03}1.13e+01 |8.87e-01|1.13e-01|1.15e-01|1.07e-01

TABLE III. Downstream equilibrium flow propeities as a function of flow parameters 7;, V,,, and Ax;.
A. Comparisons with ideal gas theery

When the saturated vapor presstg is low enough, the vapor behaves as an ideal gas. Then,
the vapor flow, relative t@ the meving interface, is well decribed by the classical half-space solu-

30,48

tions of the steady’ Boltzmann equation for a dilute hard sphere gas’:

d z ) ,\
an_‘j: — %—/y {f(ravT,t)f<r,V*,l) —f(r,Vl,l)f(l'7V7t)} |Vr'k)|dV1d2k. (39)

At the spatial lecation of the assumed planar and structureless interface, the following boundary

condition holds:

S0 = vfiW)+ [ KOOV, >0, (0)

which mimics the presence of the vapor-liquid interface that Eq. (39) cannot describe. Equa-
tfion (40) assigns the molecular flux emerging from the interface as the superposition of two dis-
tinct components. The first one consists of the molecules initially belonging to the liquid phase
and evaporating into the vapor phase with distribution function f,(v), the second one consists of
vapor molecules whose initial velocity v’ is instantaneously changed to v as a results of the vapor-

liquid surface scattering, described by the kernel K(v,v’ )2. The usual choice for the distribution
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Publishifugiction f.(v) of molecules evaporating from the condensed phase is the half range Maxwellian

. nsat(TI) _ V2
fe(v)_ce(zn_R,TI)}}/z exP( 2RTI) ) Vx>07 (41)

whereas Maxwell’s gas-surface scattering kernel is the usual choice to describe scattering of vapor

molecules impinging on the liquid surface:

1 N
K(v,v)=(1-o0,) [avxm (Q@\—F

exp
(1—0)8(v—v +2V/%)]. (42)
e
f'th

i

In the above expressions, n,(77) is the number density e saturated vapor at the temperature
of the interface 7;. The evaporation/condensation coefficient a (0 <o, <1) gives the fraction
of vapor molecules impinging on the interface n{lbsoﬂ)ﬂd. The total fraction of impinging
molecules which are instantaneously re-emitted is O¢; « being the probability of diffuse re-
emission and 1 — a the probability of speculﬁi@b@) from a surface whose normal is X.

It is further assumed that, far from the vaper-liquid.interface, the vapor distribution function is a
Maxwellian. More precisely: \ ~

o 5)\2

27RT.)?2

being e, U and 1o, the tream values of vapor number density, velocity, and temperature,
respectively. v‘x

The flow propertie %1 te gas limit have obtained by many studies of steady evaporation
d on 48

into a half-space$b inetic equations*® or moment equations*®. The main results can be

summarized t@follo ing statements:

1. In the fibw }et ings specified above, steady flows are possible only when the downstream

-~ . .
qu1hbgu state is sub-sonic.

—
@ ownstream equilibrium density n. and temperature 7. are related to the liquid inter-

¢ temperature 77 and saturated vapor density ng, (77) by the following formal relation-

S Xhips:

= - (M), (44)

Neo Neo

(M), (45)
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Publishi‘n'g< re M., the downstream flow Mach number. The form of the two above relationships implies
that both the density and temperature jumps across the Knudsen layer are determined by a single
parameter, M... The determination of precise form of Eqs. (44) and (45) is not any easy task since
it requires the solution of the Boltzmann equation or a kinetic model equation. Analytical results
are available for weak evaporation, described by the linearized Boltzmafin equation®’. Analytical
results for arbitrary subsonic values of M.. have been obtained by A=Y trehus*® for Maxwellian
molecules? by the method of moments. Numerical results for arbitratily strong subsonic evapora-
tion for a monatomic gas described by the BGKW model and'by, thes{ull hard sphere Boltzmann
equation, solved by DSMC, are respectively presented in Refss§1 and.52.

The form of Eqs. (44) and (45) also depends on the parameters appearing in the vapor-liquid
boundary condition model, although most of the studies have“assumed either unit evaporation co-
efficient or arbitrary o, < 1, but purely diffuse Scattering of the reflected molecules (¢ = 1 in
Eq. (40)). Since Eqgs. (44) and (45) (partially) preyide the link between the hydrodynamic descrip-
tions of the liquid and vapor phases through thekinetic layer, it is of interest to assess the validity
of the above ideal kinetic description of evaperation from a liquid surface when the vapor is no
longer dilute.

In principle, it is to be expected,that deviations from the dilute limit behavior might appear when
the mean free path in the vapor phasge beeomes comparable with the molecular size. Moreover, the
usual form of kinetic boundary-¢onditions at the vapor-liquid interface, might become not adequate
in a situation in which/the time a gas phase molecules spends interacting with the liquid phase is
comparable with vaporgphase eollision time. The comparison with the results obtained from the
dilute gas limit has been baSed on a series of accurate DSMC simulations for a hard sphere gas,
governed by, the Boltzmann equation. The vapor-liquid interface boundary condition as given by
Eqgs. (40-42) has been used. In particular, 7y and ny, (77) have been assigned the values obtained by
the companionEV simulation (see Table II). The evaporation coefficient has been set equal to one,
although lower values have been also considered in a few exploratory simulations. The boundary
conditionat infinity, Eq. (43), has been dealt with by the method described in Refs. 52 and 53. The
asymptetic vapor velocity u., has been set equal to V), —Vj, being V; the interface recession veloc-
ity, obtained by the EV simulation. Actually, Eq. (39) is meant to describe the steady vapor flow
observed by the reference frame moving with the uniformly receding interface. In principle, the
liquid bulk behind the still interface would have a velocity —V; in the co-moving frame. Accord-

ingly, the same velocity should also be added to f., in Eq. (40). However, the simulation results in
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4.86e-01[4.86e-01[-8.23e-04||1.09e-02|1.10e-02|-4.36e-03
4.75e-01|4.75e-01| 2.11e-04 ||9.75e-03|9.77e-03|-2.08e-03
4.63e-01|4.66e-01|-6.33e-03||8.81e-03|8.81e-03|0.00e4+00

Y.
5.21e-01{5.24e-01|-3.97e-03 | [1.77e-02|1.79¢-02 -9.(9&&2
5.08e-01/5.10e-01|-3.31e-03 | [1.55e-02 | 1.56e-024 6.&&—03\
4.94e-01(4.97e-01|-7.98e-03| [1.39e-02 1.496—&% 3

2

S
5.46e-01|5.46e-01| 5.68e-04 | |2.34e-02 (2. —&*%36—03
—
5.29e-015.28¢-01 4.92¢-04 1.97e—0€1.98e—0 4. 14e-03
5.17e-01|5.14e-01| 4.78e-03 1.?26‘!02\\.‘121-}2 2.91e-04

5.75e-01]5.72e-01| 5.95e-03 1‘8:;0%19166—02 3.89e-03
5.51e-01|5.51e-01 _5'626-0§~~2\6}i_ 2(2.60e-02| 4.54e-03

N

5.25e-015.24e-01 1.@—&1\1.9 e-02[1.95e-02|-7.71e-04

(be

corresponding values, n and T

TABLE IV. Downstream density ') and }e 7.*”) obtained from EV simulations compared with
™

) ined from Boltzmann equation DSMC simulations. Relative

)/ (1), &

deviations are defined as &7 = (Tog —\R(b\ = (ngfv) —nl e)) / (ng,’ e)). Data ordering is the same

as in Tables II and III.

which the liquid drifi 61301> been taken into account are practically indistinguishable from
those obtained kegping ¥, asin Eq. (41). DSMC simulations have been run using not less than

1500 particles CN a grid size of A;/20, being A; the reference mean free path in the vapor,

in equilibriumat témperature 7; with density g (7).

that t¢§mperature.and density jumps predicted by the two kinetic equations are extremely close,
e m&%)ses where the deviation from ideality is not small and the ratio of nominal mean
frég path'to the molecular size is well below 10. The same results are given in visual form in
‘Fi% .7\w ich gives EV and Boltzmann computed jumps as a function of the dowstream speed ratio

= Ueo/+/2T; and compares DSMC data with the linearized jump formulas reported in Ref. 54

for a dilute monatomic gas, described by a kinetic model.

Mo~ salli) | cessg T T

= —0.4468 S... (46)
nsat(TI) 1;
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<

FIG. 7. Density and temperature 'ump&< é ction of speed ratio S.. Black solid line: density jump

from dilute gas linearized theory>*; \ck\ density jump from Boltzmann equation DSMC simulations;
black +: density jump from uation DSMC simulations. Red solid line: temperature jump from dilute
gas linearized theory*; edi\.‘\:herature jump from Boltzmann equation DSMC simulations; red +:
temperature jump f?{n{@a ion DSMC simulations.

N

that, for weakdevaporation, existing linearized jump formulas would give a close approximation
of denfsity and temiperature jumps in a non-ideal fluid described by the EV equation. Before con-

cluding, a fe

formula, "Xhibited by both EV and Boltzmann equations data, is due to non-linear effects which

observations are in order. The deviation of the density jump from the linearized

?‘hﬁw \up on the density drop but not yet on the temperature drop, at low values of S... Non-ideality

s not manifest if jumps are expressed as a function of S., but it would modify jump formulas
using M., in place of S. because of the difference between M., and MY mentioned above. The
same observation applies to the pressure jump formula which could be obtained by Egs. (46), by

taking into account the compressibility Z to correct the ideal pressure jump formula.

24


http://dx.doi.org/10.1063/1.5097738

A I Iﬁil‘ :ct SiIT'UImmﬁﬂﬁm&ﬁﬁ&?BﬁBmﬁsIFIﬁiiEL@QicYHpOHEJME version of record.
PublishiNg CONCLUSIONS

As stated in the Introduction, the paper aims at showing that DSMC structure is general and
robust enough to allow extensions towards non-ideal fluids, governed by Enskog-like equations. It
should be stressed once again that within the framework of the theory and applications of kinetic
theory of dense fluids, the role of DSMC is even stronger than in its ideal gas counterpart, because
of the considerably more complicated mathematical structure of ufiderlying equations. Particular
attention has been given to reviewing applications of DSMC to vapor:liquid flows described by the
Enskog-Vlasov equation, where the numerical method, so fag thé only way to approach its non-
equilibrium solutions, is contributing to a better understanding of\transport processes across the
liquid-vapor interface. As example of application, the.evapgration of non-ideal vapor in contact
with its condensed phase has been described and diseussed; More specifically, the question has
been addressed on the validity of the jump reldationships of the macroscopic quantities across the
Knudsen layer. Indeed, studies carried out until now, were based on the assumption that the gas
is ideal and it was not clear whether or not'sgsults“are affected by a compressibility factor in the
vapor phase significantly different from, unity. Simulation results suggest that the usual jumps
relationships also apply to non-ideal\yaporsias long as the independent parameter in these formula
is the downstream speed ratio. Howewer, this conclusion has to be considered as preliminary and
more work is needed to enlarge the simulations data base and confirm that the result is not a
consequence of the simplified tréatment of dense fluids provided by the EV equation. It is also
worth mentioning that thedise of\EV model is not limited to the application described above. Once
provided with a sfiitable fluid-solid interaction model’®, it can be applied to investigate confined
flows. In pagficular, twosphase flows in porous media> and the dynamics of droplet impacts,

leading to €vaporation phenomena’®, appear to be promising fields of application.
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